
Lecture 4: Simply-Typed λ-Calculus

Ankush Das

January 30, 2024

1 Introduction

Today, we will study one of the coolest results in PL theory: the Curry-Howard isomorphism. We will
see how programming languages are closely connected to logic. To understand this cool result, let’s see
intuitionistic logic and how it closely connects to λ-calculus. Since λ-calculus is all about functions,
we look at the introduction and elimination rules for implication.

Γ, α ⊢ β

Γ ⊢ α → β
→I

Γ ⊢ α → β Γ ⊢ α

Γ ⊢ β
→E

Now, all we will do is add terms to the above rules.

Γ, x : α ⊢ e : β

Γ ⊢ λx.e : α → β
→I

Γ ⊢ e1 : α → β Γ ⊢ e2 : α

Γ ⊢ e1 e2 : β
→E

We have one last rule remaining, typing variables. This is derived from the id rule in intuitionistic
logic.

Γ, α ⊢ α
id

Γ, x : α ⊢ x : α
Var

That’s it! That’s all there is to the type system of the λ-calculus.
With this, I’d like to remind readers that defining a programming language now requires 3 compo-

nents:

• Syntax: how to write programs

• Type System: what programs are valid for execution, and

• Semantics: how to execute valid programs

We conclude this lecture by proving type safety of λ-calculus. We already saw the progress theorem,
we will now define the preservation theorem.

Theorem 1 (Preservation). For all closed well-typed expressions e, i.e., · ⊢ e : τ , if e 7→ e′, then
· ⊢ e′ : τ .

This theorem states that if a well-typed expression takes a step, the new expression has the same
type as the original expression. Also note that expression e is closed, since the context to type e is
empty. Now, let’s go about proving this theorem.

λx.e value
λ-V

e1 7→ e′1
e1 e2 7→ e′1 e2

App-L
e1 value e2 7→ e′2

e1 e2 7→ e1 e′2
App-R

e′ value

(λx.e) e′ 7→ [e′/x]e
App-S

1



Again, we prove by induction on the derivation of e 7→ e′. Recall the rules of the semantics. There
are three cases, all for function application since λ-expressions and variables cannot take a step. Hence,
all the cases are when e = e1 e2 and · ⊢ e : τ , which implies

· ⊢ e1 : α → τ · ⊢ e2 : α

· ⊢ e1 e2 : τ
→E

• Case when

e1 7→ e′1
e1 e2 7→ e′1 e2

App-L

In this case, we appeal to the inductive hypothesis for e1 7→ e′1. We note that · ⊢ e1 : α → τ and
conclude · ⊢ e′1 : α. This means we can apply the →E rule again.

· ⊢ e′1 : α → τ · ⊢ e2 : α

· ⊢ e′1 e2 : τ
→E

Hence, · ⊢ e′ : τ since e′ = e′1 e2.

• Case when

e1 value e2 7→ e′2
e1 e2 7→ e1 e′2

App-R

We appeal to the inductive hypothesis for e2 7→ e′2 and since · ⊢ e2 : α, we conclude · ⊢ e′2 : α.
Again, we apply the →E rule.

· ⊢ e1 : α → τ · ⊢ e′2 : α

· ⊢ e1 e′2 : τ
→E

Again, · ⊢ e′ : τ because e′ = e1 e′2.

• Case when

e′ value

(λx.e) e′ 7→ [e′/x]e
App-S

Let’s consider the typing in this situation.

x : α ⊢ e : τ

· ⊢ λx.e : α → τ
→I

· ⊢ e′ : α

(λx.e) e′ 7→ [e′/x]e
→E

Now, we’re stuck. Our goal is to prove that · ⊢ [e′/x]e : τ but we don’t know how to prove this
lemma because we have not done proofs on terms with substitution.

Lemma 1 (Substitution). If Γ ⊢ e : τ and Γ′, x : τ ⊢ e′ : τ ′ then Γ,Γ′ ⊢ [e/x]e′ : τ .

Proof. Just like every other proof, this proof will also occur by induction on the typing judgment
Γ′, x : τ ⊢ e′ : τ . This is an exercise for the reader.

Now, that we have a proof of the substitution lemma, we can use that above as follows: we know
that · ⊢ e′ : α (second premise), and we know that x : α ⊢ e : τ . Using the two in the substitution
lemma, we get that · ⊢ [e′/x]e : τ .

2


	Introduction

