Lecture 4: Simply-Typed A-Calculus

Ankush Das
January 30, 2024

1 Introduction

Today, we will study one of the coolest results in PL theory: the Curry-Howard isomorphism. We will
see how programming languages are closely connected to logic. To understand this cool result, let’s see
intuitionistic logic and how it closely connects to A-calculus. Since A-calculus is all about functions,
we look at the introduction and elimination rules for implication.

Iakp 'Fa—p I'a

—_— =1 E
TFra—=g3 T'F 3 -

Now, all we will do is add terms to the above rules.

Iz:abke:p 'tei:a—p I'kes:a
—I —E
'Xze:a—p I'kejex:p

We have one last rule remaining, typing variables. This is derived from the id rule in intuitionistic
logic.

id —— VAR
I'NakF«a Iz:alFx:a

That’s it! That’s all there is to the type system of the A-calculus.
With this, I’d like to remind readers that defining a programming language now requires 3 compo-
nents:

e Syntax: how to write programs
e Type System: what programs are valid for execution, and
e Semantics: how to execute valid programs

We conclude this lecture by proving type safety of A-calculus. We already saw the progress theorem,
we will now define the preservation theorem.

Theorem 1 (Preservation). For all closed well-typed expressions e, i.e., - = e : 7, if e — €', then
ke T,

This theorem states that if a well-typed expression takes a step, the new expression has the same
type as the original expression. Also note that expression e is closed, since the context to type e is
empty. Now, let’s go about proving this theorem.

e+ e} ey value e > €
— AV ————— ApP-L , ApPP-R
Ax.e value €1 ex — €] e €1 ez — e ey
!
e’ value
AppP-S

(\z.e) €'+ [¢'/x]e



Again, we prove by induction on the derivation of ¢ — ¢’. Recall the rules of the semantics. There
are three cases, all for function application since A-expressions and variables cannot take a step. Hence,
all the cases are when e = e1 e5 and - - e : 7, which implies

Fepra—T Fey: o
—E
-Fejes: T
e Case when
/
61’—)61
APP-L

€1 ez €] e

In this case, we appeal to the inductive hypothesis for e; — ¢€}. We note that - e : @« — 7 and
conclude - F ¢} : @. This means we can apply the —E rule again.

ke ia—oT ey a
1
7 —E
‘Fejer: T
Hence, - F e’ : 7 since €/ = €] es.
e Case when
!
e value eg > €y
AprP-R

€1 eg > €1 €y

We appeal to the inductive hypothesis for e; — €} and since - - ey : a, we conclude - - ¢, : a.
Again, we apply the —E rule.

‘Fejria—T ‘Feyia
)

.
‘Ferey: T
Again, - ¢/ : 7 because €' = ¢ €.
e Case when

e’ value
(\z.e) € — [e'/x]e

APP-S

Let’s consider the typing in this situation.

rz:abe:T
L )
FXre:a—T Fe o

(\z.€) € [e/z]e

—E

Now, we're stuck. Our goal is to prove that - - [¢//z]e : 7 but we don’t know how to prove this
lemma because we have not done proofs on terms with substitution.

Lemma 1 (Substitution). IfT'Fe:7 and ",z : 7€ : 7/ then T',T" - [e/x]e’ : T.

Proof. Just like every other proof, this proof will also occur by induction on the typing judgment
I,z : 7+ € : 7. This is an exercise for the reader. O

Now, that we have a proof of the substitution lemma, we can use that above as follows: we know
that - F €’ : a (second premise), and we know that = : a F e : 7. Using the two in the substitution
lemma, we get that - - [¢//z]e : 7.



	Introduction

