
Lecture 3: An Introduction to Types

Ankush Das

January 30, 2024

1 Introduction

Today, we will study how types can prevent programmers from making mistakes while writing pro-
grams. A type checker is simply a validity checker for a program to make sure we do not accidentally
execute invalid programs.

2 The LL1 Type Checker

Let’s return to the simple arithmetic and boolean expression language introduced in Lecture 1 and
Homework 1. The syntax is written as

Expressions e ::= e+ e | if e then e else e | n | true | false

Since we have only two kinds of expressions in our language, we need two types

Types τ ::= int | bool

Now, we define the rules of the type system. We use a simple judgment written as e : τ meaning
that expression e has type τ . Again, the principle for defining the type system is simple. We take
every expression defined in the syntax and we define the rule for typing that expression. The rules are
defined as

e1 : int e2 : int

e1 + e2 : int
T-Add

e : bool e1 : τ e2 : τ

if e then e1 else e2 : τ
T-If

n : int
T-Num

true : bool
T-TT

false : bool
T-FF

The T-Add rule defines that e1 + e2 can only have type int and for that e1 and e2 must have type int.
The T-If rule dictates that e must have type bool and e1 and e2 must have the same arbitrary type
τ and then the ‘if’ expression has the same type τ . The remaining rules just describe how to type
values.

An interesting thing to note in this language is that there are no variables. That’s because there
is no way to introduce variables. Now, we can either introduce functions (like λ-calculus) or we can
introduce a let expression: let x = e1 in e2, meaning x will have value that e1 evaluates to in the
expression e2.

How do we type this expression?

e1 : τ ′ e2 : τ?

let x = e1 in e2 : τ
T-Let

This doesn’t seem entirely correct. The expression e2 can refer to variable x but that is not specified
as a premise when typing e2.

Thus, we need to introduce a typing context, which we call Γ that tracks the types of all the
variables in the context (e.g., Γ = {x1 : τ1, x2 : τ2, . . .}). We mandate that all variables in Γ are

1

distinct. We slightly modify the typing judgment as Γ ⊢ e : τ meaning that expression e has type τ in
the presence of context Γ, i.e., in the presence of x1 : τ1, x2 : τ2, Thus, we re-write the T-Let rule

Γ ⊢ e1 : τ1 Γ, x : τ1 ⊢ e2 : τ

Γ ⊢ let x = e1 in e2 : τ
T-Let

Now that we have studied types, we can prove a preservation theorem that states that a well-typed
expression steps to another well-typed expression with the same type.

Theorem 1 (Preservation). If Γ ⊢ e : τ and e 7→ e′, then Γ ⊢ e′ : τ .

Proof. We will cover only a couple of cases of the proof. The proof proceeds by rule induction on the
semantics judgment: e 7→ e′.

• Case when e = e1 + e2 and

e1 7→ e′1
e1 + e2 7→ e′1 + e2

Add-L

From the typing of e, we get

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int
Add

Applying inversion on this rule, we get Γ ⊢ e1 : int and e1 7→ e′1. Appealing to the inductive
hypothesis, we obtain Γ ⊢ e′1 : int. Now, applying the Add typing rule, we get

Γ ⊢ e′1 : int Γ ⊢ e2 : int

Γ ⊢ e′1 + e2 : int
Add

Hence Γ ⊢ e′ : int when Γ ⊢ e : int, proving preservation.

• Case when e = e1 + e2 and

e1 value e2 7→ e′2
e1 + e2 7→ e′1 + e2

Add-R

From the typing of e, we get

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int
Add

Applying inversion on these rules, we get e2 7→ e′2 and Γ ⊢ e2 : int. Appealing to the inductive
hypothesis, we obtain Γ ⊢ e′2 : int. Now, applying the Add typing rule, we get

Γ ⊢ e1 : int Γ ⊢ e′2 : int

Γ ⊢ e1 + e′2 : int
Add

Hence Γ ⊢ e′ : int when Γ ⊢ e : int, proving preservation.

• Case when e = n1 + n2 and

n1 + n2 7→ n1 ⊕ n2

Add-V

From the typing of e, we get

Γ ⊢ n1 : int Γ ⊢ n2 : int

Γ ⊢ n1 + n2 : int
Add

This is a base case, there’s no need inductive hypothesis to apply here. But we can simply use
Add rule to get

Γ ⊢ n1 ⊕ n2 : int
Add

because all numbers are values and have type int. Hence Γ ⊢ e′ : int when Γ ⊢ e : int, proving
preservation.

The readers are encouraged to carry out the remaining cases themselves.

2

	Introduction
	The LL1 Type Checker

