Lecture 2: Formal Definition of λ -Calculus

Ankush Das

January 26, 2024

1 Introduction

In the last lecture, we saw a toy language: LL1 and studies its syntax and semantics. In this lecture, we will return to λ -calculus and study its syntax and semantics.

2 The λ -Calculus

2.1 Syntax

Since the essence of λ -calculus is functions, the syntax of λ -calculus is defined only using 3 expressions:

Expressions $e ::= \lambda x.e \mid e_1 \mid e_2 \mid x$

The first expression $\lambda x.e$ defines a function with parameter x and body e. The second expression simply applies function e_1 to the argument e_2 . The last expression is a variable which is essential to refer to the parameter in the body of the expression.

Some Examples Now that we've seen the grammar, let's look at some examples of expressions in λ -calculus.

- $\lambda x.x$: the simplest example is that of an identity function. The body of the expression is just x meaning that the function just returns its parameter.
- $\lambda x.\lambda y.x$: this function takes two parameters x and y but only returns the first one (and throws away the second one). We can similarly define $\lambda x.\lambda y.y.$ Soon, we will see how these expressions represent booleans.

2.2 Semantics

Now that we have seen some examples, let's try to define how these expressions can be evaluated. There are two standard ways of defining a semantics: (i) small-step semantics and (ii) big-step semantics.

Small-Step Semantics This defines a single step of evaluation. This is usually represented as $e \mapsto e'$, meaning expression e reduces to expression e' in a *single step*. Now, we define the rules for λ -calculus. To do that, we need to define another judgment e value to define that e is a value and can no longer be evaluated further. Formally, for every expression e, either $e \mapsto e'$ for some e' or e value, meaning either expression e steps to another expression or is a value.

$$\frac{1}{\lambda x.e \text{ value}} \lambda \text{-V} \qquad \frac{e_1 \mapsto e_1'}{e_1 e_2 \mapsto e_1' e_2} \text{ App-L} \qquad \frac{e_1 \text{ value}}{e_1 e_2 \mapsto e_1 e_2'} \text{ App-R}$$

First, λ -expressions are values. There is no way to evaluate a function unless it has been applied to some arguments. Side note: A slogan at CMU "Functions are Values!" comes from here!! Next, for function applications, we first evaluate the left hand side (chosen arbitrarily) and then the right

hand side. The App-L rule is responsible for evaluating the lhs and once e_1 becomes a value, we can evaluate the rhs using rule App-R. The most important step here comes next.

$$\frac{e' \text{ value}}{(\lambda x.e) e' \mapsto [e'/x]e} \text{ App-S}$$

Once the argument becomes a value too, the next step is to substitute the argument e' for parameter x in the function body e. Substitution means syntactically replacing every occurrence of x with e'.

Note: A technical term for small-step is also β -conversion or β -reduction. I will explain this more a little later.

Big-Step Semantics In contrast to small-step semantics which only describes a single step, bigstep semantics describes what an expression evaluates to, no matter how many steps it takes. This is defined using the judgment $e \Downarrow v$, meaning expression e evaluates to value v. So, how are the rules defined?

$$\frac{1}{\lambda x.e \Downarrow \lambda x.e} \lambda - V \qquad \qquad \frac{e_1 \Downarrow \lambda x.e}{e_1 e_2 \Downarrow v} \frac{e_2 \Downarrow v_2}{e_1 e_2 \Downarrow v} \operatorname{App}_{App}$$

 λ -expressions are values, so they just evaluate to themselves. For function applications, we first evaluate e_1 to $\lambda x.e$, then we evaluate e_2 to v_2 . We then substitute v_2 for x in e which is then evaluated to v. Note that this semantics rule is really a combination of the rules presented in the small-step semantics.

3 Type Safety

We conclude this lecture by discussing type safety theorems for λ -calculus. Type safety is usually proved using two theorems: *progress* and *preservation*. These theorems are at the foundation of any programming language and are generally used to determine if a programming language is well-defined and sound. Since we have not introduced types into the language, we will only look at a limited version of the progress theorem.

Theorem 1 (Progress). For all expressions e in λ -calculus such that e closed, either $e \mapsto e'$ for some expression e' or e value.

To understand this theorem, we first need to define what is a closed expression. Informally, a closed expression does not have any free variables. The set of free variables of an expression is defined as:

$$\frac{FV(e) = S}{FV(\lambda x.e) = S \setminus \{x\}} \lambda \text{-FV} \qquad \frac{FV(x) = \{x\}}{FV(x) = \{x\}} \text{ VAR-FV} \qquad \frac{FV(e_1) = S_1 \qquad FV(e_2) = S_2}{FV(e_1 \ e_2) = S_1 \cup S_2} \text{ App-FV}$$

Finally, an expression is closed if it has no free variables.

$$\frac{FV(e) = \emptyset}{e \text{ closed}} \text{ CLOSED}$$

Proof. We only have three expressions in λ -calculus

$$e ::= \lambda x \cdot e \mid e_1 \mid e_2 \mid x$$

This proof proceeds by *structural induction on the structure of the expression*. There are three cases:

• $e = \lambda x.e.$ In this case, we simply use λ -V rule to show this is a value.

$$\frac{1}{\lambda x.e}$$
 value $\lambda - V$

• e = x. In this case, we cannot derive e is closed. Hence, the theorem holds vacuously.

• $e = e_1 e_2$. Now, we appeal to the inductive hypothesis. We can assume the progress theorems hold for e_1 and e_2 .

Now, we can subcase on the outcome of the inductive hypothesis. Assume $e_1 \mapsto e'_1$. In this subcase, we can apply APP-L rule

$$\frac{e_1 \mapsto e_1'}{e_1 \; e_2 \mapsto e_1' \; e_2} \text{ App-L}$$

Hence, the progress theorem holds for e as $e \mapsto e'_1 e_2$.

Assume that e_1 value. Now, we appeal to the inductive hypothesis for e_2 . Assume that $e_2 \mapsto e'_2$. Now, we can apply APP-R rule

$$\frac{e_1 \text{ value } e_2 \mapsto e'_2}{e_1 e_2 \mapsto e_1 e'_2} \text{ App-R}$$

Again, the progress theorem holds for e as $e \mapsto e_1 e'_2$.

Now, assume that e_1 value and e_2 value. In this case, we can apply the APP-S rule.

$$\frac{e_1 \text{ value } e_1 = \lambda x.e \quad e_2 \text{ value }}{(\lambda x.e) \ e_2 \mapsto [e_2/x]e} \text{ App-S}$$

Again, the progress theorem holds for e as $e \mapsto [e_2/x]e$.

Hence, the progress theorem holds in all possible cases.