
19

Nested Session Types

ANKUSH DAS and HENRY DEYOUNG, Carnegie Mellon University

ANDREIA MORDIDO, Universidade de Lisboa

FRANK PFENNING, Carnegie Mellon University

Session types statically describe communication protocols between concurrent message-passing processes.

Unfortunately, parametric polymorphism even in its restricted prenex form is not fully understood in the

context of session types. In this article, we present the metatheory of session types extended with prenex

polymorphism and, as a result, nested recursive datatypes. Remarkably, we prove that type equality is de-

cidable by exhibiting a reduction to trace equivalence of deterministic first-order grammars. Recognizing the

high theoretical complexity of the latter, we also propose a novel type equality algorithm and prove its sound-

ness. We observe that the algorithm is surprisingly efficient and, despite its incompleteness, sufficient for all

our examples. We have implemented our ideas by extending the Rast programming language with nested

session types. We conclude with several examples illustrating the expressivity of our enhanced type system.

CCS Concepts: • Software and its engineering→ Polymorphism; Recursion; Concurrent programming

languages; Functional languages;

Additional Key Words and Phrases: Nested types, polymorphism, type equality

ACM Reference format:

Ankush Das, Henry DeYoung, Andreia Mordido, and Frank Pfenning. 2022. Nested Session Types. ACM Trans.

Program. Lang. Syst. 44, 3, Article 19 (July 2022), 45 pages.

https://doi.org/10.1145/3539656

1 INTRODUCTION

Session types express and enforce interaction protocols in message-passing systems [32, 50]. In
this work, we focus on binary session types that describe bilateral protocols between two endpoint
processes performing dual actions. Binary session types obtained a firm logical foundation since
they were shown to be in a Curry-Howard correspondence with linear logic propositions [7, 8, 53].
This allows us to rely on properties of cut reduction to derive type safety properties such as progress

(deadlock freedom) and preservation (session fidelity), which continue to hold even when extended
to recursive types and processes [18].
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However, the theory of session types is still missing a crucial piece: a general understanding
of prenex (or ML-style) parametric polymorphism, encompassing recursively defined types, poly-
morphic type constructors, and nested types. We abbreviate the sum of these features simply as
nested types [3]. Prior work has restricted itself to parametric polymorphism either in prenex form
without nested types [28, 51], with explicit higher-rank quantifiers [6, 42] (including bounded
ones [26]) but without general recursion, or in specialized form for iteration at the type level [52].
None of these allow a free, nested use of polymorphic type constructors combined with prenex
polymorphism.

In this article, we develop the metatheory of this rich language of nested session types. Nested
types are reasonably well understood in the context of functional languages [3, 34] and have several
interesting applications [10, 31, 41]. One difficult point is the interaction of nested types with
polymorphic recursion and type inference [40]. By adopting bidirectional type checking, we avoid
this particular set of problems altogether, at the cost of some additional verbosity. However, we
have a new problem, namely how to handle type equality (≡) given that session type definitions
are generally equirecursive and not generative.

Consider the following list types, list[α] and list′[α], where ⊕ is the constructor for an internal

choice between nil and cons labels, and where ⊗ is the constructor for a product type and 1 is its
unit. Essentially, these types are the same as the usual functional datatype for lists.

list[α] � ⊕{nil : 1, cons : α ⊗ list[α]} list′[α] � ⊕{nil : 1, cons : α ⊗ list′[α]}

Even before we consider nesting, from these types alone we have list[A] ≡ list′[B] and also
list[list′[A]] ≡ list′[list[B]], provided A ≡ B. The reason is that both types specify the same com-
munication behavior—only their name (which is irrelevant in an equirecursive, non-generative
setting) is different. As the second of these equalities shows, deciding the equality of nested oc-
currences of type constructors is inescapable: as soon as we allow type constructors (which are
necessary in many practical examples) in combination with an equirecursive, non-generative in-
terpretation of types, we also must solve type equality for nested types! In addition, as described
in Section 6, type equality pervades type checking.

As another example in which nested types are used, the types Tree[α] and STree[α ,κ] represent
binary trees and their faithfully (and efficiently) serialized form, respectively.

Tree[α] � ⊕{node : Tree[α] ⊗ α ⊗ Tree[α], leaf : 1}

STree[α ,κ] � ⊕{nd : STree[α ,α ⊗ STree[α ,κ]], lf : κ}

Indeed, STree[α ,κ] describes serialized trees because it is isomorphic (but certainly not equal)
to Tree[α] ⊗ κ. In implementing the processes that serialize and deserialize trees (which happen
to witness the type isomorphism), we make use of type equality for the nested type STree[α ,κ]
(see Section 9). There is no one particular feature of this example that necessitates type equality—
instead, type equality is used in type checking because of the interaction of type constructors with
the equirecursive, non-generative interpretation of types.

At the core of type checking lies type equality. We show that we can translate type equality
for nested session types to the trace equivalence problem for deterministic first-order grammars,
shown to be decidable by Jančar [33], albeit with doubly-exponential complexity. Solomon [48] al-
ready proved a related connection between inductive type equality for nested types and language
equality for deterministic pushdown automata (DPDAs). The difference is that the standard
session type equality is defined coinductively, as a bisimulation, rather than via language equiva-
lence [25]. This is because session types capture communication behavior rather than the structure
of closed values so a type such as R � ⊕{a : R} is not equal to the empty type E � ⊕{}. The rea-
son is that the former type can send infinitely many a’s while the latter cannot, and hence their
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communication behavior is different, implying that the types must be different. Interestingly, if
we imagine a lazy functional language such as Haskell with non-generative recursive types, then
R and E would also be different. In fact, nothing in our analysis of equirecursive nested types
depends on linearity, just on the coinductive interpretation of types. Our key results, namely de-
cidability of type equality and a practical algorithm for it, apply to lazy functional languages!

The decision procedure for deterministic first-order grammars does not appear to be directly
suitable for implementation, in part due to its doubly-exponential complexity bound. Instead, we
develop an algorithm combining loop detection [25] with instantiation [19] and a special treatment
of reflexivity. The algorithm is sound but incomplete, and reports success, a counterexample, or an
inconclusive outcome (which counts as failure). In our experience, the algorithm is surprisingly
efficient and sufficient for all our examples.

We have implemented nested session types and integrated them with the Rast language that is
based on session types [18–20]. We have evaluated our prototype on several examples such as the
Dyck language [22], an expression server [51], serializing binary trees, and standard polymorphic
data structures such as lists, stacks, and queues.

Most closely related to our work is context-free session types (CFSTs) [51]. CFSTs also en-
hance the expressive power of binary session types by extending types with a notion of sequential
composition of types. In connection with CFSTs, we identified a proper fragment of nested session
types closed under sequential composition, and therefore nested session types are strictly more
expressive than CFSTs.

The main technical contributions of our work are as follows:

• A uniform language of session types supporting prenex polymorphism, type constructors,
and nested types and its type safety proof (Sections 3 and 6).
• A proof of decidability of type equality (Section 4).
• A practical algorithm for type equality and its soundness proof (Section 5).
• A proper fragment of nested session types that is closed under sequential composition, the

main feature of CFSTs (Section 7).
• An implementation and integration with the Rast language (Section 8).

This article is an extended version of conference paper at ESOP 2021 [14]. The major additions
in this article include full proofs for our results (Sections 4 and 5), more examples illustrating the
expressivity of our types and language (Section 9), and a more in-depth description of both the pro-
gramming language (Section 6) and the type equality algorithm with its optimizations (Sections 4
and 5).

2 OVERVIEW OF NESTED SESSION TYPES

The main motivation for studying nested types is quite practical and generally applicable to pro-
gramming languages with structural type systems. We start by applying parametric type construc-
tors for a standard polymorphic queue data structure. We also demonstrate how the types can be
made more precise using nesting. A natural consequence of having nested types is the ability to
capture (communication) patterns characterized by context-free languages. As an illustration, we
express the Dyck language of balanced parentheses and also show how nested types are connected
to DPDAs.

2.1 Queues

A standard application of parameterized types is the definition of polymorphic data structures
such as lists, stacks, or queues. As a simple example, consider the following polymorphic type.

Queue[α] � �{enq : α �Queue[α], deq : ⊕{none : 1, some : α ⊗Queue[α]}}
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The type Queue, parameterized by α , represents a queue with values of type α . A process providing
this type offers an external choice (�) enabling the client to either enqueue a value of type α in the
queue (label enq), or to dequeue a value from the queue (label deq). Upon receiving label enq, the
provider expects to receive a value of type α (the� operator) and then proceeds to offer Queue[α].
Upon receiving the label deq, the provider queue is either empty, in which case it sends the label
none and terminates the session (as prescribed by type 1), or is non-empty, in which case it sends
a value of type α (the ⊗ operator) and recurses with Queue[α].

Although parameterized type definitions like the preceding one are sufficient to express the
standard interfaces to polymorphic data structures, we propose nested session types, which are
considerably more expressive. For instance, we can use type parameters to track the number of
elements in the queue as part of its type!

Queue[α ,κ] � �{enq : α �Queue[α , Some[α ,Queue[α ,κ]]], deq : κ}

Some[α ,κ] � ⊕{some : α ⊗ κ} None � ⊕{none : 1}

The second type parameter, κ, tracks the number of elements. This parameter can be
understood as a symbol stack in a DPDA. On enqueuing an element, we recurse to
Queue[α , Some[α ,Queue[α ,κ]]] denoting the push of the Some symbol onto stack κ. We ini-
tiate the empty queue with the type Queue[α ,None] where the second parameter denotes an
empty symbol stack. A queue with n elements has the type Queue[α , Some[α ,Queue[α , . . . , Some

[α ,Queue[α ,None]] · · · ]]], where Some appears n times. On receipt of the deq label, the type tran-
sitions to κ,which can either be κ = None (if the queue is empty) or κ = Some[α ,Queue[α ,κ ′]] (if
the queue is non-empty). In the latter case, the type sends label some followed by an element and
transitions to Queue[α ,κ ′] denoting a pop from the symbol stack. In the former case, the type sends
the label none and terminates. Both of these behaviors are reflected in the definitions of the types
Some and None. In Section 9, we elaborate the queue example by providing process definitions for
empty and non-empty queues.

Alternatively, this example could be expressed with arithmetic type refinements (e.g., see [19]).
However, with refinement types (and general dependent types), type equality can be undecidable
even when the refinement layer is decidable (e.g., Presburger arithmetic [19]). With the nested
session types presented in this article, type equality and type checking are decidable.

2.2 Context-Free Languages

Recursive session types capture the class of regular languages [51]. However, in practice, many
useful languages are beyond regular. As an illustration, suppose we would like to express a bal-
anced parentheses language, also known as the Dyck language [22] with the end-marker $. We
use L to denote an opening symbol and R to denote a closing symbol. (In a session-typed mindset,
L can represent a client’s request and R is the server’s response). We need to enforce that each L

has a corresponding closing R and they are properly nested. To express this, we need to track the
number of L’s in the output with the session type. However, this notion of memory is beyond the
expressive power of regular languages, so mere recursive session types will not suffice.

We utilize the expressive power of nested types to express this behavior.

D[κ] � ⊕{L : D[D[κ]],R : κ} D0 � ⊕{L : D[D0], $ : 1}

The nested type D[κ] takes κ as a type parameter and either outputs L and continues with D[D[κ]]
or outputs R and continues with κ. The type D0 either outputs L and continues with D[D0] or
outputs $ and terminates. The type D0 expresses a Dyck word with end-marker $ [38].
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The key idea here is that the number ofD’s in the type of a word tracks the number of unmatched
L’s in it. Whenever the type D[κ] outputs L, it recurses with D[D[κ]] incrementing the number
of D’s in the type by 1. Dually, whenever the type outputs R, it recurses with κ decrementing
the number of Ds in the type by 1. The type D0 denotes a balanced word with no unmatched L’s.
Moreover, since we can only output $ (or L) but not R at the type D0, we obtain the invariant
that any word of type D0 must be balanced. If we imagine the parameter κ as the symbol stack
in a DPDA, outputting an L pushes D on the stack, whereas outputting R pops D from the stack.
The definition of D0 ensures that once an L is output, the symbol stack is initialized with D[D0]

indicating one unmatched L.
Nested session types do not restrict communication to balanced represented words. Indeed, the

typeD ′0 can model the cropped Dyck language, the language of all prefixes of Dyck words (with end-
marker $). Stated differently,D ′0 describes those words that could eventually become well-balanced
Dyck words (as described by D0) if enough Rs were tacked on the end (before the terminal $).

D ′[κ] � ⊕{L : D ′[D ′[κ]],R : κ, $ : 1} D ′0 � ⊕{L : D ′[D ′0], $ : 1}

The only difference between types D[κ] and D ′[κ] is that D ′[κ] allows us to terminate at any point
using the $ label which immediately transitions to type 1, and the only difference between types
D0 and D ′0 is that D ′0 uses D ′[κ] instead of D[κ]. Nested session types not only capture the class of
deterministic context-free languages recognized by DPDAs that accept by empty stack (balanced
words) but also the class of deterministic context-free languages recognized by DPDAs that accept

by final state (cropped words).

2.2.1 Multiple Stack Symbols. Thus far, we have alluded to a relationship between nested types
and DPDAs in which the nested type parameter acts like the symbol stack in a DPDA. Nested
types are expressive enough to allow any finite alphabet of stack symbols to be used, not just
the single-symbol stack alphabets implied by the preceding examples. As an example, consider
the language of Dyck words over several kinds of parentheses. Let L and L′ denote two kinds of
opening symbols, whereas R and R′ denote their corresponding closing symbols, respectively. We
define the following session types.

S[κ] � ⊕{L : S[S[κ]], L′ : S ′[S[κ]],R : κ}

S ′[κ] � ⊕{L : S[S ′[κ]], L′ : S ′[S ′[κ]],R′ : κ}

E � ⊕{L : S[E], L′ : S ′[E], $ : 1}

We push symbols S and S ′ onto the stack when outputting L and L′, respectively. Symmetrically,
we pop S and S ′ from the stack when outputting R and R′, respectively. Then, the type E defines
an empty stack, thereby representing a balanced Dyck word.

From the perspective of session-typed concurrency, nested types can neatly capture complex

server-client interactions. For instance, client requests can be captured using labels L, L′, whereas
server responses can be captured using labels R,R′ expressing multiple kinds of requests. Balanced
words will then represent that all requests have been handled. The types can also guarantee that
the number of responses does not exceed the number of requests.

2.2.2 Multiple States as Multiple Parameters. Using defined type names with multiple type pa-
rameters, we enable types to capture the language of DPDAs with several states. Consider the
language L3 = {L

na Rna ∪ Lnb Rnb | n > 0}, proposed by Korenjak and Hopcroft [38]. A word
in this language starts with a sequence of opening symbols L, followed by an intermediate symbol,
either a or b. Then, the word contains as many closing symbols R as there were Ls and terminates
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19:6 A. Das et al.

with the symbol a or b matching the intermediate symbol.

U � ⊕{L : O[C[A],C[B]]} O[κa,κb] � ⊕{L : O[C[κa],C[κb]], a : κa, b : κb}

C[κ] � ⊕{R : κ} A � ⊕{a : 1} B � ⊕{b : 1}

The L3 language is characterized by session type U . Since the type U is unaware of which inter-
mediate symbol among a or b would eventually be chosen, it cleverly maintains two symbol stacks

in the two type parameters κa and κb of O . We initiate typeU with outputting L and transitioning
to O[C[A],C[B]], where the symbol C tracks that we have outputted one L. The types A and B
represent the intermediate symbols that might be used in the future. The typeO[κa,κb] can either
output an L and transition to O[C[κa],C[κb]] pushing the symbol C onto both stacks or can out-
put a (or b) and transition to the first (respectively, second) type parameter κa (respectively, κb).
Intuitively, the type parameter κa would have the form Cn[A] for n > 0 (respectively, κb would
be Cn[B]). Then, the type C[κ] would output an R and pop the symbol C from the stack by tran-
sitioning to κ. Once all the closing symbols have been outputted (note that you cannot terminate
pre-emptively), we transition to type A or B depending on the intermediate symbol chosen. Type
A outputs a and terminates, and similarly, type B outputs b and terminates. Thus, we simulate the
L3 language (not possible with CFSTs [51]) using two type parameters.

2.2.3 Concatenation of Dyck Words. We conclude this section by specifying some standard
properties on balanced parentheses: closure under concatenation and closure under wrapping. Ifw1$
and w2$ are two balanced words, then so is w1w2$. Similarly, if w$ is a balanced word, then so is
LwR$. These two properties can be proved by implementing append and wrap processes capturing
the former and latter properties.

append : (w1 : D0), (w2 : D0) � (w : D0) wrap : (w : D0) � (w
′ : D0)

The preceding declarations describe the type for the two processes. The append process uses two
channelsw1 andw2 of typeD0 and providesw : D0, whereas wrap usesw : D0 and providesw ′ : D0.
The actual implementations are described in Section 9.

3 DESCRIPTION OF TYPES

The underlying base system of session types is derived from a Curry-Howard interpretation [7, 8]
of intuitionistic linear logic [27]. In the following, we describe the session types, their operational
interpretation, and the continuation type.

Types A,B,C � ⊕{� : A�}�∈L send label k ∈ L continue at type Ak

| �{� : A�}�∈L receive label k ∈ L continue at type Ak

| A ⊗ B send channel of type A continue at type B
| A � B receive channel of type A continue at type B
| 1 send close message no continuation
| α type variable
| V [θ ] defined type name

The basic type operators have the usual interpretation: the internal choice operator ⊕{� : A�}�∈L
selects a branch with label k ∈ L with corresponding continuation type Ak ; the external choice

operator �{� : A�}�∈L offers a choice with labels � ∈ L with corresponding continuation types A� ;
the tensor operatorA⊗B represents the channel passing type that consists of sending a channel of
typeA and proceeding with type B; dually, the lolli operatorA � B consists of receiving a channel
of type A and continuing with type B; and the terminated session 1 is the operator that closes the
session.
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Types can also refer to parameter α available in scope. The free variables in type A refer to the
set of type variables that occur freely inA.1 Types without any free variables are called closed types.

We also support type constructors to define new type names. A type nameV is defined according
to a type definition V [α] � A that is parameterized by a sequence of distinct type variables α that
the type A can refer to. The type V [θ ] instantiates a type name with a substitution θ for the type
parameters α .2 We sometimes write V in place of α . Any type not of the form V [θ ] is termed
structural. For example, a type V1[θ1] ⊗ V2[θ2] is structural, and so are type variables α .

A substitution is a function from type variables to types.

Variables V � · | V,α
Substitutions θ ,σ ,ϕ � · | θ ,A/α

We use the standard judgmentV′ � θ : V , which is defined in Section 6, to describe a substitution
θ ’s domain (the type variablesV) and codomain (types whose free variables are contained inV′).
The types in the image of a substitution θ can involve type name instantiations of the form U [σ ],
which means that a type expression of the form V [θ ] can have nested type names. We represent
the application of substitution θ to a type A by θ (A). The composition of substitutions is defined
as the pointwise extension of the application of substitutions on types. Last, we say a substitution
θ isV-closing if · � θ : V .

All type definitions are stored in a finite global signature Σ defined as follows.

Signatures Σ � · | Σ,V [α] � A

In a valid signature, all definitionsV [α] � A are contractive, meaning that A is structural and not a
type variable. Most importantly, this means thatA is not a type name instantiation. In particular, we
do not allow the programmer to write definitionsV [α] � α in signatures, but a programmer would
not naturally write such definitions, instead writing θ (α) anywhere thatV [θ ]would be written for
such a V . The free variables occurring in A must be contained in α . This top-level scoping of all
type variables is what we call the prenex form of polymorphism. We take an equirecursive view of
type definitions, which means that unfolding a type definition does not require communication.
More concretely, the typeV [θ ] is considered equivalent to its unfolding θ (A). We can easily adapt
our definitions to an isorecursive view [21, 39] with explicit unfold messages. All type names V
occurring in a valid signature must be defined, and all type variables defined in a valid definition
must be distinct.

In addition, because we take an equirecursive view of type definitions and because type defini-
tions have no free variables—only those bound by the type name’s definition—we are justified in
treating ϕ(V [θ ]) and V [ϕ ◦ θ ] as syntactically equal.

4 TYPE EQUALITY

Central to any practical type checking algorithm is type equality. In our system, it is necessary
for the rule of identity (forwarding) and process spawn, as well as the channel-passing constructs
for types A ⊗ B and A � B. However, with nested polymorphic recursion, checking equality
becomes challenging. We first develop the underlying theory of equality providing its definition,
then establish its reduction to checking trace equivalence of deterministic first-order grammars.

1There are no type variable binders within types A. Instead, type definitions are parameterized by a sequence of type

variables that function as binders, as described in the following paragraph.
2In the preceding section’s examples, we used a more concrete, application-like syntax of, for instance, V [A, B]. When

working with the theory, however, it is more convenient to cast this as instantiation by an explicit substitution so that, for

example, V [A, B] would instead be written as V [A/α, B/β ] (or as V [θ ], where θ = A/α, B/β ).
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4.1 Type Equality Definition

Intuitively, two types are equal if they permit exactly the same communication behavior. This
reduces to checking if the next communication behavior that the types permit are equal, and the
continuation types after the communication are equal as well. Informally, two communication
behaviors are considered equal if it involves sending (respectively, receiving) the same labels, close

message, or channels of equal types.
Formally, type equality is captured using a coinductive definition following the seminal work

by Gay and Hole [25].

Definition 4.1. We define unfoldΣ(A) with respect to a signature Σ containing type definitions
as follows.

V [α] � A ∈ Σ unfoldΣ(θ (A)) = B

unfoldΣ(V [θ ]) = B
def

A � V [θ ]
unfoldΣ(A) = A

str

We have a structural equirecursive type system where a type definitionV [α] � A enablesV [θ ] to
be considered as θ (A). The function unfold is used to unfold type names. For this reason, unfolding
a structural type simply returns the type itself. Since type definitions are contractive [25], unfolding
always terminates. Even in the presence of type name definitions V [α] � α that will eventually
be permitted in Section 5, unfolding always terminates. This is made precise by the following
lemma. The key observation is that when V [α] � α , we have unfoldΣ(V [θ ]) = B if and only if
unfoldΣ(θ (α)) = B and θ (α) is a proper syntactic subterm of the type V [θ ] so that the type to be
unfolded always becomes smaller. Thus, despite not being contractive in a strictly syntactic sense,
definitions V [α] � α are unproblematic in the sense of a terminating unfoldΣ(−).

Moreover, due to its definition, unfolding any type always returns a structural type; if the type
is closed, its unfolding is a structural type that is not a variable. (Incidentally, unfolding V [θ ] into
(the unfolding of) θ (A) in the first of the preceding rules is why we prefer the instantiation-based
syntax over the application-based syntax when working with the theory.)

Lemma 4.2. The unfoldΣ(−) operation always terminates in a structural type.

Proof. By structural induction on the syntactic structure of type being unfolded.
If the type being unfolded is either a structural type or type variable, unfolding clearly termi-

nates. In the other cases, the type being unfolded has the form V [θ ]; there are two possibilities:

Case: Consider the case in which V [α] � A for some structural type A that is not a type variable.
In this case, the type θ (A) is also a structural type (and not a type variable, as it happens), so
unfoldΣ(θ (A)) terminates in a structural type, namely θ (A) itself. Because unfoldΣ(V [θ ]) = B
if and only if unfoldΣ(θ (A)) = B, it follows that unfoldΣ(V [θ ]) terminates in a structural type.

Case: Consider the case in whichV [α] � α . (Such definitions are not permitted in this section, but
they will eventually be allowed in Section 5.) The type θ (α) is a proper syntactic subterm of
V [θ ], so by the inductive hypothesis, unfoldΣ(θ (α)) terminates in a structural type. (Here it is
important that we work with the syntactic structure of terms. If we worked equirecursively
up to unfolding in this induction, θ (α) would be the same term asV [θ ], not a smaller term.)
Because unfoldΣ(V [θ ]) = B if and only if unfoldΣ(θ (α)) = B, it follows that unfoldΣ(V [θ ])
also terminates in a structural type. �

Definition 4.3. A symmetric binary relation R on closed types (no free variables) is said to
progress to another symmetric binary relation S on closed types if (A,B) ∈ R implies the
following:

• If unfoldΣ(A) = ⊕{� : A�}�∈L , then unfoldΣ(B) = ⊕{� : B�}�∈L and also (A�,B�) ∈ S for all
� ∈ L.
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Table 1. Actions and Continuation Types

Closed Type’s Unfolding Action(s) Continuation Type(s)

⊕{� : A�}�∈L ⊕k , for all k ∈ L Ak

�{� : A�}�∈L �k , for all k ∈ L Ak

A ⊗ B ⊗1 and ⊗2 A and B, respectively
A � B �1 and�2 A and B, respectively

1 1 ϵ

• If unfoldΣ(A) = �{� : A�}�∈L , then unfoldΣ(B) = �{� : B�}�∈L and also (A�,B�) ∈ S for all
� ∈ L.
• If unfoldΣ(A) = A1 ⊗ A2, then unfoldΣ(B) = B1 ⊗ B2 and (A1,B1) ∈ S and (A2,B2) ∈ S.
• If unfoldΣ(A) = A1 � A2, then unfoldΣ(B) = B1 � B2 and (B1,A1) ∈ S and (A2,B2) ∈ S.
• If unfoldΣ(A) = 1, then unfoldΣ(B) = 1.

A binary relation R on closed types that progresses to itself is called a type bisimulation.

Definition 4.4. Two closed typesA and B are equal (written � A ≡Σ B) if and only if there exists a
type bisimulation R such that (A,B) ∈ R. (The subscript Σ is usually omitted because the signature
is virtually always apparent from the context.)

These definitions of progression and type bisimulation implicitly describe a labeled transition
system. The labels, or actions, in that system correspond to the structural type operator that ap-
pears in a closed type’s unfolding. For each action that a type can take, there is a unique contin-

uation type to which it evolves. For example, the actions that the type ⊕{� : A�}�∈L could take
might be written as ⊕k , for all k ∈ L, and would have the continuation types Ak , respectively.
In other words, if the labeled transition system were to made explicit, there would be transitions
⊕{� : A�}�∈L

⊕k
−→ Ak for all k ∈ L.

Table 1 displays the actions and corresponding continuation types for closed structural types
that form the basis of the labeled transition system implicit in the preceding definitions.

We choose not to make the labeled transition system explicit because we feel its details mostly
obscure the straightforward intuition behind the definitions of progression and type bisimulations.
That R progresses to S means that (A,B) ∈ R implies that (the unfoldings of) types A and B have
matching actions and S-related continuation types. We will rely on this kind of intuitive reading
of progression in the proofs found in Section 5.

This definition only applies to types with no free type variables. Since we allow parameters in
type definitions, we need to define equality in the presence of free type variables. To this end, we
define the notation V � A ≡ B, where V is a collection of type variables and A and B are types
whose free variables are contained inV . Equality of types with free variables is defined in terms
of the equality of all closed instances of those types. We have the following definition.

Definition 4.5. V � A ≡ B holds if and only if � θ (A) ≡ θ (B) for allV-closing substitutions θ .

4.2 Decidability of Type Equality

Solomon [48] proved that types defined using parametric type definitions with an inductive inter-

pretation can be translated to DPDAs, thus reducing type equality to language equality on DPDAs.
However, our type definitions have a coinductive interpretation. As an example, consider the types
A = ⊕{a : A} and B = ⊕{b : B}. With an inductive interpretation, types A and B are empty
(because they do not have terminating symbols) and thus are equal. However, with a coinductive
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interpretation, type A will send an infinite number of a’s, and B will send an infinite number of
b’s, and are thus not equal. Our reduction needs to account for this coinductive behavior.

We show that type equality of nested session types is decidable via a reduction to the trace
equivalence problem of deterministic first-order grammars [33]. A first-order grammar is a struc-
ture (N ,A,S),whereN is a set of non-terminals,A is a finite set of actions, and S is a finite set of
production rules. The arity of non-terminal N ∈ N is written as arity(N ) ∈ N. Production rules rely
on a countable set of variables X and on the set TN of regular terms overN ∪X. A term is regular

if the set of subterms is finite (see [33]). Similarly to our types, regular terms can be infinite but
have finite representations; intuitively, regular terms can be interpreted as the unfolding of finite
graphs.

Each production rule has the form Nα
a
−→ E, where N ∈ N is a non-terminal, a ∈ A is an

action, and α ∈ X∗ are variables that the term E ∈ TN can refer to. A grammar is deterministic

if for each pair of N ∈ N and a ∈ A there is at most one rule of the form Nα
a
−→ E in S. The

substitution of terms B for variables α in a rule Nα
a
−→ E, denoted by NB

a
−→ E[B/α], is the rule

(Nα
a
−→ E)[B/α]. Given a set of rules S, the trace of a term T is defined as traceS(T ) = {a ∈

A∗ | (T
a
−→ T ′) ∈ S, for some T ′ ∈ TN}. Two terms are trace equivalent, written as T ∼S T ′, if

traceS(T ) = traceS(T
′).

The crux of the reduction lies in the observation that session types can be translated to terms and
type definitions can be translated to production rules of a first-order grammar. We start the trans-
lation of nested session types to grammars by first making an initial pass over the signature and
introducing fresh internal names such that the new type definitions alternate between structural
and non-structural types. These internal names are parameterized over their free type variables,
and their definitions are added to the signature. This intermediate representation simplifies the
next step where we translate this extended signature to grammar production rules.

The internal renaming is defined using the judgment Σ� Σ′ as described in Figure 1. An empty
signature renames to itself as described in the emp rule. The step rule describes taking a definition
(V [α] � A) from Σ, and renaming A to B and adding definition (V [α] � B) to the renamed signa-
ture Σ′. ChoosingV = α , this process of renaming types is defined using two mutually recursive
judgments V � A ⇒ (B ; Σ) and V � A → (B ; Σ), renaming type A to type B and introducing
fresh internal type definitions collected in signature Σ. We need two distinct judgments to recog-
nize the alternating behavior of renaming: fresh names are only introduced alternately to generate
contractive type definitions. The former judgment is responsible for generating a fresh name on en-
countering a structural type with a continuation (first premise in rule S⇒). It renamesA to B (using
the latter judgment) and generates definition X [α] � B and adds it to signature Σ. If it encounters
a defined type name (rule N⇒), it renames its type parameters θ . Type variables are not renamed
(var⇒). The latter judgment does not generate a fresh name but simply case analyzes on the struc-
ture of A and calls the former judgment on the continuation types (rules ⊕→,�→, ⊗→,�→). The
rules 1→ and var→ simply terminate by returning the input with an empty signature since they
do not have continuations. The alternating nature of renaming is reflected in our rules with each
judgment calling the other one. The θ⇒ rule extends the V � A⇒ (B ; Σ) judgment to substitu-
tions in a pointwise fashion by calling the latter judgment on each type in the substitution. The
following example elucidates this internal renaming procedure.

Example 4.6. As a running example, consider the following queue type from Section 2.

Queue[α] � �{enq : α �Queue[α], deq : ⊕{none : 1, some : α ⊗Queue[α]}}

(In the examples, we write V [θ ] as V [A1, . . . ,An], for θ = (A1/α1, . . . ,An/αn).)
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Fig. 1. Algorithmic rules for internal renaming.

After performing internal renaming for this type, we obtain the following signature.

Queue[α] � �{enq : X0[α], deq : X1[α]} X0[α] � α �Queue[α]

X1[α] � ⊕{none : X2[α], some : X3[α]} X2[α] � 1 X3[α] � α ⊗Queue[α]

We introduce the fresh internal names X0, X1, X2, and X3 (parameterized with free variable α ) to
represent the continuation type in each case. Note the alternation between structural and non-
structural types.

Next, we translate this extended signature to the grammar G = (N ,A,S) aimed at reproducing
the behavior prescribed by the types as grammar actions.

N = {Queue,X0,X1,X2,X3,⊥}

A = {&enq,&deq,�1,�2 ⊕none, ⊕some, ⊗1, ⊗2, 1}

S = {Queueα
&enq
−−−−→ X0α , Queueα

&deq
−−−−→ X1α , X0α

�1
−−→ α , X0α

�2
−−→Queueα ,

X1α
⊕none
−−−−−→ X2α , X1α

⊕some
−−−−−→ X3α , X2α

1
−→ ⊥, X3α

⊗1
−−→ α , X3α

⊗2
−−→Queueα }

Essentially, each defined type name is translated into a fresh non-terminal. Each type definition
then corresponds to a sequence of production rules: one for each possible continuation type with
the appropriate label that leads to that continuation. For instance, the type Queue[α] has two
possible continuations: transition to X0[α] with action &enq or to X1[α] with action &deq. The
rules for all other type names are analogous. When the continuation is 1, we create a fresh non-
terminal that transitions through action 1 to the nullary non-terminal ⊥, disabling any further
action. When the continuation is α , we transition to α . Since each type name is defined once, the
produced grammar is deterministic.

Formally, the translation from an (extended) signature to a grammar is handled by two simulta-
neous tasks: translating type definitions into production rules (function τ below), and converting
type names and variables into grammar terms (function �·�). The function �·� is defined by the
following.

�α� = α type variables translate to themselves
�V [θ ]� = V �B1� · · · �Bn�, for θ = (B1/α1, . . . ,Bn/αn) type names translate to grammar terms
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Due to this mapping, throughout this section we will use type names indistinctly as type names
or as non-terminal first-order symbols.

The function τ converts a type definitionV [α] � A into a set of production rules and is defined
according to the structure of A as follows.

τ (V [α] � ⊕{� : A�}�∈L) = {�V [α]�
⊕�
−−→ �A�� | � ∈ L}

τ (V [α] � �{� : A�}�∈L) = {�V [α]�
��
−−→ �A�� | � ∈ L}

τ (V [α] � A1 ⊗ A2) = {�V [α]�
⊗i

−−→ �Ai � | i = 1, 2}

τ (V [α] � A1 � A2) = {�V [α]�
�i

−−→ �Ai � | i = 1, 2}

τ (V [α] � 1) = {�V [α]�
1
−→ ⊥}

Function τ identifies the actions and continuation types corresponding to A and translates them
into grammar rules. Internal and external choices lead to actions ⊕� and ��, for each � ∈ L, with
A� as the continuation type. The type A1 ⊗ A2 enables two possible actions, ⊗1 and ⊗2, with
continuation A1 and A2, respectively. Similarly A1 � A2 produces the actions �1 and �2 with
A1 and A2 as respective continuations. The terminated session 1 enables the action with the same
name 1 with continuation ⊥, avoiding any further actions. Contractiveness ensures that there are
no definitions of the formV [α] � V ′[θ ]. Our internal renaming ensures that we do not encounter
cases of the form V [α] � α because we do not generate internal names for variables. For this
reason, the �·� function is only defined on the complement types α and V [θ ].

The τ function is extended to translate a signature pointwise. Formally, that is, τ (Σ) =
⋃
(V [α ]�A)∈Σ τ (V [α] � A). Then connecting all of these pieces, we finally define the fog function

that translates a signature to a grammar as follows.

fog(Σ) = (N ,A,S), where

S = τ (Σ) N = {N | (Nα
a
−→ E) ∈ τ (Σ)} A = {a | (Nα

a
−→ E) ∈ τ (Σ)}

The grammar is constructed by first computing τ (Σ) to obtain all production rules. Then the sets
N andA are constructed by collecting the set of non-terminals and actions from these production
rules. The finite representation of session types and uniqueness of definitions ensure that the
grammar fog(Σ) is, in fact, a deterministic first-order grammar.

Checking the equality of types A and B given a signature Σ finally reduces to (i) the internal
renaming of Σ to produce Σ′, and (ii) check the trace-equivalence of terms �A� and �B� given
grammar fog(Σ′). IfA and B are themselves structural, we generate internal names for them during
the internal renaming process. Since we assume an equirecursive and non-generative view of types,
it is easy to show that internal renaming does not alter the communication behavior of types and
preserves type equality, as formalized in the following lemma.

Lemma 4.7. � A ≡Σ B if and only if � A ≡Σ′ B.

Proof. The result follows by noting that signatures Σ and Σ′ are equivalent. In a brief proof
sketch, to prove that Σ and Σ′ are equivalent, consider definitions V [α] � C ∈ Σ and V [α] � D ∈
Σ′ and show that � C ≡ D, where definitions on the left are expanded using signature Σ while
definitions on the right are expanded using Σ′. �

Theorem 4.8. � A ≡Σ B if and only if �A� ∼S �B�, where (N ,A,S) = fog(Σ′) and Σ′ is the

extended signature for Σ.

Proof. For the direct implication, assume that �A� �S �B�. Pick a sequence of actions in the

difference of the traces and letw0 be its greatest prefix occurring in both traces, with �A�
w0
−−→ �A′�
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and �B�
w0
−−→ �B′�. Either w0 is a maximal trace for one of the terms or we have �A′�

a1
−→ �A′′� and

�B′�
a2
−→ �B′′�, where a1 � a2. In both cases, we have � A′ ≡ B′. To show that, let us proceed by

case analysis on A′ assuming that � A′ ≡ B′. We have the following cases:
Case unfoldΣ(A

′) = ⊕{� : A�}�∈L . In this case, we would have unfoldΣ(B
′) = ⊕{� : B�}�∈L .

Hence, we would have a1 = ⊕� for some � ∈ L and w = w0 · a1 would occur in both traces
and would be greater than w0, which is a contradiction.

Case unfoldΣ(A
′) = �{� : A�}�∈L . Similar to the previous case.

Case unfoldΣ(A
′) = A1 ⊗ A2. In this case we would have unfoldΣ(B

′) = B1 ⊗ B2. Hence, a1 ∈

{⊗1, ⊗2} and we would havew = w0 ·a1 occurring in both traces, which contradicts the assumption
that w0 is the greatest prefix occurring in both traces.

Case unfoldΣ(A
′) = A1 � A2. Similar to the previous case.

Case unfoldΣ(A
′) = 1. In this case, we would have unfoldΣ(B

′) = 1. Hence, we would have
a1 = 1 and w0 · a1 would occur in both traces and, again, would be greater than w0.

Since all cases led to contradictions, we have � A′ ≡ B′. The conclusion that � A ≡ B follows

immediately from the this property: if �A0�
w
−→ �A1� and �B0�

w
−→ �B1� and A1 � B1, then A0 � B0.

We prove this property by induction on the length of w . If |w | = 0, then A1 coincides with A0 and
B1 coincides with B0, so � A0 ≡ B0. Now, let n > 0 and assume the property holds for any trace

of length n. Consider w = w ′ · a with |w ′ | = n and let A2, B2 be subject to �A0�
w ′

−−→ �A2�
a
−→ �A1�

and �B0�
w ′

−−→ �B2�
a
−→ �B1�. With a case analysis on A2, similar to the preceding analysis, since

� A1 ≡ B1, we conclude that � A2 ≡ B2. By the induction hypothesis, we have � A0 ≡ Bo .
For the reciprocal implication, assume that �A� ∼S �B�. Consider the relation

R = {(A0,B0) | traceS(�A0�) = traceS(�B0�)} ∪ {(⊥,⊥)}.

Obviously, (A,B) ∈ R. To prove that R is a type bisimulation, let (A0,B0) ∈ R and proceed by case
analysis on A0 and B0. We sketch a couple of cases for A0. The other cases are analogous. Two
representative cases are:

Case unfoldΣ(A0) = ⊕{� : A�}�∈L . In this case, we have �A0�
⊕�
−−→ �A��. Since, by hypothesis,

the traces coincide, traceS(�A0�) = traceS(�B0�), we have �B0�
⊕�
−−→ �B�� and thus unfoldΣ(B0) =

⊕{� : B�}�∈L . Moreover, using Observation 3 of Jančar [33], we have traceS(�A��) = traceS(�B��).
Hence, (A�,B�) ∈ R.

Case unfoldΣ(A0) = 1. In this case, we have �A0�
1
−→ ⊥ and traceS(�A0�) = {1}. Since

traceS(�A0�) = traceS(�B0�), we have unfoldΣ(B0) = 1 and �B0�
1
−→ ⊥. We conclude recalling

that (⊥,⊥) ∈ R. �

However, type equality is not only restricted to closed types (see Definition 4.5). To decide
equality for open types (i.e., V � A ≡ B given signature Σ), we introduce a fresh label �α
and a nullary type name Vα for each α ∈ V . We extend the signature with type definitions:
Σ∗ = Σ ∪α ∈V {Vα � ⊕{�α : Vα }}. We then replace all occurrences of α in A and B with Vα and
check their equality over signature Σ∗. We prove that this substitution preserves equality.

Theorem 4.9. V � A ≡ B if and only if � σ ∗(A) ≡Σ∗ σ
∗(B), where σ ∗(α) = Vα for all α ∈ V .

Proof. The direct implication is immediate because σ ∗ is a V-closing substitution. For the re-
ciprocal implication, assume thatV � A ≡ B. In this case, there exists σ ′ for which � σ ′(A) ≡ σ ′(B).
Using Theorem 4.8, we know that the traces for �σ ′(A)� and �σ ′(B)� are distinct. A sequence of
actions w picked from the difference of the traces can either (i) be observed before reaching the
substitution, in which case w is itself a witness that �σ ∗(A)� �S �σ ∗(B)�, or (ii) result from the
substitution. In the latter case, the greatest prefix for w belonging to both trace(�σ ′(A)�) and
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trace(�σ ′(B)�), denoted by w1, leads to a subterm C of �σ ′(β)� and to a subterm D of �σ ′(γ )�,

where β � γ : �σ ′(A)�
w1
−−→ C and �σ ′(B)�

w1
−−→ D. In that case, there is a subtrace w0 of w1 such

that �A�
w0
−−→ β and �B�

w0
−−→ γ . Hence, we know that �σ ∗(A)�

w0
−−→ �Vβ � and �σ ∗(B)�

w0
−−→ �Vγ � and

�Vβ � �S �Vγ �, because �β and �γ are distinct labels. We conclude that �σ ∗(A)� �S �σ ∗(B)�, and
thus, using Theorem 4.8, we have � σ ∗(A) ≡Σ∗ σ

∗(B). �

Theorem 4.10. CheckingV � A ≡ B is decidable.

Proof. Theorem 4.9 reduces equality of open types to equality of closed types. Theorem 4.8
reduces equality of closed nested session types to trace equivalence of first-order grammars.
Jančar [33] proved that trace equivalence for first-order grammars is decidable, hence establish-
ing the decidability of equality for nested session types. �

5 PRACTICAL ALGORITHM FOR TYPE EQUALITY

Although type equality can be reduced to trace equivalence for first-order grammars (Theorem 4.8
and Theorem 4.9), the latter problem has a very high theoretical complexity with no known practi-
cal algorithm [33]. In response, we have designed a coinductive algorithm for approximating type
equality. Taking inspiration from Gay and Hole [25], we attempt to construct a bisimulation. Our
proposed algorithm is sound but incomplete and can terminate in three states: (i) types are proved
equal by (implicitly) constructing a bisimulation, (ii) counterexample detected by identifying a po-
sition where types differ, or (iii) terminated without a conclusive answer due to incompleteness.
We interpret both (ii) and (iii) as a failure of type checking (but there is a recourse; see Section 5.1).
The algorithm is deterministic (no backtracking), and the implementation is quite efficient in prac-
tice. For all our examples, type checking is instantaneous (see Section 8).

The fundamental operation in the equality algorithm is loop detection, where we determine if
we have already added an equation A ≡ B to the bisimulation we are constructing. Due to the
presence of open types with free type variables, determining if we have already considered an
equation becomes a difficult operation. To that purpose, we make an initial pass over the given
types and introduce fresh internal names as described in Figure 1 but, for simplicity, also renaming
variables α by eliminating the var⇒ rule and changing the first premise of rule S⇒ to justA � V [θ ].
This results in a kind of strict normal form, in contrast to the slightly more relaxed normal form
of the previous section that did not require renaming of variables.3 In the resulting signature,
defined type names and structural types alternate, as in the following grammars. Also notice that
substitutions now do not involve structural types that are not variables.

A,B,C � ⊕{� : V [θ�]}�∈L | �{� : V [θ�]}�∈L | V1[θ1] ⊗ V2[θ2] | V1[θ1] � V2[θ2] | 1 | α

θ ,σ ,ϕ � (·) | θ , (V [θ ′]/α) | θ , (β/α)

Σ � (·) | Σ,V [α] � A

In the preceding sections, we used metavariables A, B, and C to characterize all types. From this
point to the end of the current section, we will use A, B, andC as given in the preceding grammar.
We could introduce more metavariables, but that would make the notation heavier.

With this additional structure on types, we can perform loop detection entirely on defined type
names (whether internal or external). Based on the invariants established by internal names, the
algorithm never needs to compare type name instantiations with non-variable structural types.

3Definitions V [α ] � α , which are not permitted in programmer-written signatures, do arise under this stricter internal

renaming. However, they are unproblematic because they allow a terminating unfoldΣ(−) (see Lemma 4.2), even though

they are not contractive in a strictly syntactic sense.
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Fig. 2. Algorithmic rules for type equality.

The rules are shown in Figure 2. The judgment has the form Ψ ; V �Σ A ≡ B, whereV contains
the free type variables in the types A and B, and Σ is a fixed valid signature containing type
definitions of the form V [α] � C , and Ψ is a collection of closures 〈V ; V [θ ] ≡ U [σ ]〉. If a
derivation can be constructed, all closed instances of all judgments Ψ;V � V [θ ] ≡ U [σ ] that occur
are included in the resulting bisimulation (see the proof of Theorem 5.6). A closed instance of
judgment Ψ;V � V [θ ] ≡ U [σ ] is obtained by applying aV-closing substitutionϕ—that is, all types
ϕ(V [θ ]) and ϕ(U [σ ]) that have no free type variables. Recall that because type name definitions
have no free variables, we treat the types ϕ(V [θ ]) andV [ϕ ◦θ ] as syntactically equal. Last, because
the signature Σ is fixed, we elide it from the rules in Figure 2.

In the type equality algorithm, the rules for type operators simply compare the components. If
the type constructors (or the label sets in the ⊕ and � rules) do not match, then type equality fails,
having constructed a counterexample to bisimulation. Similarly, two type variables are considered
equal if and only if they have the same name, as in the v-v rule. We also include the v-n and n-v

rules so that this comparison is made up to the unfolding of type name instantiations.
A rule of quasi-reflexivity is needed. In the algorithm of Gay and Hole, the rule would be merely

reflexivity (V ≡ V ) and is not needed. In our algorithm, the refl rule generalizes reflexivity by
allowing identical type names to be instantiated by pointwise equal substitutions; without this
rule, our algorithm would sometimes fail to recognize type names instantiated with equal types
as equal.4

Now we come to the key rules, expd and def. In the expd rule, we unfold the definitions ofV [θ ]
and U [σ ], and add the closure 〈V ; V [θ ] ≡ U [σ ]〉 to Ψ. (We do allow the expd rule to be applied
whenV andU are the same type name.) Since the equality ofV [θ ] andU [σ ]must hold for all of its
closed instances, the extension of Ψ with the corresponding closure serves to remember exactly
that.

The def rule only applies when there already exists a closure 〈V′ ; V [θ ′] ≡ U [σ ′]〉 in Ψ with
the same type names V and U as the goal V [θ ] ≡ U [σ ]. In that case, we try to find a substitution

4This quasi-reflexivity rule also resembles a compatibility rule, but we reserve the term compatability for the idea that equal

types can replace each other underneath any type operator, not just type name instantiations. A full-fledged compatability

rule is not appropriate for our algorithm, so we retain the refl name for the rule we have.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 19. Publication date: July 2022.



19:16 A. Das et al.

ϕ ′ such that θ is equal to ϕ ′ ◦ θ ′ and ϕ ′ ◦ σ ′ is equal to σ . The substitution ϕ ′ is computed by a
standard matching algorithm on first-order terms (which is linear-time), applied on the syntactic
structure of the types. Existence of such a substitution ensures that any closed instance of the goal
V [θ ] ≡ U [σ ] is also a closed instance of 〈V′ ; V [θ ′] ≡ U [σ ′]〉—those closed instances are already
present in the (implicitly) constructed type bisimulation, so we can terminate our equality check,
having successfully detected a loop.

The algorithm so far is sound but potentially non-terminating. There are two points of non-
termination: (i) when encountering name/name equations, we can use the expd rule indefinitely,
and (ii) we call the type equality judgment recursively in the def rule (by way of the equality
judgment on substitutions). To ensure termination in the former case, we restrict the expd rule so
that for any pair of type names V and U there is an upper bound on the number of closures of
the form 〈− ; V [−] ≡ U [−]〉 allowed in Ψ. We define this upper bound as the depth bound of the
algorithm and allow the programmer to specify this depth bound. Surprisingly, a depth bound of
1 suffices for all of our examples. This also removes the overlap between the expd and def rules.

In the latter case, instead of calling the general type equality algorithm, we introduce the notion
of rigid equality, denoted by Ψ;V � A ≡ B. The only difference between general equality and rigid
equality is that we cannot employ the expd rule for rigid equality; otherwise, rigid equality has
all of the other rules for equality but with both premises and conclusion using the rigid judgment.
For instance, the rigid equality judgment includes a rigid analogue of the refl rule.

Ψ;V � θ ≡ σ

Ψ;V � V [θ ] ≡ V [σ ]
refl

Ψ;V � θ ≡ σ

Ψ;V � V [θ ] ≡ V [σ ]
r-refl

Since the sizes of the types reduce in all equality rules except for expd, this algorithm now termi-
nates. When comparing two instantiated type names, our algorithm first tries reflexivity, then tries
to close a loop with def, and only if neither of these is applicable or fails do we expand the defini-
tions with the expd rule. Gay and Hole’s algorithm (with the small optimizations of reflexivity and
internal renaming) is obtained as the specific instance of our algorithm when all type names have
no parameters; this means our algorithm is both sound and complete on monomorphic types.

Both the general and rigid equality judgments are also extended to substitutions pointwise as
the judgments Ψ;V � θ ≡ σ and Ψ;V � θ ≡ σ , respectively. The pointwise rules for equality of
substitutions are as follows.

Ψ;V � θ (α) ≡ σ (α) (∀α ∈ dom(θ ))

Ψ;V � θ ≡ σ
subs

Ψ;V � θ (α) ≡ σ (α) (∀α ∈ dom(θ ))

Ψ;V � θ ≡ σ
r-subs

5.1 Type Equality Declarations

In the following section, we will prove the soundness of the preceding algorithm. The algorithm,
however, is unavoidably incomplete. One of the primary sources of incompleteness in our algo-
rithm is its inability to generalize the coinductive hypothesis. As an illustration, consider the follow-
ing two types D0 and D ′0, which only differ in the names but have the same structure.

D[κ] � ⊕{L : D[D[κ]],R : κ} D0 � ⊕{L : D[D0], $ : 1}

D ′[κ] � ⊕{L : D ′[D ′[κ]],R : κ} D ′0 � ⊕{L : D ′[D ′0], $ : 1}

To establish D0 ≡ D ′0, our algorithm explores the L branch and checks D[D0] ≡ D ′[D ′0]. A corre-
sponding closure 〈· ; D[D0] ≡ D ′[D ′0]〉 is added to Γ, and our algorithm then checks D[D[D0]] ≡

D ′[D ′[D ′0]]. This process repeats until it exceeds the depth bound and terminates with an incon-
clusive answer. What the algorithm never realizes is that D[κ] ≡ D ′[κ] for all types κ; it fails to
generalize to this hypothesis and is always inserting closures over closed types to Ψ.
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To allow a recourse, we permit the programmer to declare (with concrete syntax)

eqtype D[k] = D’[k]

an equality constraint easily verified by our algorithm. We then seed the Ψ in the equality algorithm
with the corresponding closure from the eqtype declaration, which can then be used to establish
D0 ≡ D ′0. In other words, we can derive

· ; 〈κ ; D[κ] ≡ D ′[κ]〉 � D0 ≡ D ′0 .

Upon exploring the L branch, the goal is reduced to

· ; 〈κ ; D[κ] ≡ D ′[κ]〉, 〈· ; D0 ≡ D ′0〉 � D[D0] ≡ D ′[D ′0] .

As required by the def rule, our algorithm now looks for a substitution ϕ ′ such that D0/κ ≡ ϕ
′ ◦ idκ

and ϕ ′ ◦ idκ ≡ D ′0/κ, reducing the problem to the question whether D0 ≡ D ′0. Since the latter has
already been collected as a declaration, we terminate our deduction concluding that D0 ≡ D ′0.

In the implementation, we first collect all eqtype declarations in the program into a global set of
closures Ψ0. We then validate the eqtype declarations in a mutually coinductive way by checking
Ψ0 ; V � V [θ ] ≡ U [σ ] for every closure 〈V ; V [θ ] ≡ U [σ ]〉 ∈ Ψ0. Crucially, we insist that each
of these checks begins by applying the expd rule; without this requirement, the algorithm with
eqtype declarations would be unsound.

One final note on the refl rule: a type name may not actually depend on its parameter. As a
simple example, we haveV [α] � 1; a more complicated one would beV [α] � ⊕{a : V [V [α]],b : 1}.
When applying refl, we would like to conclude thatV [A] ≡ V [B] regardless of A and B. This could
be easily established with an equality type declaration eqtype V [α] = V [β]. To avoid this syntactic
overhead for the programmer, we determine for each parameter α of each type name V whether
its definition is non-variant in α . This information is recorded in the signature and used when
applying the reflexivity rule by ignoring non-variant arguments.

However, nearly all of these non-variant arguments are introduced by internal renaming. In prac-
tice, programmers do not naturally write code that uses non-variant arguments: programmers sub-
consciously understand that non-variant arguments are irrelevant. Moreover, those non-variant
arguments that are introduced by internal renaming could be avoided by altering the internal re-
naming to use a subset of, rather than all, variables when introducing an internal name. For this
reason, as well as the fact that a formal development of non-variance would take us too far afield,
we choose not to incorporate the ignoring of non-variant arguments in the following soundness
proof.

5.2 Soundness

At a high level, our algorithm is sound if algorithmic equality of types implies semantic equal-
ity (i.e., bisimilarity) of those types. Roughly speaking, this means proving that the algorithmic
equality ·;V � V [θ ] ≡ U [σ ] implies the semantic equalityV � V [θ ] ≡ U [σ ], for allV [θ ] andU [σ ].

Although this statement happens to be provable without generalization, it is not general enough
to capture soundness of our full algorithm. Specifically, the empty set of closures in the algorith-
mic equality judgment ·;V � V [θ ] ≡ U [σ ] means that this statement does not account for the
system of eqtype declarations described previously—it only describes soundness when no eqtype

declarations are used.
Following the mutually coinductive nature of eqtype declarations, soundness of our full algo-

rithm is stated with a collection of algorithmic equality derivations.
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Theorem (Soundness). Let Ψ0 be a set of closures, {〈Vi ; Vi [θi ] ≡ Ui [σi ]〉 | i ∈ I }, indexed by a

set I . If (Di )i ∈I is a collection of derivations such that each Di derives Ψ0;Vi � Vi [θi ] ≡ Ui [σi ] and

has the expd rule at its root, thenVi � Vi [θi ] ≡ Ui [σi ] for all i ∈ I .

The shared set of closures, Ψ0, serves to implicitly tie a mutually coinductive knot among the
derivations. (The requirement that the expd rule occurs at each derivation’s root is necessary to
prevent pathological cases in which two or more identical eqtype declarations are false but able
to mutually justify each other via the def rule, such as identical declarations eqtype V [1] ≡ V [α]
when V is defined as V [α] � α .)

Overall, our proof strategy for this theorem is to use bisimulation-up-to techniques, namely
the up-to-reflexivity, up-to-transitivity, and up-to-context techniques described by Sangiorgi [46].
Let R be the relation that consists of all closed instances of all judgments Ψ;V � V [θ ] ≡ U [σ ]
(or Ψ;V � V [θ ] ≡ U [σ ]) that appear in one of the derivations (Di )i ∈I —that is, exactly those
pairs (ϕ(V [θ ]),ϕ(U [σ ])) for all V-closing substitutions ϕ for all judgments Ψ;V � V [θ ] ≡ U [σ ]
(or Ψ;V � V [θ ] ≡ U [σ ]) that appear in some derivation Di . We shall show that this relation
R, although not itself a bisimulation, is a bisimulation up to reflexivity, transitivity, and context.
Sangiorgi’s results will then allow us to deduce that the relationR is contained in bisimilarity; since
R includes all closed instances of the root judgments Ψ0;Vi � Vi [θi ] ≡ Ui [σi ] by construction, we
will then be able to conclude thatVi � Vi [θi ] ≡ Ui [σi ] for all i ∈ I and that our algorithm is indeed
sound.

Using Sangiorgi’s results, showing that the relation R is a bisimulation up to reflexivity, transi-
tivity, and context amounts to proving that R progresses to its reflexive, transitive, and contextual
closure, which we write as F (R). What exactly do we mean here by contextual closure? For our
proof, a context will be any type of the form V [− ◦ θ ], where the (−) denotes a hole into which
a substitution may be placed. Because F (R) is closed under context, if (ϕ1(α),ϕ2(α)) ∈ F (R) for
all α in θ ’s codomain, then (V [ϕ1 ◦ θ ],V [ϕ2 ◦ θ ]) ∈ F (R). (Notice that because F (R) only relates
closed types, the images of substitutions ϕ1 and ϕ2 that fill the holes in contexts must never include
types with free variables.)

(It should be noted that the hole − that appears in the contextV [−◦θ ] is actually, in some sense,
the outermost operation to be applied. If we rewrite this, it is morally something like −(θ (V )): first,
the substitution θ is applied toV , then the substitution represented by the hole − is applied to that
type.)

Before proving the progression from R to F (R), it is convenient to prove several lemmas. First,
we will prove a lemma about the unfoldings of type name instantiations under substitutions.

Lemma 5.1. The types ϕ(V [θ ]) and ϕ(unfoldΣ(V [θ ])) have the same unfoldings.

Proof. By induction on the structure of the typeV [θ ]. We distinguish cases on the body ofV ’s
definition:

Case: Consider the case in which V [ᾱ] � ⊕{� : V�[θ�]}�∈L . In this case, ϕ(V [θ ]) unfolds to
⊕{� : ϕ(V�[θ ◦ θ�])}�∈L , and so is (the unfolding of) ϕ(unfoldΣ(V [θ ])).

Cases: The cases for �, ⊗,�, and 1 are analogous.
Case: Consider the case in which V [α] � α . In this case, ϕ(unfoldΣ(V [θ ])) is, by definition,

ϕ(unfoldΣ(θ (α))). By internal renaming, θ (α) = V ′[θ ′] for some V ′[θ ′]. Appealing to
the inductive hypothesis at the smaller type V ′[θ ′], we may deduce that ϕ(θ (α)) and
ϕ(unfoldΣ(θ (α))), and hence ϕ(unfoldΣ(V [θ ])), have the same unfoldings. Now observe that
the unfolding of ϕ(V [θ ]) is that of V [ϕ ◦ θ ], which is that of ϕ(θ (α)). Therefore, the types
ϕ(V [θ ]) and ϕ(unfoldΣ(V [θ ])) have the same unfoldings. �
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Next, we will prove as a lemma that algorithmic subderivations involving structural types be-
have consistently with the relation R as a bisimulation up to F .

Lemma 5.2. If a judgment of the form Ψ;V � A ≡ B or Ψ;V � α ≡ U [σ ] or Ψ;V � V [θ ] ≡ α
appears in some derivationDi , then the closed instances of the compared types have matching actions

and F (R)-related continuation types.

Proof. We distinguish cases on the rule that derives the given judgment within derivation Di :

Case: Consider the case in which the ⊕ rule is used to derive the Ψ;V � A ≡ B judgment:
(i) A = ⊕{� : V�[θ�]}�∈L ; (ii) B = ⊕{� : U�[σ�]}�∈L ; and (iii) there exist subderivations of
Ψ;V � V�[θ�] ≡ U�[σ�], for all � ∈ L, within Di . Notice that ϕ(A) = ⊕{� : ϕ(V�[θ�])}�∈L
and similarly for ϕ(B). These types indeed have matching actions. Their continuation types,
ϕ(V�[θ�]) and ϕ(U�[σ�]), are R-related on the basis of the judgment Ψ;V � V�[θ�] ≡ U�[σ�]
that appears in Di . The relation F (R) contains R, so the continuation types are also F (R)-
related.

Cases: The cases for the �, ⊗,�, and 1 rules are analogous.
Cases: Consider the cases in which either the v-v, v-n, or n-v rule is used to derive the given

judgment. In each of these cases, at least one of the compared types is a variable α ∈ V ,
and the other type has α as its unfolding. Thus, according to Lemma 5.1, it suffices to show
that the types ϕ(α) and ϕ(α) have matching actions and F (R)-related continuation types.
Because those types are syntactically equal, they have matching actions and syntactically
equal continuation types. The relation F (R) is closed reflexively, so these continuation types
are also F (R)-related. �

Next, we have a lemma that verifies that closures behave consistently with the relation R as a
bisimulation up to F .

Lemma 5.3. If a closure 〈V ; V [θ ] ≡ U [σ ]〉 appears in derivationDi , then for allV-closing substi-

tutionsϕ, the closed typesϕ(V [θ ]) andϕ(U [σ ]) have matching actions and F (R)-related continuation

types.

Proof. Because the context of closures behaves monotonically within a derivation, there are
two possibilities for the location at which the closure 〈V ; V [θ ] ≡ U [σ ]〉 arose: either it arose
from an instance of the expd rule within Di or it was already present in the initial context Ψ0:

Case: Consider the case in which 〈V ; V [θ ] ≡U [σ ]〉 arose from an instance of the expd rule within
Di . In this case, a judgment Ψ, 〈V ; V [θ ] ≡ U [σ ]〉;V � unfoldΣ(V [θ ]) ≡ unfoldΣ(U [σ ])
appears in Di , for some set of closures Ψ. The types unfoldΣ(V [θ ]) and unfoldΣ(U [σ ])
are, in general, open types that are either structural or variables. It therefore follows from
Lemma 5.2 that the types ϕ(unfoldΣ(V [θ ])) and ϕ(unfoldΣ(U [σ ])) have matching actions and
F (R)-related continuation types.

By Lemma 5.1, the unfoldings of ϕ(unfoldΣ(V [θ ])) and ϕ(V [θ ]) are equal; likewise, the
unfoldings of ϕ(unfoldΣ(U [σ ])) and ϕ(U [σ ]) are equal. We may therefore conclude that the
types ϕ(V [θ ]) and ϕ(U [σ ]) also have matching actions and F (R)-related continuation types,
as required.

Case: Consider the case in which 〈V ; V [θ ] ≡ U [σ ]〉 was already present in the initial context
Ψ0. Then there must exist k � i such thatV [θ ] = Vk [θk ] andU [σ ] = Uk [σk ] (in the syntactic
sense). The derivation Dk derives Ψ0;Vk � Vk [θk ] ≡ Uk [σk ], using the expd rule at its root.
Therefore, we may appeal to the preceding reasoning for the expd rule to conclude that
the types ϕ(Vk [θk ]) and ϕ(Uk [σk ]) have matching actions and F (R)-related continuation
types. �
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Now we can prove that the relation R is a bisimulation up to F , the reflexive, transitive, and
contextual closure—that is, that R progresses to F (R). This represents a major portion of, but not
quite all, soundness.

Lemma 5.4.

• If Ψ;V � V [θ ] ≡ U [σ ] appears in some derivationDi , then ϕ(V [θ ]) and ϕ(U [σ ]) have match-

ing actions and F (R)-related continuation types, for allV-closing substitutions ϕ.

• If Ψ;V � θ ≡ σ appears in some derivation Di , then ϕ(V [θ ]) and ϕ(V [σ ]) have matching

actions and F (R)-related continuation types, for all type namesV andV-closing substitutions

ϕ.

Proof. By mutual induction on the structure of the derivations of Ψ;V � θ ≡ σ and Ψ;V �
V [θ ] ≡ U [σ ], respectively.5

• To prove the first statement, we begin by distinguishing cases on the rule that was used to
derive the judgment Ψ;V � V [θ ] ≡ U [σ ] within Di :
Case: Consider the case in which the judgment was derived by the expd rule: there ex-

ists a subderivation of Ψ;V, 〈V ; V [θ ] ≡ U [σ ]〉 � unfoldΣ(V [θ ]) ≡ unfoldΣ(U [σ ]). By
Lemma 5.3, the types ϕ(V [θ ]) and ϕ(U [σ ]) have matching actions and F (R)-related con-
tinuation types.

Case: Consider the case in which the judgment was derived by the def rule: in this case,
there exist (i) a closure 〈V′ ; V [θ ′] ≡ U [σ ′]〉 ∈ Ψ; and subderivations of both (ii) Ψ;V �
θ ≡ ϕ ′ ◦ θ ′ and (iii) Ψ;V � ϕ ′ ◦ σ ′ ≡ σ for some substitutionV � ϕ ′ : V′.

By appealing to the inductive hypothesis on the subderivations of Ψ;V � θ ≡ ϕ ′ ◦ θ ′

and Ψ;V � ϕ ′ ◦ σ ′ ≡ σ , we may deduce that ϕ(V [θ ]) and ϕ(V [ϕ ′ ◦ θ ′]) have matching
actions and F (R)-related continuation types and, likewise, that ϕ(U [ϕ ′ ◦σ ′]) and ϕ(U [σ ])
have matching actions and F (R)-related continuation types. Last, by Lemma 5.3 on the
closure 〈V′ ; V [θ ′] ≡ U [σ ′]〉, the closed types (ϕ ◦ϕ ′)(V [θ ′]) and (ϕ ◦ϕ ′)(U [σ ′]) also have
matching actions and F (R)-related continuation types.

Notice that ϕ(V [ϕ ′ ◦ θ ′]) and (ϕ ◦ ϕ ′)(V [θ ′]) are syntactically equal types; similarly,
(ϕ ◦ϕ ′)(U [σ ′]) and ϕ(U [ϕ ′ ◦σ ′]) are syntactically equal. Transitively, ϕ(V [θ ]) and ϕ(U [σ ])
have matching actions. Moreover, because the relation F (R) is closed transitively, they
also have F (R)-related continuation types: from the preceding, we know that the contin-
uation types of ϕ(V [θ ]) are related to those of ϕ(V [ϕ ′ ◦ θ ′]), which are in turn related to
the continuation types of ϕ(U [ϕ ′ ◦ σ ′]) and thereby related to the continuation types of
ϕ(U [σ ]).

Case: Consider the case in which the judgment was derived by the refl rule: (i) the type
names V and U are identical and (ii) there exists a subderivation of Ψ;V � θ ≡ σ . Ap-
pealing to the inductive hypothesis on this subderivation, we may conclude that Ψ;V �
V [θ ] ≡ V [σ ], as required.

• To prove the second part, we are given a derivation of Ψ;V � θ ≡ σ and consider an arbitrary
type name V ∈ dom(Σ); we must show, for all V-closing substitutions ϕ, that ϕ(V [θ ]) and
ϕ(V [σ ]) have matching actions and F (R)-related continuation types. We begin by distin-
guishing cases on the body of V ’s definition, V [α] � A, in the signature Σ:
Case: Consider the case in which V [α] � ⊕{� : V�[θ�]}�∈L . In this case, the unfoldings of
ϕ(V [θ ]) andϕ(V [σ ]) are ⊕{� : (ϕ◦θ )(V�[θ�])}�∈L and ⊕{� : (ϕ◦σ )(V�[θ�])}�∈L , respectively.

5At first thought, it might be surprising that this proof uses an inductive argument. However, the induction is needed to

drill down through type name definitions of the form V [β ] � α to the point at which a structural type appears.
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These types indeed have matching actions, namely ⊕� for all � ∈ L, with continuation
types (ϕ ◦θ )(V�[θ�]) and (ϕ ◦σ )(V�[θ�]), respectively. Notice that these continuation types
are syntactically equal to V�[(ϕ ◦ θ ) ◦ θ�] and V�[(ϕ ◦ σ ) ◦ θ�], respectively.

By inversion on the given derivation of Ψ;V � θ ≡ σ , we may deduce that for all
α ∈ dom(θ ), the judgment Ψ;V � θ (α) ≡ σ (α) appears in derivation Di . Consequently,
the closed types (ϕ ◦ θ )(α) and (ϕ ◦ σ )(α) are R-related, for all α ∈ dom(θ ). Because
the construction F (R) is closed under a set of faithful contexts that includes the context
V�[− ◦ θ�], the types V�[(ϕ ◦ θ ) ◦ θ�] and V�[(ϕ ◦ σ ) ◦ θ�] are F (R)-related. It follows that
ϕ(V [θ ]) and ϕ(V [σ ]) have F (R)-related continuation types, as required.

Cases: The cases for definitions that use structural types �, ⊗,�, and 1 are analogous.
Case: Consider the case in which V [α] � α ; as usual, we must show that ϕ(V [θ ]) and
ϕ(V [σ ]) have matching actions and F (R)-related continuation types. By Lemma 5.1, it
suffices to show that ϕ(θ (α)) and ϕ(σ (α)) have matching actions and F (R)-related contin-
uation types. After internal renaming, each substitution’s image contains only variables
and type name instantiations—never structural types. Thus, we may distinguish four sub-
cases on the shapes of types θ (α) and σ (α):
Subcases: Consider the subcases in which at least one of the types θ (α) and σ (α) is a

variable β ∈ V . By inversion on the given derivation of Ψ;V � θ ≡ σ , we may deduce
that there exists a derivation of Ψ;V � θ (α) ≡ σ (α) withinDi . On this basis, we appeal
to Lemma 5.2, which covers all cases in which at least one of the compared types is not
a type name instantiation, to conclude that ϕ(θ (α)) and ϕ(σ (α)) indeed have matching
actions and F (R)-related continuation types.

Subcase: Consider the subcase in which both θ (α) and σ (α) are type name instantiations
V ′[θ ′] and U ′[σ ′], respectively. Once again, by inversion on the given derivation of
Ψ;V � θ ≡ σ , we may deduce that there exists a subderivation of Ψ;V � θ (α) ≡ σ (α)
within Di . Because both θ (α) and σ (α) are type name instantiations, we may appeal
to the inductive hypothesis on this subderivation. Thus, we deduce that ϕ(θ (α)) and
ϕ(σ (α)) have matching actions and F (R)-related continuation types. �

Now we are nearly ready to apply the results of Sangiorgi [46] to conclude that our algorithm is
sound. Before doing so, however, we need one final lemma: we must prove that the set of contexts
C[−] of the formV [−◦σ ] constitute a faithful set of contexts, as defined by Sangiorgi. As Sangiorgi
demonstrates, the up-to-context technique for bisimulation is unsound unless the considered con-
texts are faithful, so we must prove such a lemma.

In our setting, a sufficient condition for a set of contexts C[−] to be faithful is the following. For
each context C[−] in the set, whenever the filled context C[θ ] has an action with some continuation
type, then one of the following conditions must hold: either

• (i) the action of C[θ ] arises from the context C[−] alone, and there exists a context C′[−]
in the set such that (ii) the continuation type has the form C′[θ ] and (iii) this, including the
choice of C′[−], happens parametrically in θ ; or

• (i) the action of C[θ ] arises from an action of θ (α), for some α ∈ dom(θ ); (ii) the continuation
type has the form C[θ ′], for some θ ′ such that θ ′(α) is the continuation type of θ (α)’s action;
and (iii) this happens parametrically in θ , depending only on the action taken by θ (α).

Recall that faithful contexts and the up-to-context technique are only sensible when applied to
substitutions whose images contain only closed types.

We now prove faithfulness.
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Lemma 5.5. The contexts C[−] of the form V [− ◦ σ ] are faithful.

Proof. To prove that the set of contexts of the form C[−] = V [− ◦ σ ] is faithful, we choose an
arbitrary such context and use structural induction on the substitution σ that appears as part of
this context, distinguishing cases on the structure of V ’s definition within the signature Σ:

Case: Consider the case in which V [α] � ⊕{� : V�[θ�]}�∈L . Here, C[θ ] = V [θ ◦ σ ] unfolds to
⊕{� : V�[θ ◦ (σ ◦θ�)]}�∈L . The filled context C[θ ] has actions ⊕k , for all k ∈ L, with continua-
tion typesVk [θ ◦ (σ ◦θk )]. For action ⊕k , we may choose C′[−] = Vk [−◦ (σ ◦θk )], observing
that C[θ ]’s continuation type under this action is C′[θ ]. Moreover, all of this reasoning is
parametric in θ . Therefore, the context C[−] = V [− ◦ σ ] is faithful when V [α] is defined to
be an internal choice.

Cases: The cases for �, ⊗, and� are analogous.
Case: Consider the case in which V [α] � 1. In this case, the only action offered by C[θ ] is the

action 1 that has continuation “type” ϵ . This is not actually a type but rather a technical
device that would be needed in an explicit labeled transition system for types. If we also
include C′[−] = ϵ as a (constant) context in our set of contexts, then the continuation ϵ can
be expressed as C′[θ ]. Using the constant context C′[−] = ϵ imposes on us the obligation
to prove that C′[−] = ϵ satisfies the preceding condition. Indeed, the condition is trivially
satisfied because C′[−] = ϵ never offers actions.

Case: Consider the case in which V [α] � α . In this case, the unfolding of C[θ ] = V [θ ◦ σ ] is the
unfolding of (θ ◦ σ )(α). We distinguish cases on the shape of σ (α). Recall that after internal
renaming, the image of a substitution never contains structural types. We have the following
subcases:
Subcase: Consider the subcase in which σ (α) = β for some β ∈ dom(θ ). In this subcase,

the unfolding of C[θ ] = V [θ ◦ σ ] is the unfolding of θ (β), so they have the same actions
and the same continuation types. After internal renaming, continuation types are always
syntactically type name instantiations. (They cannot be variables because the notion of
progression, and therefore continuation type, is defined only for closed types.) Therefore,
we can always construct an internally renamed substitution · � θ ′ : dom(θ ) such that
θ (β)’s continuation type is θ ′(β). Observe that the unfolding of C[θ ′] = V [θ ′ ◦ σ ] is the
unfolding of θ ′(β). In other words, C[θ ]’s continuation type indeed has the form C[θ ′].
Moreover, this happens parametrically in θ , depending only on the action taken by θ (β).

Subcase: Consider the subcase in which σ (α) = U [σ ′], for some U [σ ′]. In this subcase, the
unfolding of (θ ◦ σ )(α) is the unfolding of U [θ ◦ σ ′]. Because the substitution σ ′ occurs
as a proper subterm of σ , we may appeal to the inductive hypothesis to deduce that the
contextU [−◦σ ′] is faithful. Because C[θ ] = V [θ ◦σ ] unfolds to the unfolding ofU [θ ◦σ ′]
parametrically in θ , it follows that C[−] = V [− ◦ σ ] is also faithful. �

Theorem 5.6 (Soundness). Let Ψ0 be a set of closures, {〈Vi ; Vi [θi ] ≡ Ui [σi ]〉 | i ∈ I }, indexed

by a set I . If (Di )i ∈I is a collection of derivations such that each Di derives Ψ0;Vi � Vi [θi ] ≡ Ui [σi ]

and has the expd rule at its root, thenVi � Vi [θi ] ≡ Ui [σi ] for all i ∈ I .

Proof. The preceding lemma establishes that contexts of the form V [− ◦ θ0] are faithful. Then,
according to Sangiorgi, the relation R is contained in bisimilarity if R progresses to F (R), its
reflexive, transitive, and contextual closure. This is proved by Lemma 5.4, so R indeed contained
in bisimilarity. In particular, because R includes the pairs of type name instantiations at the root
of each derivation Di , we conclude thatVi � Vi [θi ] ≡ Ui [σi ] for all i ∈ I . �
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Table 2. Session Types with Operational Description

Type Cont. Process Term Cont. Description

c : ⊕{� : A�}�∈L c : Ak c .k ; P P Send label k on c
case c (� ⇒ Q�)�∈L Qk Receive label k on c

c : �{� : A�}�∈L c : Ak case c (� ⇒ P�)�∈L Pk Receive label k on c
c .k ; Q Q Send label k on c

c : A ⊗ B c : B send c w ; P P Send channel w : A on c
y ← recv c ; Qy Qy [w/y] Receive channel w : A on c

c : A � B c : B y ← recv c ; Py Py [w/y] Receive channel w : A on c
send c w ; Q Q Send channel w : A on c

c : 1 — close c — Send close on c
wait c ; Q Q Receive close on c

6 FORMAL LANGUAGE DESCRIPTION

In this section, we present the program constructs we have designed to realize nested polymor-
phism that have also been integrated with the Rast language [18–20] to support general-purpose
programming. The underlying base system of session types is derived from a Curry-Howard inter-
pretation [7, 8] of intuitionistic linear logic [27]. The key idea is that an intuitionistic linear sequent
A1 A2 . . . An � A is interpreted as the interface to a process P . We label each of the antecedents
with a channel name xi and the succedent with channel name x . The xi ’s are channels used by P
and x is the channel provided by P .

(x1 : A1) (x2 : A2) . . . (xn : An) � P :: (x : A)

The resulting judgment formally states that process P provides a service of session type A along
channel x while using the services of session typesA1, . . . ,An provided along channels x1, . . . ,xn ,
respectively. All of these channels must be distinct. We abbreviate the antecedent of the sequent
by Δ.

Due to the presence of type variables, the typing judgment is extended withV and written as

V ; Δ �Σ P :: (x : A),

whereV stores the type variables α , Δ represents the linear antecedents xi : Ai , P is the process
expression, and x : A is the linear succedent. We maintain that all free type variables in Δ, P , and
A are contained inV . Finally, Σ is a fixed valid signature containing type and process definitions.
Table 2 overviews the session types, their associated process terms, their continuation (both in
types and terms), and operational description. For each type, the first line of that type’s row in
Table 2 describes the provider’s viewpoint, whereas the second line describes the client’s matching
but dual viewpoint.

We formalize the operational semantics as a multiset rewriting system [9]. We introduce semantic
objects proc(c, P) and msg(c,M) for processes P and messages M providing along channel c .

Definition 6.1 (Configuration). At runtime, a program is represented using a multiset of semantic
objects denoting processes (proc(c, P)) and messages (msg(c,M)) defined as a configuration.

S ::= · | S,S′ | proc(c, P) | msg(c,M)

We stipulate that no two distinct semantic objects in a configuration provide the same channel.
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Fig. 3. Grammar for processes and messages.

6.1 Statics and Semantics

We briefly review the structural types already existing in the Rast language. For reference, Figure 3
provides a grammar for process and message expressions. Inspired by sequent calculus, the type
system is presented via left (L) and right (R) rules for each session type connective, depending
on whether the connective appears to the left or right of the sequent. With our equirecursive
interpretation of types, the occurrence of the connectives may result from an implicit unfolding of
type names. The reduction rules in the operational semantics are presented via S rules where the
sender creates a message and C rules where the receiver obtains the previously created message
(S stands for send, and C stands for compute). The preceding convention is followed irrespective
of which process is the provider or client of a channel. A final remark regarding messages: they
can be typed exactly as processes and do not need any explicit rules!

The internal choice type constructor ⊕{� : A�}�∈L is an n-ary labeled generalization of the addi-
tive disjunction A ⊕ B. Operationally, it requires the provider of x : ⊕{� : A�}�∈L to send a label
k ∈ L on channel x and continue to provide type Ak . The corresponding process term is written as
(x .k ; P), where the continuation P provides type x : Ak . Dually, the client must branch based on
the label received on x using the process term case x (� ⇒ Q�)�∈L , where Q� is the continuation
in the �-th branch.

(k ∈ L) V ; Δ � P :: (x : Ak )

V ; Δ � (x .k ; P) :: (x : ⊕{� : A�}�∈L)
⊕R

(∀� ∈ L) V ; Δ, (x : A�) � Q� :: (z : C)

V ; Δ, (x : ⊕{� : A�}�∈L) � case x (� ⇒ Q�)�∈L :: (z : C)
⊕L

Communication is asynchronous, so the client (c .k ; Q) sends a message k along c and continues
asQ without waiting for it to be received. As a technical device to ensure that consecutive messages
on a channel arrive in order, the sender also creates a fresh continuation channel c ′ so that the
message k is actually represented as (c .k ; c ↔ c ′) (read: send k along c and continue along c ′).
When the message k is received along c , we select branch k and also substitute the continuation
channel c ′ for c .

(⊕S) : proc(c, c .k ; P) �→ proc(c ′, P[c ′/c]),msg(c, c .k ; c ↔ c ′)
(⊕C) : msg(c, c .k ; c ↔ c ′), proc(d, case c (� ⇒ Q�)�∈L) �→ proc(d,Qk [c

′/c])

The external choice constructor �{� : A�}�∈L generalizes additive conjunction and is the dual

of internal choice reversing the role of the provider and client. Thus, the provider branches on the
label k ∈ L sent by the client.

(∀� ∈ L) V ; Δ � P� :: (x : A�)

V ; Δ � case x (� ⇒ P�)�∈L :: (x : �{� : A�}�∈L)
�R

(k ∈ L) V ; Δ, (x : Ak ) � Q :: (z : C)

V ; Δ, (x : �{� : A�}�∈L) � (x .k ; Q) :: (z : C)
�L

Rules �S and �C that follow describe the operational behavior of the provider and client respec-
tively (c ′ fresh).
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(�S) : proc(d, c .k ; Q) �→ msg(c ′, c .k ; c ′ ↔ c), proc(d,Q[c ′/c])
(�C) : proc(c, case c (� ⇒ P�)�∈L),msg(c ′, c .k ; c ′ ↔ c) �→ proc(c ′, Pk [c

′/c])

The tensor operator A ⊗ B prescribes that the provider of x : A ⊗ B sends a channel, say w
of type A and continues to provide type B. The corresponding process term is send x w ; P ,
where P is the continuation. Correspondingly, its client must receive a channel on x using the
term y ← recv x ; Q , binding it to variable y and continuing to execute Q .

· ; V � A ≡ A′ V ; Δ � P :: (x : B)

V ; Δ, (y : A) � (send x y ; P) :: (x : A′ ⊗ B)
⊗R

V ; Δ, (y : A), (x : B) � Q :: (z : C)

V ; Δ, (x : A ⊗ B) � (y ← recv x ; Q) :: (z : C)
⊗L

Linearity of channels is enforced by removing y : A from the context Δ after it is sent. The type
checker also uses the equality algorithm to confirm that the types A and A′ match. Operationally,
the provider (send c d ; P) sends the channel d and the continuation channel c ′ along c as a
message and continues with executing P . The client receives channel d and continuation channel
c ′ appropriately substituting them.

(⊗S) : proc(c, send c d ; P) �→ proc(c ′, P[c ′/c]),msg(c, send c d ; c ↔ c ′)
(⊗C) : msg(c, send c d ; c ↔ c ′), proc(e,x ← recv c ; Q) �→ proc(e,Q[c ′,d/c,x])

The dual operator A � B allows the provider to receive a channel of type A and continue to
provide type B. The client of A � B, however, sends the channel of type A and continues to use B
using dual process terms as ⊗.

V ; Δ, (y : A) � P :: (x : B)

V ; Δ � (y ← recv x ; P) :: (x : A � B)
�R

· ; V � A ≡ A′ V ; Δ, (x : B) � Q :: (z : C)

V ; Δ, (x : A′ � B), (y : A) � (send x y ; Q) :: (z : C)
�L

(�S) : proc(e, send c d ; Q) �→ msg(c ′, send c d ; c ′ ↔ c), proc(e,Q[c ′/c])
(�C) : proc(c,x ← recv c ; P),msg(c ′, send c d ; c ′ ↔ c) �→ proc(c ′, P[c ′,d/c,x])

The type 1 indicates termination requiring that the provider of x : 1 sends a close message,
formally written as close x followed by terminating the communication. Correspondingly, the
client of x : 1 uses the term wait x ; Q to wait for x to terminate before continuing with executing
Q . Linearity enforces that the provider does not use any channels.

V ; · � (close x) :: (x : 1)
1R

V ; Δ � Q :: (z : C)

V ; Δ, (x : 1) � (wait x ; Q) :: (z : C)
1L

Operationally, the provider waits for the closing message, which has no continuation channel since
the provider terminates.

(1S) : proc(c, close c) �→ msg(c, close c)
(1C) : msg(c, close c), proc(d,wait c ; Q) �→ proc(d,Q)

A forwarding process x ↔ y identifies the channels x and y so that any further communication
along either x or y will be along the unified channel. Its typing rule corresponds to the logical rule
of identity.

· ; V � A ≡ A′

V ; y : A � (x ↔ y) :: (x : A′)
id
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Operationally, a process c ↔ d forwards any message M that arrives on d to c and vice versa. Since
channels are used linearly, the forwarding process can then terminate, ensuring proper renaming,
as exemplified in the following rules.

(id+C) : msg(d,M), proc(c, c ↔ d) �→ msg(c,M[c/d])
(id−C) : proc(c, c ↔ d),msg(e,M(c)) �→ msg(e,M(c)[d/c])

We write M(c) to indicate that c must occur in message M ensuring that M is the sole client of c .
Since the forwarding process uses channel d and provides channel c , which in turn is used by
the message provided on channel e , linearity enforces an ordering of sort d < c < e , thereby
guaranteeing that d and e are distinct channels.

6.1.1 Process Definitions. Process definitions have the form Δ � f [α] = P :: (x : A), where f
is the name of the process and P its definition, with Δ being the channels used by f and x : A
being the offered channel. In addition, α is a sequence of type variables that Δ, P , and A can refer
to. These type variables are implicitly universally quantified at the outermost level and represent
prenex polymorphism. All definitions are collected in the fixed global signature Σ. For a valid

signature, we require that α ; Δ � P :: (x : A) for every definition, thereby allowing definitions to
be mutually recursive. A new instance of a defined process f can be spawned with the expression
x ← f [θ ] y ; Q, where y is a sequence of channels matching the antecedents Δ and θ is a
substitution for the type variables α . The newly spawned process will use all variables in y and
provide x to the continuation Q .

y ′ : B′ � f [α] = Pf :: (x ′ : B) ∈ Σ

· ; V � Δ′ ≡ (y : θ (B′)) V ; Δ, (x : θ (B)) � Q :: (z : C)

V ; Δ,Δ′ � (x ← f [θ ] y ; Q) :: (z : C)
def

The declaration of f is looked up in the signature Σ (first premise), and subsitution θ is applied
to the types of y (second premise). Similarly, the freshly created channel x has type B from the
signature, under substitution θ . The type system additionally calls on to the equality check to

verify that the types θ (B′) are pointwise equivalent to Δ′ (equality judgment extended pointwise
in the second premise in the def rule). The corresponding semantics rule also performs a similar
substitution (a fresh).

(defC) : proc(c,x ← f [θ ] d ; Q) �→ proc(a, Pf [a/x ,d/y ′,θ ]), proc(c,Q[a/x]),

where y ′ : B′ � f = Pf :: (x ′ : B) ∈ Σ.
Sometimes a process invocation is a tail call, written without a continuation as x ← f [θ ] y. This

is shorthand for x ′ ← f [θ ] y ; x ↔ x ′ for a fresh variable x ′—that is, we create a fresh channel
and immediately identify it with x.

6.2 Type Safety

The extension of session types with nested polymorphism is proved type safe by the standard
theorems of preservation and progress, also known as session fidelity and deadlock freedom.

6.2.1 Type Preservation. The key to preservation is defining the rules to type a configuration.
We define a well-typed configuration using the judgment Δ1 �ΣC S :: Δ2 denoting that configu-

ration S (recall Definition 6.1 of a configuration) uses channels Δ1 and provides channels Δ2.6 A

6Although we use the same turnstile, �, for semantic equality (Definitions 4.4 and 4.5) as here for configuration typing, the

significantly different right-hand sides allow the two judgments to be easily distinguished.
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Fig. 4. Typing rules for a configuration.

configuration is always typed with respect to a valid signature Σ. Since the signature Σ is fixed,
we elide it from the presentation.

The rules for typing a configuration are defined in Figure 4. The emp rule states that an empty
configuration does not consume any channels but provides all channels it uses. The comp rule
composes two configurations S1 and S2; S1 provides channels Δ2, whereas S2 uses channels Δ2.
The rule proc creates a singleton configuration out of a process. Since configurations are runtime
objects, they do not refer to any free variables andV is empty. The msg rule is analogous.

6.2.2 Global Progress. To state progress, we need to define a poised process [43]. A process
proc(c, P) is poised if it is trying to receive a message on c . Dually, a message msg(c,M) is poised
if it is sending along c . Concretely, the following processes are poised:

• proc(c, c ↔ d)
• proc(c, case c (� ⇒ Q�)�∈L)

• proc(c, e ← recv c ; Q)
• proc(c,wait c ; Q).

Similarly, the following messages are poised:

• msg(c, c .k ; c ↔ c ′)
• msg(c, send c e ; c ↔ c ′)
• msg(c, close c).

A configuration is poised if every message or process in the configuration is poised. Intuitively,
this represents that the configuration is trying to communicate externally along one of the chan-
nels it uses or provides. Note here that for an internal communication to occur on a channel c ,
either the sending message or the receiving process would be offering on a channel that is not c ,
thus not being poised. This means that for a poised configuration, no internal communication is
possible.

Theorem 6.2 (Type Safety). For a well-typed configuration Δ1 �C S :: Δ2,

(i) (Preservation) If S �→ S′, then Δ1 �C S′ :: Δ2

(ii) (Progress) Either S is poised, or S �→ S′.

Proof. Preservation is proved by case analysis on the rules of operational semantics. First,
we invert the derivation of the current configuration S and use the premises to assemble a
new derivation for S′. As an illustration, consider the case of typing a spawn: assume that

S = D, proc(c,x ← f [θ ] d ; Q). Inverting the comp rule, we obtain Δ1 �C D :: Δ′1 and

Δ′1 �C proc(c,x ← f [θ ] d ; Q) :: Δ2. Inverting the proc rule on the second premise, we ob-

tain Δ,Δ′ � x ← f [θ ] d ; Q :: (c : C) where Δ,Δ′,Δ′′ = Δ′1 and Δ′′, (c : C) = Δ2 (implicitly
applying the emp rule) for some Δ, Δ′, andC . Inverting the def rule on the well-typed process, we

obtain Δ, (x : θ (B)) � Q :: (c : C) (assuming y : B′ � f = Pf :: (x : B) is the definition of f ).
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To obtain the newly formed configuration, we apply the defC semantics rule:

proc(c,x ← f [θ ] d ; Q) �→ proc(a, Pf [a/x][d/y]), proc(c,Q[a/x]).

From the well typedness of f , we deduce Δ′ � Pf [a/x][d/y] :: (a : θ (B)), and similarly
Δ, (a : θ (B)) � Q[a/x] :: (c : C). To reassemble the new configuration, we get Δ,Δ′ �C

proc(a, Pf [a/x][d/y]) :: (Δ, (a : θ (B))) by the proc and emp rules. Composing with Q via the comp

rule, we have Δ,Δ′ �C proc(a, Pf [a/x][d/y]), proc(c,Q[a/x]) :: (c : C). Composing with the empty

configuration, we conclude Δ,Δ′,Δ′′ �C proc(a, Pf [a/x][d/y]), proc(c,Q[a/x]) :: (Δ′′, (c : C)). Re-
membering that Δ,Δ′,Δ′′ = Δ′1 and Δ′′, (c : C) = Δ2 and composing the preceding withD, we can

finally conclude Δ1 �C S
′ :: Δ2, where S′ = D, proc(a, Pf [a/x][d/y]), proc(c,Q[a/x]).

Progress is proved by induction on the right-to-left typing of S. Note here that the configura-
tion is a multiset that can be split in several ways. Progress relies on a partial ordering among the
semantic objects in the configuration. We mandate that the provider of a channel occurs to the left
of its client in the configuration. As long as this ordering is maintained, we can choose any split
of the configuration. Formally, either S is empty (and therefore poised) or S = (D, proc(c, P))
or S = (D,msg(c,M)). By the induction hypothesis, either D �→ D′ or D is poised. In the
former case, S takes a step (since D does). In the latter case, we analyze the cases for P and
M , applying multiple steps of inversion to show that in each case either S can take a step or
is poised. As an illustration, consider the case where the rightmost semantic object is a process
P = proc(c, case d (� ⇒ Q�)�∈L). Since D appears to the left of P , it contains the provider of d ,
and since D is well typed, channel d must have an internal choice type. Noting the possibilities
for an internal choice, we deduce that the semantic object must be msg(c, c .k ; c ↔ c ′). To-
gether, we can apply the ⊕C rule so that the whole configuration makes progress. Other cases are
analogous. �

7 RELATIONSHIP TO CONTEXT-FREE SESSION TYPES

As ordinarily formulated, session types express communication protocols that can be described by
regular languages [51]. In particular, the type structure is necessarily tail recursive. CFSTs were
introduced by Thiemann and Vasconcelos [51] as a way to express a class of communication pro-
tocols that are not limited to tail recursion. CFSTs express protocols that can be described by
single-state, real-time DPDAs that use the empty stack acceptance criterion [1, 38].

Despite their name, the essence of CFSTs is not their connection to a particular subset of the (de-
terministic) context-free languages. Rather, the essence of CFSTs is that session types are enriched
to admit a notion of sequential composition. Nested session types are strictly more expressive than
CFSTs, in the sense that there exists a proper fragment of nested session types that is closed under
a notion of sequential composition. (In keeping with process algebras like ACP [2], we define a
sequential composition to be an operation that satisfies the laws of a right-distributive monoid.)

Consider (up to α ,β ,η-equivalence) the linear, tail functions from types to types with unary type
constructors only.

S,T � λ̂α . α | λ̂α .V [S α] | λ̂α . ⊕{� : S� α }�∈L | λ̂α .�{� : S� α }�∈L
| λ̂α .A ⊗ (S α) | λ̂α .A � (S α)

The linear, tail nature of these functions allows the type α to be thought of as a continuation type
for the session. The functions S are closed under function composition, and the identity function,

λ̂α . α , is included in this class of functions. Moreover, because these functions are tail functions,
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composition right-distributes over the various logical connectives in the following sense.

(λ̂α .V [S α]) ◦T = λ̂α .V [(S ◦T )α]

(λ̂α . ⊕{� : S� α }�∈L) ◦T = λ̂α . ⊕{� : (S� ◦T )α }�∈L

(λ̂α .�{� : S� α }�∈L) ◦T = λ̂α .�{� : (S� ◦T )α }�∈L

(λ̂α .A ⊗ (S α)) ◦T = λ̂α .A ⊗ ((S ◦T )α)

(λ̂α .A � (S α)) ◦T = λ̂α .A � ((S ◦T )α)

These distributive properties justify interpreting S ◦T as “T after S” because the (S ◦T )α = S (T α)
found on the right-hand sides of these equations “calls” S with the continuationT α . Together with
the monoid laws of function composition, these distributive properties therefore allow us to define
sequential composition as S ;T = S ◦T .

This suggests that although many details distinguish our work from CFSTs, nested session types
cover the essence of sequential composition underlying CFSTs. However, even stating a theorem
that every CFST process can be translated into a well-typed process in our system of nested session
types is difficult because the two type systems differ in many details: we include ⊗ and� as session
types but CFSTs do not; CFSTs use a complex kinding system to incorporate unrestricted session
types and combine session types with ordinary function types; the CFST system uses classical
typing for session types and a procedure of type normalization, whereas our types are intuitionistic
and do not rely on normalization; and the CFST typing rules are based on natural deduction rather
than the sequent calculus. With all of these differences, a formal translation, theorem, and proof
would not be very illuminating beyond the essence already described here. Empirically, we can also
give analogues of the published examples for CFSTs (e.g., see the first two examples of Section 9).

Finally, nested session types are strictly more expressive than CFSTs. Recall from Section 2 that
the language L3 = {L

na Rna ∪ Lnb Rnb | n > 0} can be expressed using nested session types
with two type parameters used in an essential way. Moreover, Korenjak and Hopcroft [38] observe
that this language cannot be recognized by a single-state, real-time DPDA that uses empty stack
acceptance, and thus CFSTs cannot express the language L3. More broadly, nested types allow
for finitely many states and acceptance by empty stack or final state, whereas the emphasis on
sequential composition of types in CFSTs means that they only allow a single state and empty
stack acceptance [51].

8 IMPLEMENTATION

We have implemented a prototype for nested session types and integrated it with the open source
Rast system [18]. Rast (Resource-aware session types) is a programming language that implements
the intuitionistic version of session types [7] with support for arithmetic refinements [19], and
ergometric [17] and temporal [16] types for complexity analysis. Our prototype extension is im-
plemented in Standard ML (8,011 lines of code) containing a lexer and parser (1,214 lines), a type
checker (3,001 lines), and an interpreter (201 lines), and is well documented. The prototype is avail-
able in the Rast repository [13].

8.1 Syntax

A program contains a series of mutually recursive type and process declarations and definitions,
concretely written as follows.

type V[x1]...[xk] = A

decl f[x1]...[xk] : (c1 : A1) ... (cn : An) |- (c : A)

proc c <- f[x] c1 ... cn = P
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Type V [x] is represented in concrete syntax as V[x1]...[xk]. The first line is a type definition,
where V is the type name parameterized by type variables x1, . . . ,xk and A is its definition. The
second line is a process declaration, where f is the process name (parameterized by type variables
x1, . . . ,xk ), (c1 : A1) . . . (cn : An) are the used channels and corresponding types, and the offered
channel is c of type A. Finally, the last line is a process definition for the same process f defined
using the process expression P . We use a handwritten lexer and shift-reduce parser to read an
input file and generate the corresponding abstract syntax tree of the program. The reason to use a
handwritten parser instead of a parser generator is to anticipate the most common syntax errors
that programmers make and respond with the best possible error messages.

Once the program is parsed and its abstract syntax tree is extracted, we perform a validity check

on it. This includes checking that type definitions, and process declarations and definitions are
closed with respect to the type variables in scope. To simplify and improve the efficiency of the
type equality algorithm, we also assign internal names to type subexpressions parameterized over
their free index variables. These internal names are not visible to the programmer.

8.2 Type Checking and Error Messages

The implementation is carefully designed to produce precise error messages. To that end, we store
the extent (source location) information with the abstract syntax tree and use it to highlight the
source of the error. We also follow a bidirectional type checking [44] algorithm reconstructing in-
termediate types starting with the initial types provided in the declaration. This helps us precisely
identify the source of the error. Another particularly helpful technique has been type compression.
Whenever the type checker expands a type V [θ ] defined as V [α] � B to θ (B), we record a reverse
mapping from θ (B) to V [α]. When printing types for error messages this mapping is consulted,
and complex types may be compressed to much simpler forms, greatly aiding readability of error
messages.

9 MORE EXAMPLES

All of our examples have been implemented and type checked in the open source Rast reposi-
tory [13]. We have also further implemented the standard polymorphic data structures such as
lists, stacks, and queues.

9.1 Arithmetic Expression Server

We adapt the example of an arithmetic expression server from prior work on CFSTs [51].

9.1.1 Binary Natural Numbers. Before we can describe the expression server, we need a type
bin that describes binary natural numbers.

type bin = +{ b0 : bin , b1 : bin , $ : 1 }

A process that provides type bin will send a stream of bits, b0 and b1, starting with the least
significant bit and eventually ending with $.7

Given this type, we can define processes double, inc, and plus that double and increment
a binary natural number and add two binary numbers, respectively. The double process uses a
binary natural number and offers another binary natural number that represents double the value.

7Strictly speaking, because the interpretation of types is coinductive, bin includes potentially infinite binary natural num-

bers such as the infinite stream of bits b1. This will also apply to types in the following examples. Even in the absence of

nested types, to make types truly inductive, other machinery would be needed (e.g., [21]).
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decl double : (n0 : bin) |- (n : bin)
proc n <- double n0 =
n.b0 ; n <-> n0

The n <-> n0 forwards channel n0 to channel n. Here, forwarding means that messages on one
channel are sent along the other channel. Because it functions as a computational step and is not
merely a static renaming, we cannot avoid including it in the process code. (This holds for all other
forwarding steps in the following processes.)

The inc process uses a binary natural number and offers another binary natural number that
represents the incremented value.

decl inc : (n0 : bin) |- (n : bin)
proc n <- inc n0 =
case n0 (
$ => n.b1 ; n.$ ; n <-> n0

| b0 => n.b1 ; n <-> n0
| b1 => n.b0 ; n <- inc n0 )

The plus process uses two binary natural numbers and offers another binary natural number that
represents their sum. In one case, it calls the inc process.

decl plus : (n1 : bin) (n2 : bin) |- (n : bin)
proc n <- plus n1 n2 =
case n1 (
$ => wait n1 ; n <-> n2

| b0 => case n2 (
$ => wait n2 ; n.b0 ; n <-> n1

| b0 => n.b0 ; n <- plus n1 n2
| b1 => n.b1 ; n <- plus n1 n2 )

| b1 => case n2 (
$ => wait n2 ; n.b1 ; n <-> n1

| b0 => n.b1 ; n <- plus n1 n2
| b1 => n.b0 ; n' <- plus n1 n2 ; n <- inc n' ) )

9.1.2 Arithmetic Expressions in Prefix Notation. From binary natural numbers, we can construct
a simple language of arithmetic expressions supporting doubling and addition operations. When
written in prefix notation, these expressions are described by the type exp[K]. More precisely, the
type exp[K] describes an expression followed by a suffix, or continuation, of type K.

type exp[K] = +{ const : bin * K , dbl : exp[K] , add : exp[exp[K]] }

An expression is either a constant, a doubling operation applied to an expression, or an addition
operation applied to two expressions. But in all cases, a suffix, or continuation, of type K follows
the expression, as enforced by type nesting:

• If a process providing type exp[K] sends the const label, then it sends a binary number of
type bin and continues as type K.
• If that process sends the dbl label, then it continues as type exp[K], ultimately delivering

an expression followed by a suffix of type K.
• If that process sends the add label, then it continues as type exp[exp[K]]. In other words,

it continues by delivering an expression followed by a suffix of type exp[K], which is itself
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an expression followed by a suffix of type K, and these two expressions are exactly the two
summands.

As an illustration, consider two binary constants a and b, and suppose that we want to create
the expression a + 2b. Written in prefix notation, this expression is + a (×2 b), where ×2 denotes
the doubling operation.We can build this expression in its prefix notation (followed by a suffix of
type K) as the following example[K] process, parameterized by type K. (In the following code, we
provide the intermediate typing judgments in comments along the right.)

decl example[K] : (a : bin) (b : bin) (k : K) |- (e : exp[K])
proc e <- example[K] a b k =
e.add ; % (a:bin) (b:bin) (k:K) |- (e : exp[exp[K]])
e.const ; send e a ; % (b:bin) (k:K) |- (e : exp[K])
e.dbl ; % (b:bin) (k:K) |- (e : exp[K])
e.const ; send e b ; % (k:K) |- (e : K)
e <-> k

Imitating the prefix notation + a (×2 b), this process sends the add label, followed by the const
label and the binary natural number a, followed by labels dbl and const and the binary natural
number b. Finally, the process continues at type K by forwarding k to e.

9.1.3 Evaluation Server. To evaluate a term, we can define an eval process, parameterized by
the type K.

decl eval[K] : (e : exp[K]) |- (v : bin * K)

The eval process uses a channel e of type exp[K] and offers a channel v of type bin * K. The
process evaluates expression e and sends its binary value together with the continuation of type
K along channel v. The process eval[K] is defined by the following.

proc v <- eval[K] e =
case e (
const => x <- recv e ; % (x:bin) (e:K) |- (v : bin * K)
send v x ; v <-> e

| dbl => % (e : exp[K]) |- (v : bin * K)
v' <- eval[K] e ; x <- recv v' ; % (x:bin) (v':K) |- (v : bin * K)
y <- double x ; % (y:bin) (v':K) |- (v : bin * K)
send v y ; v <-> v'

| add => % (e:exp[exp[K]]) |- (v : bin*K)
v1 <- eval[exp[K]] e ; x <- recv v1 ; % (x:bin) (v1:exp[K]) |- (v:bin*K)
v2 <- eval[K] v1 ; y <- recv v2 ; % (y:bin) (v2:K) |- (v : bin * K)
z <- plus x y ; % (z:bin) (v2:K) |- (v : bin * K)
send v z ; v <-> v2 )

Evaluation begins by analyzing the shape of expression e (in each branch, a forwarding process is
necessary to connect the remaining channel being used to the channel being provided):

• If the expression begins with const, then the binary constant that follows is sent along
channel v as the expression’s value.
• If the expression instead begins with dbl, then the subsequent expression is itself evaluated

by a recursive call to eval[K]. The resulting value is doubled and then sent along channel v.
• Otherwise, if the expression begins with add, then the subsequent expression is evaluated

by a recursive call to eval[exp[K]]. Notice that this recursive call is nested, being made
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at suffix type exp[K]. This gives the first summand’s value, together with a suffix of
type exp[K], which is the expression corresponding to the second summand. The second
summand is then evaluated by another recursive call, this time eval[K] at suffix type K.
The two values are added together by a call to plus and finally sent along channel v as the
expression’s overall value.

As can be seen in the first recursive call to eval, at type exp[K], the additional generality provided
by nested recursion is crucial here.

9.2 Serializing Binary Trees

Another example from Thiemann and Vasconcelos [51] is that of serializing binary trees. Here we
adapt that example to our system.

9.2.1 Binary Trees. Binary trees can be described by the following type.

type Tree[a] = +{ node : Tree[a] * (a * Tree[a]) , leaf : 1 }

These trees are polymorphic in the type a of data stored at each internal node. A tree is either an
internal node or a leaf, with the internal nodes storing channels that emit the left subtree, data,
and right subtree.

In what follows, it will sometimes be useful to have processes for constructing trees and pairs.
These node, leaf, and pair processes are defined as follows.

decl node[a] : (l : Tree[a]) (x:a) (r : Tree[a]) |- (t : Tree[a])
proc t <- node[a] l x r =
t.node ; send t l ; send t x ; t <-> r

decl leaf[a] : . |- (t : Tree[a])
proc t <- leaf[a] =
t.leaf ; close t

decl pair[a][b] : (x:a) (y:b) |- (p : a * b)
proc p <- pair[a][b] x y =
send p x ; p <-> y

Notice that, owing to the several channels stored at each node for the left subtree, data, and
right subtree, these Tree[a] trees do not exist a priori in a serial form.

9.2.2 Serialized Binary Trees. We can, however, use a different type to represent serialized trees.
The type constructor STree[a][K] is defined over two parameters: the parameter a for the type of
data, and the parameter K for the type of the suffix, or continuation, that will follow the serialized
tree.

type STree[a][K] = +{ nd : STree[a][a * STree[a][K]] ,
lf : K }

A serialized tree is then a stream of node and leaf labels, nd and lf, parameterized by a suffix type K.
Like add in the expression server, the label nd continues with type STree[a][a * STree[a][K]]:
the label nd is followed by the serialized left subtree, which itself continues by sending the data
stored at the internal node and then the serialized right subtree, which continues with type K.8

8The presence of a * means that, in the strictest sense, this is not a true serialization because it sends a separate channel

along which the data of type a is emitted. But there is no uniform mechanism for serializing polymorphic data, so this is
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9.2.3 Serializing and Deserializing Binary Trees. Using these types, it is relatively straightfor-
ward to implement processes that serialize and deserialize such trees. The process serialize has
the following type.

decl serialize[a][K] : (t : Tree[a]) (k : K) |- (s : STree[a][K])

This process uses channels t and k that hold the tree and the continuation, respectively, and offers
the corresponding serialized tree along channel s. Notice that this is parametric in the type K of
the continuation; this polymorphism will be essential.

The process serialize can be defined as follows.

proc s <- serialize[a][K] t k =
case t (

node => % (t : Tree[a] * (a * Tree[a])) ... |- ...
l <- recv t ; x <- recv t ; % (l:Tree[a]) (x:a) (t:Tree[a]) ... |- ...
s.nd ; % ... |- (s : STree[a][a * STree[a][K]])
sr <- serialize[a][K] t k ; % ... (sr : STree[a][K]) |- ...
p <- pair[a][STree[a][K]] x sr ; % ... (p : a * STree[a][K]) |- ...
s <- serialize[a][a * STree[a][K]] l p

| leaf => % (t : 1) (k : K) |- (s : STree[a][K])
s.lf ; % ... |- (s : K)
wait t ; s <-> k )

In the preceding code comments, we use ... to elide the types of those channels that remain
unchanged by the preceding line of code.

Serialization begins by examining the tree’s root, which is either a node or a leaf:

• If the root is a node, then the corresponding serialized tree begins with nd, and type
STree[a][a * STree[a][K]] must be offered along channel s. To do so, we begin with
a recursive call to serialize that serves to serialize the right subtree with the given contin-
uation, k:K, forming an STree[a][K]. This serialized right subtree is then paired with the
data x:a via a call to pair[a][STree[a][K]]. A subsequent recursive call serializes the left
subtree, using the pair p of the data and the serialized right subtree as the new continuation;
this forms an STree[a][a * STree[a][K]], just as required.
• If the tree is only a leaf, then the process forwards to the continuation.

The process deserialize for deserializing binary trees has the following type.

decl deserialize[a][K] : (s : STree[a][K]) |- (tk : Tree[a] * K)

This process uses a channel s that holds a serialized binary tree (and its continuation of type K) and
offers the corresponding deserialized tree along channel tk. Once again, this type is parametric in
the continuation type, K, which is essential to implementing the process in a well-typed way. The
process deserialize[a][K] can be defined as follows.

proc tk <- deserialize[a][K] s =
case s (

nd => % (s : STree[a][a * STree[a][K]]) |- ...
s' <- deserialize[a][a * STree[a][K]] s ; % (s' : Tree[a] * (a * STree[a][K])) |- ...
l <- recv s' ; % (l:Tree[a]) (s': a * STree[a][K]) |- ...
x <- recv s' ; % ... (x:a) (s':STree[a][K]) |- ...
s" <- deserialize[a][K] s' ; % ... (s" : Tree[a] * K) |- ...
r <- recv s" ; % ... (r:Tree[a]) (s":K) |- ...
t <- node[a] l x r ; % ... (t:Tree[a]) |- ...
send tk t ; tk <-> s"

as close to a true serialization as possible. Concrete instances of type Tree with, say, data of base type int could be given

a true serialization by “inlining” the data of type int in the serialization.
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| lf => % (s:K) |- ...
t <- leaf[a] ; % ... (t:Tree[a]) |- ...
send tk t ; tk <-> s )

To deserialize a serialized tree, the first step is to analyze the beginning of the serialized form. It
must begin with either nd or lf, the serialized forms of nodes and leaves:

• If it begins with nd, then what follows is an STree[a][a * STree[a][K]]—that is, a serial-
ized left subtree, followed by a pair of the internal node’s data together with a serialized right
subtree. A recursive call at continuation type a * STree[a][K] allows us to reconstruct the
left subtree, and from the continuation, we extract the node’s data. Then what remains is the
serialized right subtree of type STree[a][K]. Another recursive call, this time at continua-
tion type K, allows us to reconstruct the right subtree. A call to node[a] rebuilds the entire
tree, which is then sent along channel tk.
• If the serialized form instead begins with lf, then it represents a leaf and what follows is

just the continuation of type K. A (deserialized) leaf is constructed by a call to leaf[a], and
it is then sent along channel tk as the deserialized tree.

9.3 Generalized Tries for Binary Trees

Using nested types in Haskell, prior work [31] describes an implementation of generalized tries
that represent mappings on binary trees. Our nested session type system is also expressive enough
to represent such generalized tries. Without the nested session types that our work introduces to
Rast, it would not be possible to cleanly represent generalized tries in Rast.

9.3.1 Tries. We can reuse the type Tree[a] of binary trees given earlier. The type Trie[a][b]
describes tries that represent mappings from keys of type Tree[a] to values of type b.

type Trie[a][b] = &{ lookup_leaf : b ,
lookup_node : Trie[a][a -o Trie[a][b]] }

Unlike the types in the previous examples, the type Trie[a][b] is an external, not internal, choice.
A process that provides type Trie[a][b] offers its client a choice of two operations: lookup_leaf,
which returns a value of type b that the mapping assigns to a leaf, and lookup_node, which returns
a trie in which the node’s left subtree (and subsequently, right subtree) can be looked up. This type
will become more clear as we describe how to look up a tree in a trie.

9.3.2 Looking Up a Tree in a Trie. A process for looking up a tree in such tries can be declared
by the following.

decl lookup_tree[a][b] : (m : Trie[a][b]) (t : Tree[a]) |- (v : b)

This process uses channels m and t that hold the trie and the tree to look up, respectively, and offers
the corresponding value of type b along channel v. The process lookup_tree can be defined as
follows.

proc v <- lookup_tree[a][b] m t =
case t (

leaf => m.lookup_leaf ; % (m : b) (t : 1) |- ...
wait t ; v <-> m

| node => % ... (t : Tree[a] * (a * Tree[a])) |- ...
l <- recv t ; x <- recv t ; % ... (l:Tree[a]) (x:a) (t:Tree[a]) |- ...
m.lookup_node ; % (m : Trie[a][a -o Trie[a][b]]) ... |- ...
m' <- lookup_tree[a][a -o Trie[a][b]] m l ; % (m' : a -o Trie[a][b]) ... |- ...
send m' x ; % (m' : Trie[a][b]) ... |- ...
v <- lookup_tree[a][b] m' t )
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To look up a tree in a trie, first determine whether that tree is a leaf or a node:

• If the tree is a leaf, then sending lookup_leaf to the trie will return the value of type b
associated with that tree in the trie.
• Otherwise, if the tree is a node, then sending lookup_node to the trie results in
Trie[a][a -o Trie[a][b]] that represents a mapping from left subtrees to values of type
a -o Trie[a][b]. We can look up the left subtree in this trie, resulting in a process that
offers type a -o Trie[a][b]. To this process, we then send the data stored at the original
tree’s root. That results in a trie of type Trie[a][b] that represents a mapping from right
subtrees to values of type b. Therefore, we finally look up the right subtree in this new trie
and obtain a value of type b, as desired.

9.3.3 Building a Trie from a Total Function on Trees. In the tree serialization example, we were
able to define deserialize as an inverse to serialize. Similarly, as an inverse to lookup_tree,
we can define a process build_trie that constructs a trie from a (total, linear) function on trees.

decl build_trie[a][b] : (f : Tree[a] -o b) |- (m : Trie[a][b])

Both lookup_tree and build_trie can be seen as analogues to deserialize and serialize, re-
spectively, converting a lower-level representation to a higher-level representation and vice versa.
These types and declarations mean that tries represent total mappings; partial mappings are also
possible, at the expense of some additional complexity in the type and process definitions.

The build_trie process can be defined as follows.

proc m <- build_trie[a][b] f =
case m (
lookup_leaf => % ... |- (m : b)
t <- leaf[a] ; % ... |- (t : Tree[a])
send f t ; m <-> f

| lookup_node => % ... |- (m : Trie[a][a -o Trie[a][b]])
g <- fn_left[a][b] f ; % (g : Tree[a] -o (a -o Trie[a][b])) |- ...
m <- build_trie[a][a -o Trie[a][b]] g )

The trie constructed by build_trie waits to receive either a lookup_leaf or lookup_node label
as an instruction:

• If lookup_leaf is received, then this trie process constructs a leaf. The value that function
f assigns to a leaf is looked up, then forwarded to the trie’s client.
• Otherwise, if lookup_node is received, a trie of type Trie[a][a -o Trie[a][b]] must

be constructed. That can be done by making a recursive call to build_trie at the type
a -o Trie[a][b], so long as there is a function of type Tree[a] -o (a -o Trie[a][b])
that maps left subtrees to functions of type a -o Trie[a][b]. That function is provided by
a named helper process, fn_left.

The helper process fn_left is defined as follows.

decl fn_left[a][b] : (f : Tree[a] -o b) |- (g : Tree[a] -o (a -o Trie[a][b]))
proc g <- fn_left[a][b] f =
l <- recv g ; x <- recv g ; % ... (l:Tree[a]) (x:a) |- (g : Trie[a][b])
h <- fn_right[a][b] l x f ; % (h : Tree[a] -o b) |- ...
g <- build_trie[a][b] h

This process uses a function f that maps trees to values of type b, and offers a function that maps
left subtrees and a datum of type a to tries that map right subtrees to values of type b. The helper
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process fn_left first inputs a left subtree and a datum of type a, then makes a (morally) recursive
call to build_trie to construct a trie. This call requires a function of type Tree[a] -o b that
maps right subtrees to values of type b—this is the purpose of the fn_right helper process.

The helper process fn_right is defined as follows.

decl fn_right[a][b] : (l:Tree[a]) (x:a) (f:Tree[a] -o b) |- (h:Tree[a] -o b)
proc h <- fn_right[a][b] l x f =
r <- recv h ; % ... (r : Tree[a]) |- (h : b)
t <- node[a] l x r ; % ... (t : Tree[a]) |- ...
send f t ; h <-> f

This process takes a left subtree, a datum of type a, and a function that maps trees to values of type
b, using these to construct a mapping from right subtrees to values of type b. The process receives
a right subtree and, by calling the node process, puts it together with a left subtree and datum to
form a tree. This tree is passed to the function f to obtain the corresponding value of type b.

The current Rast implementation does not support anonymous process calls (although they
could be added in a straightforward way). For this reason, we depend on the named helper pro-
cesses fn_left and fn_right. In a language with anonymous processes, the bodies of fn_left
and fn_right could easily be inlined.

9.4 Queues

Here we elaborate on the queue example from Section 2.

9.4.1 Basic Type. At a basic level, polymorphic queues holding data of type a can be described
by the type:

type Queue'[a] = &{ enq: a -o Queue'[a] , deq: Option[a][Queue'[a]] },

where

type Option[a][k] = +{ some: a * k , none: 1 }.

Each queue supports enqueue and dequeue operations with an external choice between enq and
deq labels. If the queue’s client chooses enq, then the subsequent type, a -o Queue'[a], re-
quires that the client send an a; then the structure recurs at type Queue'[a] to continue serv-
ing enqueue and dequeue requests. If the queue’s client instead chooses deq, then the subsequent
type, Option[a][Queue'[a]], requires the client to branch on whether the queue is non-empty—
whether there is some datum or none at all at the front of the queue.

9.4.2 Type Nesting Enforces an Invariant. Implicit in this description of how a queue would offer
type Queue'[a] is a key invariant about the queue’s size: dequeuing from a queue into which an
element was just enqueued should always yield some element, never none at all. However, the
type Queue'[a] cannot enforce this dequeue-after-enqueue invariant precisely because it does
not track the queue’s size—Queue'[a] can be used equally well to type empty queues as to type
queues containing three elements, for instance. But by taking advantage of the expressive power
provided by nested types, we can enforce the invariant by defining a type Queue[a][k] of k-sized
queues that can enforce the dequeue-after-enqueue invariant.

We will start by defining two types that describe, in a somewhat elaborated way, sizes.

type Some[a][k] = +{ some: a * k }
type None = +{ none: 1 }

The type Some[a][k] describes a k with some element of type a added at the front; the type None
describes an empty shape. These types function similarly to unary natural numbers: Some acts like
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a successor for natural numbers, and None acts like zero for natural numbers. In this way, these
types express the size of a queue.

The idea is that Queue[a][None] will type empty stacks, because they have the shape None,
whereas the type Queue[a][Some[a][Queue[a][None]]] will represent queues containing one
element, because they have Some element in front of an empty queue, and so on for queues of
larger sizes.

More generally, the type Queue[a][k] describes k-sized queues.

type Queue[a][k] = &{ enq: a -o Queue[a][Some[a][Queue[a][k]]] , deq: k }

Once again, each queue supports enqueue and dequeue operations with an external choice be-
tween enq and deq labels. This time, however, enqueuing an a into the queue leads to type
Queue[a][Some[a][Queue[a][k]]] (i.e., a queue with Some element in front of a k-sized queue).
Equally importantly, dequeuing from a k-sized queue exposes the “size” k.

Together, these two aspects of the type Queue[a][k] serve to enforce the dequeue-after-
enqueue invariant. Suppose that a client enqueues an a into a queue q of type Queue[a][k]. After
the enqueue, the queue q will have type Queue[a][Some[a][Queue[a][k]]]. If the client then de-
queues from q, the type becomes Some[a][Queue[a][k]], which is +{ some: a * Queue[a][k] }.
This means that the client will always receive some element, never none at all because none is not
part of this type. And that is how the type Queue[a][k] enforces the dequeue-after-enqueue in-
variant.

Given this type constructor, the empty queue can be expressed as a process that has type
Queue[a][None], and we can define a process elem[a][k] that constructs a queue of shape
Some[a][Queue[a][k]] from an a and a queue of size k.

decl empty[a] : . |- (q : Queue[a][None])
decl elem[a][k] : (x:a) (r:Queue[a][k]) |- (q:Queue[a][Some[a][Queue[a][k]]])

The empty[a] process is defined as follows.

proc q <- empty[a] =
case q (
enq => x <- recv q ; % (x:a) |- (q:Queue[a][Some[a][Queue[a][None]]])
e <- empty[a] ; % ... (e : Queue[a][None]) |- ...
q <- elem[a][None] x e

| deq => % . |- (q : None)
q.none ; close q )

The empty queue waits to receive either the enq or deq label:

• If the empty queue receives enq, then it inputs a channel x along which an element of type
a is offered. A new empty queue is created along a fresh channel e by recursively calling
empty[a]. By calling the elem[a][None] (notice the use of None) with channels x and e, the
element is placed at the front of the queue.
• Otherwise, if the empty queue receives deq, then it indicates that the queue is empty by

sending label none and closing the channel.

The elem[a][k] process is defined as follows.

proc q <- elem[a][k] x r =
case q (
enq => y <- recv q ; % ... (y:a) |- (q:Queue[a][Some[a][
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% Queue[a][Some[a][
% Queue[a][k]]]]])

r.enq ; send r y ; % (r : Queue[a][Some[a][Queue[a][k]]]) |- ...
q <- elem[a][Some[a][Queue[a][k]]] x r

| deq => % ... |- (q : Some[a][Queue[a][k]])
q.some ; send q x ; % ... |- (q : Queue[a][k])
q <-> r )

This process also waits to receive either an enq or a deq label:

• If the process receives enq, then it first inputs a channel y along which the element to
be enqueued is offered. This element is enqueued into the tail of the queue, along chan-
nel r, by sending label enq and channel y. This causes the type of channel r to become
Queue[a][Some[a][Queue[a][k]]]. A recursive call to elem, this time at the larger size
Some[a][Queue[a][k]], is made to ensure that the front of the queue remains unchanged.
• Otherwise, if the process receives label deq, then it sends the client the label some and the

element x.

Because this invariant is quite strong, and yet not as easily manipulated as, say, a type that uses
arithmetic refinements, it can be difficult to implement certain operations on queues using this
type. For this reason, in ongoing work [15], we are developing a notion of subtyping and a sound
(but incomplete) subtype checking algorithm. There subtyping allows us to use the more precise
Queue[a][Queue'[a]] type when possible and revert to the more general supertype Queue'[a]
as needed.

It is also worth pointing out that the type Queue[a][k] applies equally well to stacks. At first,
that seems somewhat surprising, given that queues and stacks differ in where they place incoming
data and that we use the type parameter k to track the queue. But because k is essentially an
elaboration of the queue’s size, and because the sizes of stacks and queues grow in the same way,
it perhaps should not be surprising after all.

9.5 Dyck Language of Well-Balanced Parentheses

Recall from Section 2 the example of the Dyck language of well-balanced parentheses. Here we
expand upon that example, writing processes that (i) wrap an additional pair of parentheses around
a given Dyck word to form another Dyck word and (ii) concatenate two given Dyck words to form
another Dyck word.

9.5.1 Types. Recall from Section 2 that the following types are used to describe strings of well-
balanced parentheses. (Once again, we use L and R to stand in for left and right parentheses.)

type D0 = +{ L : D[D0] , $ : 1 }
type D[k] = +{ L : D[D[k]] , R : k }

The type D0 describes strings of well-balanced parentheses (followed by a terminal $). The type
D[k] describes “strings of slightly left-unbalanced parentheses,” if you will, followed by a continu-
ation of type k—that is, strings of well-balanced parentheses that are followed by exactly one more
closing parenthesis (i.e., an R) and a continuation of type k.

9.5.2 Overview of wrap and append. The process, wrap, that forms a Dyck word by wrapping
an additional pair of parentheses around a given Dyck word therefore has the following type.

decl wrap : (w : D0) |- (w' : D0)

Similarly, the process, append, that concatenates two given Dyck words has the following type.
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decl append : (w1 : D0) (w2 : D0) |- (w' : D0)

Conceptually, these wrap and append operations share something in common: both operations
rely on placing something at the end of a Dyck word. In the case of wrap, we need to place a
right parenthesis at the end of the given word (after having first placed a left parenthesis at the
beginning of the word); in the case of append, we need to place a string of balanced parentheses
at the end of the given word.

Before delving into the specifics of wrap and append, it will be useful to think about how we
might place something at the end of a string of type D[k] (i.e., a string of slightly left-unbalanced
parentheses).

9.5.3 Functor Map. Notice that in the type D[k], the continuation of type k always marks the
end of the slightly left-unbalanced string. Therefore, we could add something to the end of the
slightly left-unbalanced string by changing the continuation used. In other words, what we need
is a process of type

decl fmap[k][k'] : (f : k -o k') (w : D[k]) |- (w' : D[k'])

that copies the sequence of parentheses from the word w to the word w', but when the continuation
of type k is reached, the function f is applied to convert the continuation to one of type k'.

This functor map process, fmap[k][k'], is defined as follows.

proc w' <- fmap[k][k'] f w =
case w (
L => w'.L ; % ... (w : D[D[k]]) |- (w' : D[D[k']])
g <- lift[k][k'] f ; % (g : D[k] -o D[k']) ... |- ...
w' <- fmap[D[k]][D[k']] g w

| R => w'.R ; % ... (w : k) |- (w' : k')
send f w ; w' <-> f )

The fmap[k][k'] process begins by examining the first symbol in the word w:

• If the first symbol is a left parenthesis, then it is copied to the word w'. Then we need to
construct a process of type (f : k -o k') (w : D[D[k]]) |- (w' : D[D[k']]) that
copies from word w to word w' all of the parentheses represented by the nested constructors
D[D[-]] and applies the function f to convert the continuation of type k into one of type
k'. Suppose that we have a helper process, lift[k][k’], to lift the function f to a function
g of type D[k] -o D[k'] that copies the parentheses represented by D[-] and applies f
to the continuation of type k. Then a recursive call to fmap[D[k]][D[k']] with function g
completes the goal.
• Otherwise, if the first symbol is a right parenthesis, then it is copied to the word w'. The

function f is applied to the continuation of type k that follows this right parenthesis, trans-
forming the continuation into one of type k'.

We still need to define the helper process lift[k][k’], however. It is just the abstracted form
of a recursive call to fmap[k][k'].

decl lift[k][k'] : (f : k -o k') |- (g : D[k] -o D[k'])
proc g <- lift[k][k'] f =
w <- recv g ; g <- fmap[k][k'] f w

Once again, if the Rast implementation supported anonymous processes, then we could alterna-
tively inline this abstraction into the body of fmap itself.
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9.5.4 The wrap Process. With fmap in hand, we can finally define the wrap process. The new
word w' begins with a left parenthesis (i.e., L), with the remainder of w' being exactly the given
word w with a right parenthesis tacked onto the end:

decl wrap : (w : D0) |- (w' : D0)
proc w' <- wrap w =
w'.L ; w' <- snocR w,

where the snocR process is defined recursively together with the following snocR' helper process.

decl snocR : (w : D0) |- (w' : D[D0])
proc w' <- snocR w =
case w (
L => w'.L ; % (w : D[D0]) |- (w' : D[D[D0]])
f <- snocR' ; % ... (f : D0 -o D[D0]) |- ...
w' <- fmap[D0][D[D0]] f w

| $ => w'.R ; w'.$ ; % (w : 1) |- (w' : 1)
wait w ; close w' )

decl snocR' : . |- (f : D0 -o D[D0])
proc f <- snocR' =
w <- recv f ; f <- snocR w

The snocR and its snocR' helper very much follow the pattern laid down by fmap and lift:

• If the first symbol of w is a left parenthesis, it is copied to the word w'. We then need to
construct a process of type (w : D[D0]) |- (w' : D[D[D0]]) that copies w and tacks a right
parenthesis onto the end. Using a call to fmap[D0][D[D0]], we can copy the parentheses
represented by the outer D[-] and rely on the function that is given to fmap to tack on
a final right parenthesis. The helper snocR', the abstracted form of snocR, is just such a
function.
• Otherwise, if the first symbol is the terminal $, then we can directly insert a final right

parenthesis.

9.5.5 The append Process. The process of concatenating two Dyck words to form a new Dyck
word is quite similar to wrap. The code is nearly the same, except that a function for appending a
Dyck word is used in place of snocR'.

decl append : (w1 : D0) (w2 : D0) |- (w' : D0)
proc w' <- append w1 w2 =
case w1 (
L => w'.L ; % (w1 : D[D0]) ... |- (w' : D[D0])
f <- append' w2 ; % ... (f : D0 -o D0) |- ...
w' <- fmap[D0][D0] f w1

| $ => % (w1 : 1) ... |- ...
wait w1 ; w' <-> w2 )

decl append' : (w2 : D0) |- (f : D0 -o D0)
proc f <- append' w2 =
w1 <- recv f ; f <- append w1 w2
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10 FURTHER RELATED WORK

After a review of the literature, to the best of our knowledge, our work is the first proposal of
polymorphic recursion using nested type definitions in session types. Thiemann and Vasconce-
los [51] use polymorphic recursion to update the channel between successive recursive calls but
do not allow type constructors or nested types. An algorithm to check type equivalence for the
non-polymorphic fragment of CFSTs has been proposed by Almeida et al. [1].

Other forms of polymorphic session types have also been considered in the literature. Gay [26]
studies bounded polymorphism associated with branch and choice types in the presence of subtyp-
ing. He mentions recursive types (which are used in some examples) as future work but does not
mention parametric type definitions or nested types. Bono and Padovani [4, 5] propose (bounded)
polymorphism to type the endpoints in copyless message-passing programs inspired by session
types, but they do not have nested types. Following the approach of Kobayashi [36], Dardha et
al. [12] provide an encoding of session types relying on linear and variant types and present an
extension to enable parametric and bounded polymorphism (to which recursive types were added
separately [11]) but not parametric type definitions nor nested types. Caires et al. [6] and Pérez
et al. [42] provide behavioral polymorphism and a relational parametricity principle for session
types but without recursive types or type constructors.

Nested session types bear important similarities with first-order cyclic terms, as observed by
Jančar. Jančar [33] proves that the trace equivalence problem of first-order grammars is decidable,
following the original ideas by Stirling [49] for the language equality problem in DPDAs. These
ideas were also reformulated by Sénizergues [47]. Henry and Sénizergues [30] proposed the only
practical algorithm to decide the language equivalence problem on DPDAs that we are aware of.
Preliminary experiments show that such a generic implementation, even if complete in theory, is
a poor match for the demands of our type checker.

On the technical front, our type equality algorithm builds on prior works on coinduction. Coin-
ductive Logic Programming (CoLP) [29] lays the foundation for the loop detection mechanism (def

rule in Figure 2) of our algorithm. CoLP deduces the current goal by computing the most general
unifier that matches the current call with a call made earlier. However, CoLP still suffers from back-
tracking that is cleverly avoided by our algorithm through an internal renaming pass before the
type equality check. CoLP also does not provide an algorithm to compute this most general unifier.
Several heuristics have also been proposed to generalize the coinductive hypothesis in the form of
Horn clauses [24] and guarded higher-order fixpoint terms [37]. In contrast to the aforementioned
algorithmic variants (including ours) of coinductive proofs, Roşu and Lucanu [45] provide a proof-
theoretical foundation of circular coinduction. They devise a three-rule system to derive circular
coinductive proofs and prove that this proof system is behaviorally sound.

11 CONCLUSION

Nested session types extend binary session types with parameterized type definitions. This exten-
sion enables us to express polymorphic data structures just as naturally as in functional languages.
The proposed types are able to capture sequences of communication actions described by deter-
ministic context-free languages recognized by DPDAs with several states, which accept by empty
stack or by final state. In this setting, we show that type equality is decidable. To offset the com-
plexity of type equality, we give a practical type equality algorithm that is sound and efficient but
incomplete.

In ongoing work, we have been exploring subtyping for nested types. Since the language inclu-
sion problem for simple languages is undecidable [23], the subtyping problem for nested types
is also undecidable [15]. However, despite this negative result, we have been working on an
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algorithm to approximate subtyping. A subtyping relation increases significantly the programs
that can be type checked in the system.

In another direction, since Rast [18] supports arithmetic refinements for lightweight verification,
it would be interesting to explore how refinements interact with polymorphic type parameters,
namely in the presence of subtyping. We would also like to explore examples where the current
type equality is not adequate. Perhaps relatedly, we would like to find out if nested session types
can express interesting non-trivial properties of distributed protocols such as consensus or leader
election (Raft, Paxos, etc.) that might need unbounded memory.

Finally, Keizer et al. [35] describe a coalgebraic view of session types. It would be interesting to
examine whether our use of bisimulation could be reframed using their coalgebraic view and, for
example, whether the translation found in Section 4.2 could be seen as a full functor from session
coalgebras to coalgebras that correspond to grammars.
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