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Abstract

Programming distributed systems is already very challenging due to the presence of data races

and deadlocks; bugs are di�cult to detect and reproduce when they only arise in certain thread

interleavings. �e rise of modern distributed systems have introduced unique domain-speci�c

challenges further complicating so�ware development. Although program analysis tools exist

for distributed systems, the most popular and usable tools are still centered around traditional

programming languages. With the pervasive usage of distributed systems in so�ware design,

there is an urgent need for formal tools to help with the design, veri�cation, and quantitative

analysis of distributed so�ware.

In response, this thesis designs novel resource-aware session types that serve as a sound

and practical foundation for distributed systems with strong type-theoretic guarantees. Ses-

sion types statically prescribe bidirectional communication protocols for message-passing pro-

cesses. Unfortunately, they cannot express quantitative properties of a distributed system, such

as energy consumption, latency, response time, and throughput. �is thesis addresses this lim-

itation by proposing two extensions to express the work and span of parallel computation. To

compute work, the key innovation was that messages and processes both carry an abstract

notion of potential which is consumed to perform work. To compute span, the key innovation

was to introduce operators from temporal logic to capture the timing of message exchanges.

Resource-aware session types combine session types with work and span extensions allowing

programmers to reason about both qualitative and quantitative aspects of distributed systems.

�e thesis concludes with an application of resource-aware session types to the blockchain do-

main. Blockchains allow execution of complex protocols between mutually distrusting parties

through smart contracts. Programming smart contracts comes with unique challenges such

as enforcing transaction protocols, computing the execution cost of transactions, and ensur-

ing that assets are not accidentally duplicated or discarded accidentally. �is thesis presents

Nomos: a language for smart contracts with resource-aware session types at its core. Ses-

sion types statically express contract protocols. Resource-aware types automatically infer the

execution cost of transactions leveraging ideas from automatic amortized resource analysis.

�e built-in linear type system of session types provides a natural representation for assets.

�e Nomos type checker statically enforces the above requirements: protocols are enforced at

runtime, bounds inferred are sound and precise, and assets used are neither duplicated nor dis-

carded. Nomos also signi�cantly develops the theory of programming languages: integrating

session types with functional programming, linear-time type checking to prevent denial-of-

service a�acks, and an acquire-release discipline to rule out re-entrancy a�acks.
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Chapter 1

Introduction

�e design of safe, e�cient, and secure so�ware has always been a challenging task. With the

proliferation of distributed systems, so�ware development has become even more complex. In

addition to the usual challenges, developers must also carefully

• ensure that no bugs manifest in any possible thread interleaving,

• avoid deadlocks and data races, and

• calculate the overall memory and time consumption of the system.

�e rise of modern distributed systems such as server farms, cloud computing platforms, and

blockchains have further complicated so�ware design by introducing unique challenges. For

instance, blockchain is a highly adversarial domain due to its transparency. �e state of every

decentralized application deployed on the blockchain can be publicly viewed and potentially

exploited by malicious a�ackers. Security vulnerabilities in these applications have caused

losses to the tune of several billions of dollars.

Advances in the design and principles of programming languages have signi�cantly bene��ed

the design of so�ware, improving its performance, safety and security. Such advances have

enabled programmers analyze the qualitative aspects of so�ware using veri�cation techniques

as well as the quantitative aspects using complexity analysis tools. Today, developers can utilize

automatic veri�cation tools such as Boogie [28] and Dafny [97], or program assistants such as

Coq [29] and Isabelle [115] to express and verify that programs satisfy their speci�cations.

�ey can exploit tools such as Fiat Crypto [61] and EverCrypt [121] to generate secure high-

performance cryptographic functionalities. �ey can employ fully formally veri�ed compilers

such as CompCert [98] to compile these programs to e�cient low-level machine code. Finally,

they can take advantage of static analysis tools such as RaML [82],[83] and SPEED [76] to

compute complexity bounds and Infer [41] to detect performance bugs.

Although analysis tools exist for distributed systems, most of the industrial strength support is

still centered around traditional sequential programming languages. Programs implemented in

1



Introduction 2

sequential languages are easier to analyze and verify since all computation typically occurs in

a single process. However, with the advent of multi-processor systems, most of the industrial

so�ware systems today are no longer sequential. Distributed algorithms lie at the heart of

commitment protocols, distributed consensus, leader election and broadcast mechanisms with

a wide array of applications ranging from communication networks and database management

to industrial control systems, cloud computing and blockchains.

With the advent of such distributed algorithms and systems, there is an urgent need of formal

tools to assist the design, veri�cation and quantitative analysis of distributed so�ware. How-

ever, analysis of concurrent and distributed systems poses additional challenges. First, while

implementing concurrent programs, developers must consider all possible thread interleavings

and ensure that no bug manifests in any such interleaving. Second, concurrent programs are

notoriously prone to deadlocks where each process in a group is waiting on a resource held

by another process, and data races where one thread is writing to a shared resource that is

simulataneously being read by another thread. Finally, unlike sequential programs, creating a

compositional reasoning for concurrent programs is especially challenging since their behavior

ultimately depends on interactions within the system.

In response, this thesis has designed novel resource-aware session types that serve as a sound

and practical foundation for distributed systems with strong type-theoretic guarantees [54, 55].

A common theme in a distributed system is communication between its components. And of-

ten, the type, value, and direction of communication depends on the state of the system. Session

types leverage this property by capturing the system state in the type, providing a structured

way of prescribing communication protocols. Session types can also guarantee freedom from

deadlocks and data races. �ey also possess a con�uence property stating that a communicat-

ing system converges to the same �nal state under all possible thread interleavings. All these

properties greatly bene�t programmers and automatically prevent a large class of bugs that

can result from communication mismatches.

Unfortunately, simple session types cannot express quantitative properties of a distributed sys-

tem, such as energy consumption, latency, response time, and throughput. Realizing this, this

thesis proposes two extensions to express the work [54] and span [55] of parallel computa-

tion. Work is de�ned as the total number of operations executed as part of the computation.

However, due to parallelism in the system, many of these operations execute simultaneously.

�erefore, span is de�ned as the total time of computation taking the parallelism in the system

into account.

Work analysis is based on a linear type system that combines standard session types with type-

based amortized analysis. Each session type constructor is decorated with a natural number

declaring the potential that must be transferred along with the corresponding message. �is

potential (in the sense of classical amortized analysis [135]) may either be spent by sending

other messages in the process network, or stored in a process for future interactions. Since the

process interface is characterized entirely by the resource-aware session type of the channels

it interacts with, this design provides a compositional resource speci�cation. A conceptual
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challenge is to express symbolic bounds in a se�ing without static data structures and intrin-

sic sizes. Our innovation is that resource-aware session types describe bounds as functions

of interactions on a channel. As a result, the type system derives parametric bounds on the

resource usage of message-passing processes. Finally, a type safety theorem proves that the

derived bounds are sound with respect to an operational cost semantics that tracks the total

number of messages exchanged in a network of communicating processes.

In addition to work, the timing of messages is of central interest for analyzing parallel cost.

We developed a type system that captures the parallel complexity of session-typed programs

by adding temporal modalities next (©A), always (�A) and eventually (♦A), interpreted over

a linear model of time. When considered as types, the temporal modalities allow us to ex-

press properties of concurrent programs such as the message rate of a stream, the latency of

a pipeline, the response time of a concurrent data structure, or the span of a fork-join parallel

computation, all in the same uniform manner. �e circle operator (©) expresses precision of

message timings, while the box (�) and diamond operators (♦) provide �exibility, allowing us

to express the timing of a wide variety of standard session-typed programs. Finally, a type

safety theorem establishes that the message timing expressed by the type system are realized

by the timed operational semantics.

Resource-aware session types combine session types with work and span extensions allowing pro-
grammers to reason about both qualitative and quantitative aspects of distributed systems.

1.1 Programming Digital Contracts using Resource-Aware Ses-
sion Types

Digital contracts are computer protocols that describe and enforce the execution of a contract.

With the rise of blockchains and cryptocurrencies such as Bitcoin [109], Ethereum [145], and

Tezos [72], digital contracts have become popular in the form of smart contracts, which provide

potentially distrusting parties with programmable money and an enforcement mechanism that

does not rely on third parties. Smart contracts have been used to implement auctions [1],

investment instruments [108], insurance agreements [88], supply chain management [96], and

mortgage loans [107]. In general, digital contracts hold the promise to reduce friction, lower

cost, and broaden access to �nancial infrastructure.

Smart contracts are implemented using a high-level programming language such as Solid-

ity [49], Rholang [7], and Liquidity [5]. It is then compiled down to bytecode and executed

using a runtime environment (e.g. Ethereum Virtual Machine for the Ethereum blockchain).

However, these languages have signi�cant shortcomings as they do not accommodate the

domain-speci�c requirements of digital contracts.
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• Instead of centering contracts on their interactions with users, the high-level protocol

of the intended interactions with a contract is buried in the implementation code, ham-

pering understanding, formal reasoning, and trust.

• Resource (or gas) usage of digital contracts is of particular importance for transparency

and consensus. However, obliviousness of resource usage in existing contract languages

makes it hard to predict the cost of executing a contract and prevent denial-of-service

vulnerabilities.

• Existing languages fail to enforce linearity of assets, endangering the validity of a con-

tract when assets are duplicated or deleted, accidentally or maliciously [105].

Such limitations of the contract languages can lead to vulnerabilities in the implemented con-

tracts which can be exploited by malicious users having direct �nancial consequences. A well-

known example is the a�ack on �e DAO [108], resulting in a multi-million dollar the� by

exploiting a contract vulnerability. Maybe even more important is the potential erosion of

trust as a result of such failures.

Recently, I have designed the type-theoretic foundations of Nomos [57], a programming lan-

guage whose genetics match directly with the domain-speci�c requirements to provide strong

static guarantees that facilitate the design of correct contracts. To express and enforce the pro-

tocols underlying a contract, we base Nomos on resource-aware session types. Type checking

can be automated and guarantees that Nomos programs follow the communication protocol

expressed by the type.

Resource-aware types also make transaction cost in Nomos predictable and transparent, and

prevents bugs resulting from excessive resource usage. Since resource-aware session types are

parametric in the cost model, they can be instantiated to derive the gas bounds for Nomos pro-

grams. �e type soundness theorem for Nomos guarantees that these bounds are both sound

and precise. Other advantages of this type-based resource analysis are natural compositional-

ity and reduction of bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of a contract loses track of its assets,

Nomos integrates a linear type system into a functional language. Linear type systems use

the ideas of Girard’s linear logic [69] to represent certain resources ensuring they are never

discarded or duplicated. Assets such as money and other commodities that can be exchanged

between parties in a contract are typed using a linear channel. Type safety guarantees that

processes maintain proper ownership of linear assets and do not terminate while holding access

to a linear asset.

Since there exist multiple clients of a contract, we use a shared session type [25] to de�ne the

protocol of a contract. �is ensures that clients interact with a contract in mutual exclusion.

�e type clearly demarcates the parts of the protocol that become a critical section using ↑SL
modality marking its start and ↓SL modality marking its end. Programmatically, ↑SL translates

into an acquire of the contract, while ↓SL into its release.
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We complement the theory of Nomos with an e�cient implementation. We have designed a

lexer, parser, type checker, inference engine, and interpreter for Nomos. �e type checker ver-

i�es if Nomos programs indeed satis�es their protocol speci�cation, while generating linear

constraints on the potential needed to execute the program. �e inference engine solves the

linear constraints minimizing the potential, thus generating tight bounds. Finally, the inter-

preter executes the transaction program.

In addition, we describe how Nomos is integrated with an account model blockchain like

Ethereum [145]. We describe the challenges in this integration, and highlight the main lim-

itation of the language. We also describe our e�orts in simplifying programming in Nomos

by introducing surface syntax and commonly used data structures. We conclude by evaluat-

ing Nomos on a variety of standard smart contracts, emphasizing the guarantees provided by

Nomos and their advantages.

1.2 Overview

�esis Statement Resource-aware session types serve as a sound and practical type-theoretic
foundation for digital contracts providing strong domain speci�c guarantees while simplifying
programming.

Chapter 2 provides necessary background for understanding this thesis. It �rst provides the

fundamentals of vanilla session types, along with their formalization. �en, it explains the

technique of type-based automatic amortized resource analysis in the context of a functional

programming language.

Chapter 3 descibes our novel extension to re�nement session types. Such re�nements are

crucial to describing work and span bounds. We de�ne what type equality means in this re�ned

se�ing, and also present an algorithm for approximating equality.

Chapter 4 describes work analysis of a session-typed process. Work (or sequential complexity)

of a process is de�ned as the total number of operations executed by it. �e chapter introduces

a novel resource-aware session type system that augments simple session types with new type

constructors that measure the work performed by a process.

Chapter 5 presents time analysis of session-typed processes. �e type system introduces type

constructors inspired from linear temporal logic to the simple session type system that measure

the time of a process execution. �is accounts for the parallel complexity of a process.

Chapter 6 designs the Nomos language. on shared and resource-aware session types that can

be used to implement digital contracts. �e language handles assets using a linear type sys-

tem, eliminates the re-entrancy problem by design and provides multi-user support. Resource-

aware types also enable the programmer to statically understand the resource usage of con-

tracts. �e language is proved to satisfy type preservation (session �delity) and a limited form

of progress (deadlock freedom). Chapter 7 describes the implementation of Nomos.



Chapter 2

Background

�is chapter introduces two central concepts of this thesis, namely session types and resource

analysis. �e �rst half of the chapter focuses on session types, de�ning them formally with

static and dynamic semantics. �e second half introduces type-based amortized analysis for

functional programming languages. Resource-aware session types formalize the combination

of these two techniques.

2.1 Session Types

Session types are a type discipline for communication-centric programming based on message

passing via channels. Session-typed channels describe and enforce the protocol of communi-

cation among processes. �e base system of session types is derived from a Curry-Howard

interpretation of intuitionistic linear logic [39]. �is chapter focuses on the linear fragment

of SILL [116] that internalizes session-based concurrency. Session types were introduced by

Honda [87].

Linear logic [69] is a substructural logic that enjoys exchange as its only structural property,

i.e., it does not exhibit weakening or contraction. As a result, purely linear propositions can be

viewed as resources that must be used exactly once in a proof. Here, I adopt the intuitionistic

version of linear logic, yielding the following sequent

A1, . . . , An ` C

where A1, . . . , An are linear antecedents, while C is the linear succedent.

Under the Curry-Howard isomorphism for intuitionistic linear logic, propositions are related to

session types, proofs to processes and cut reduction in proofs to communication. Appealing to

this correspondence, a process term P is assigned to the above judgment and each hypothesis

6
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as well as the conclusion is labeled with a channel:

x1 : A1, . . . , xn : An ` P :: (z : C)

�e resulting judgment states that process P provides a service of session typeA along channel

z, using the services of session types A1, . . . , An provided along channels x1, . . . , xn respec-

tively. �e assignment of a channel to the conclusion is convenient because, unlike functions,

processes do not evaluate to a value but continue to communicate along their providing chan-

nel once they have been created until they terminate. For the judgment to be well-formed, all

channel names have to be distinct. �e antecedents are o�en abbreviated to ∆.

�e balance between providing and using a session is established by the two fundamental rules

of the sequent calculus that are independent of all logical connectives: cut and identity. Cut

states that if P provides service A along channel x, then Q can use the service along the same

channel at the same type. Identity states that a client of service A can directly provide A.

∆1 ` Px :: (x : A) ∆2, x : A ` Qx :: (z : C)

∆1,∆2 ` x← Px ; Qx :: (z : C)
cut

y : A ` x↔ y :: (x : A)
id

Operationally, the process x ← Px ; Qx creates a globally fresh channel c, spawns a new

process [c/x]Px providing along c, and continues as [c/x]Qx. Conversely, the process c ↔ d

forwards any message M that arrives along d to c and vice-versa. Because channels are used

linearly, the forwarding process can then terminate, making sure to apply proper renaming.

�e operational semantics are formalized as a system ofmultiset rewriting rules [45]. I introduce

semantic objects proc(c, P ) and msg(c,M) describing process P (or message M ) providing

service along channel c. Remarkably, in this formulation, a message is just a particular form

of process, thereby not requiring any special rules for typing; it can be typed just as processes.

�e semantics rules for cut and id are presented below.

(cutC) proc(d, x← Px ; Qx) 7→ proc(c, [c/x]Px), proc(d, [c/x]Qx) (c fresh)

(id+C) msg(d,M), proc(c, c↔ d) 7→ msg(c, [c/d]M)

(id−C) proc(c, c↔ d),msg(e,M(c)) 7→ msg(e, [d/c]M(c))

Here, I adopt the convention to use x, y and z for channel variables and c, d and e for channels.
Channels are created at runtime and substituted for channel variables in process terms. In the

last rule, M(c) indicates that c must occur in M , implying it is the sole client of c.

�e Curry-Howard correspondence gives each linear logic connective an interpretation as a

session type. �is session type prescribes the kind of message that must be sent or received

along a channel of this type. Table 2.1 summarizes the description of the type along with the

provider action. I follow a detailed description of each session type operator.
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Type Provider Action Session Continuation

⊕{` : A`}`∈L send label k ∈ L Ak

N{` : A`}`∈L receive and branch on label k ∈ L Ak

1 send token close none

A⊗B send channel c : A B

A( B receive channel c : A B

Table 2.1: Basic Session Types. Every provider action has a matching client action.

Internal Choice A type A is said to describe a session, which is a particular sequence of

interactions. As a �rst type construct, consider internal choice ⊕{` : A`}`∈L, an n-ary labeled

generalization of the linear logic connective A⊕B. A process that provides x : ⊕{` : A`}`∈L
can send any label k ∈ L along x and then continue by providing x : Ak. �e corresponding

process is wri�en as (x.k ; P ), where P is the continuation that provides Ak. �is typing is

formalized by the right rule ⊕R in linear sequent calculus. �e corresponding client branches

on the label received along x as speci�ed by the le� rule ⊕L.

(k ∈ L) ∆ ` P :: (x : Ak)

∆ ` (x.k ; P ) :: (x : ⊕{` : A`}`∈L)
⊕R

(∀` ∈ L) ∆, (x : A`) ` Q` :: (z : C)

∆, (x : ⊕{` : A`}`∈L) ` case x (`⇒ Q`)`∈L :: (z : C)
⊕L

Operationally, since communication is asynchronous, the process (c.k ; P ) sends a message

k along c and continues as P without waiting for it to be received. As a technical device to

ensure that consecutive messages on a channel arrive in order, the sender also creates a fresh

continuation channel c′ so that the message k is actually represented as (c.k ; c ↔ c′) (read:

send k along c and continue as c′). �e provider also substitutes c′ for c enforcing that the next

message is sent on c′.

(⊕S) proc(c, c.k ; P ) 7→ proc(c′, [c′/c]P ),msg(c, c.k ; c↔ c′) (c′ fresh)

When the message k is received along c, the client selects branch k and also substitutes the

continuation channel c′ for c, thereby ensuring that it receives the next message on c′. �is

implicit substitution of the continuation channel ensures the ordering of the messages.

(⊕C) msg(c, c.k ; c↔ c′), proc(d, case c (`⇒ Q`)`∈L) 7→ proc(d, [c′/c]Qk)

External Choice �e dual of internal choice is external choice N{` : A`}`∈L, which is the

n-ary labeled generalization of the linear logic connective A N B. �is dual operator simply

reverses the role of the provider and client. �e provider process of x : N{` : A`}`∈L branches

on receiving a label k ∈ L (described in NR), while the client sends this label (described in
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NL).

(∀` ∈ L) ∆ ` P` :: (x : A`)

∆ ` case x (`⇒ P`)`∈L :: (x : N{` : A`}`∈L)
NR

∆, (x : Ak) ` Q :: (z : C)

∆, (x : N{` : A`}`∈L) ` x.k ; Q :: (z : C)
NL

�e operational semantics rules are just the inverse of internal choice. �e provider receives

the branching label k sent by the provider. Both processes perform appropriate substitutions

to ensure the order of messages sent and received is preserved.

(NS) proc(d, c.k ; Q) 7→ msg(c′, c.k ; c′ ↔ c), proc(d, [c′/c]Q) (c′ fresh)

(NC) proc(c, case c (`⇒ Q`)`∈L),msg(c′, c.k ; c′ ↔ c) 7→ proc(c′, [c′/c]Qk)

Higher-Order Channels Session types allow channels to be higher-order, i.e., channels can

be exchanged over channels. �e session type corresponding to the linear logic connective

A ⊗ B allows its provider to send a channel of type A and then continue with providing B.

�e corresponding process term (send x w ; P ) describes sending channel w over channel x

and continuing with P . �is typing is provided by the rule ⊗R. �e client, on the other hand,

receives this channel using the term (y ← recv x ; Q)and binds it to a channel variable y, as

described by ⊗L.

∆ ` P :: (x : B)

∆, (w : A) ` (send x w ; P ) :: (x : A⊗B)
⊗R

∆, (y : A), (x : B) ` Q :: (z : C)

∆, (x : A⊗B) ` (y ← recv x ; Q) :: (z : C)
⊗L

(⊗S) proc(c, send c e ; P ) 7→ proc(c′, [c′/c]P ),msg(c, send c e ; c↔ c′) (c′ fresh)

(⊗C) msg(c, send c e ; c↔ c′), proc(d, x← recv c ; Q) 7→ proc(d, [c′, e/c, x]Q)

�e lolli (() operator is dual to ⊗. �e provider and client invert their roles, i.e., the provider

of x : A( B receives a channel of type A sent by its client.

∆, (y : A) ` P :: (x : B)

∆ ` (y ← recv x ; P ) :: (x : A( B)
(R

∆, (x : B) ` Q :: (z : C)

∆, (x : A( B), (y : A) ` (send x w ; Q) :: (z : C)
(L

((S) proc(d, send c e ; Q) 7→ msg(c′, send c e ; c′ ↔ c), proc(d, [c′/c]Q) (c′ fresh)

((C) proc(c, x← recv c),msg(c′, send c e ; c′ ↔ c) 7→ proc(c′, [c′, d/c, x]P )
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Termination �e type 1, the multiplicative unit of linear logic, represents termination of a

process, which (due to linearity) is not allowed to use any channels.

· ` close x :: (x : 1)
1R

∆ ` Q :: (z : C)

∆, (x : 1) ` (wait x ; Q) :: (z : C)
1L

Operationally, a client has to wait for the corresponding closing message, which has no con-

tinuation since the provider terminates.

(1S) proc(c, close c) 7→ msg(c, close c)

(1C) msg(c, close c), proc(d,wait c ; Q) 7→ proc(d,Q)

Process De�nitions Process de�nitions have the form ∆ ` f = P :: (x : A) where f

is the name of the process and P its de�nition. All de�nitions are collected in a �xed global

signature Σ. Also, since process de�nitions are mutually recursive, it is required that for every

process in the signature is well-typed w.r.t. Σ, i.e. Σ ; ∆ ` P :: (x : A). For readability of the

examples, I break a de�nition into two declarations, one providing the type and the other the

process de�nition binding the variables x and those in Ω (generally omi�ing their types):

∆ ` f :: (x : A)

x← f ∆ = P

A new instance of a de�ned process f can be spawned with the expression

x← f y ; Q

where y is a sequence of variables matching the antecedents ∆. �e newly spawned process

will use all variables in y and provide x to the continuation Q. �e operational semantics

reduces the spawn to a cut.

(defC) proc(c, x← f ← e ; Q) 7→ proc(a, [a/x, e/∆]P ), proc(c, [a/x]Q) (a fresh)

where ∆ ` f = P :: (x : A) ∈ Σ. Here I write e/∆ to denote substitution of the channels in

e for the corresponding variables in ∆.

Sometimes a process invocation is a tail call, wri�en without a continuation as x← f y. �is

is a short-hand for x′ ← f y ; x↔ x′ for a fresh variable x′, that is, a fresh channel is created

and immediately identi�ed with x (although it is generally implemented more e�ciently).

Recursive Types Session types can be naturally extended to include recursive types. For

this purpose I allow (possibly mutually recursive) type de�nitions X = A in the signature,

where I require A to be contractive [66]. �is means here that A should not itself be a type

name. �e type de�nitions are equi-recursive so X can be silently replaced by A during type

checking, and no explicit rules for recursive types are needed.
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2.1.1 Examples

As a �rst example, consider a stream of bits de�ned recursively as

bits = ⊕{b0 : bits, b1 : bits, $ : 1}

When considering bits as representing natural numbers, the least signi�cant bit is sent �rst.

For example, a process six sending the number 6 = (110)2 would be

· ` six :: (x : bits)

x← six = x.b0 ; x.b1 ; x.b1 ; x.$ ; close x

Executing proc(c0, c0 ← six) yields (with some fresh channels c1, . . . , c4)

proc(c0, c0 ← six) 7→∗ msg(c4, close c4),

msg(c3, c3.$ ; c3 ↔ c4),

msg(c2, c2.b1 ; c2 ↔ c3),

msg(c1, c1.b1 ; c1 ↔ c2),

msg(c0, c0.b0 ; c0 ↔ c1),

As a �rst example of a recursive process de�nition, consider one that just copies the incoming

bits on to the outgoing bits.

y : bits ` copy :: (x : bits)

x← copy y =

case y (b0⇒ x.b0 ; x← copy y % received b0 on y, send b0 on x, recurse

| b1⇒ x.b1 ; x← copy y % received b1 on y, send b1 on x, recurse

| $⇒ x.$ ; wait y ; close x)% received $ on y, send $ on x, wait on y, close x

Note the occurrence of a (recursive) tail call to copy.

A last example: to increment a bit stream turn b0 to b1 but then forward the remaining bits

unchanged (x↔ y), or turn b1 to b0 but then increment the remaining stream (x← plus1 y)

to capture the e�ect of the carry bit.

y : bits ` plus1 :: (x : bits)

x← plus1 y =

case y (b0⇒ x.b1 ; x↔ y

| b1⇒ x.b0 ; x← plus1 y
| $⇒ x.$ ; wait y ; close x)
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Σ ; ∆ � (·) :: ∆
empty

Σ ; ∆0 � S1 :: ∆1 Σ ; ∆1 � S2 :: ∆2

Σ ; ∆0 � (S1 S2) :: ∆2

compose

Σ ; ∆1 ` P :: (c : A)

Σ ; ∆,∆1 � proc(c, P ) :: (∆, (c : A))
proc

Σ ; ∆1 � P :: (c : A)

Σ ; ∆,∆1 � msg(c, P ) :: (∆, (c : A))
msg

Figure 2.1: Typing rules for a con�guration

2.1.2 Preservation and Progress

�e main theorems that exhibit the deep connection between our type system and the opera-

tional semantics are the usual type preservation and progress, sometimes called session �delity
and deadlock freedom, respectively.

So far, I have only described individual processes. However, processes exist in a con�guration.

A process con�guration is a multiset of semantic objects, proc(c, P ) and msg(c,M), where

any two o�ered channels are distinct. A key question is how to type these con�gurations.

Since they consist of both processes and messages, they both use and provide a collection of

channels. And even though a con�guration is treated as a multiset, typing imposes a partial

order on the processes and messages where a provider of a channel appears to the le� of its

client.

A con�guration is typed w.r.t. a signature providing the type declaration of each process. A

signature Σ is well formed if (a) every type de�nition V = AV is contractive, and (b) every

process de�nition ∆ ` f = P :: (x : A) in Σ is well typed according to the process typing

judgment, i.e. Σ ; ∆ ` P :: (x : A).

I use the following judgment to type a con�guration.

Σ ; ∆1 � S :: ∆2

It states that Σ is well-formed and that the con�guration S uses the channels in the context

∆1 and provides the channels in the context ∆2. �e con�guration typing judgment is de�ned

using the rules presented in Figure 3.2. �e rule empty de�nes that an empty con�guration is

well-typed. �e rule compose composes two con�gurations S1 and S2; S1 provides service on

the channels in ∆1 while S2 uses the channels in ∆2. �e proc rule creates a con�guration out

of a single process. Similarly, the msg rule creates a con�guration out of a single message.

�eorem 2.1 (Type Preservation). If Σ ; ∆′ � S :: ∆ and S 7→ D, then Σ ; ∆′ � D :: ∆.

Proof. By case analysis on the transition rule, applying inversion to the given typing derivation,

and then assembling a new derivation of D.
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A process or message is said to be poised if it is trying to communicate along the channel that it

provides. A poised process is comparable to a value in a sequential language. A con�guration

is poised if every process or message in the con�guration is poised. Conceptually, this implies

that the con�guration is trying to communicate externally, i.e. along one of the channel it

provides. �e progress theorem then shows that either a con�guration can take a step or it is

poised. To prove this I show �rst that the typing derivation can be rearranged to go strictly

from right to le� and then proceed by induction over this particular derivation.

�eorem 2.2 (Global Progress). If · � S :: ∆ then either

(i) S 7→ D for some D, or

(ii) S is poised.

Proof. By induction on the right-to-le� typing of S so that either S is empty (and therefore

poised) or S = (D proc(c, P )) or S = (D msg(c,M)). By induction hypothesis, D can either

take a step (and then so can S), or D is poised. In the la�er case, I analyze the cases for P and

M , applying multiple steps of inversion to show that in each case either S can take a step or

is poised.

2.2 Resource Analysis

�e quality of so�ware crucially depends on the amount of resources – time, memory and

energy – that are required for its execution. Statically understanding and controlling re-

source usage continues to be a central issue in so�ware development. Recent years have

seen fast progress in developing tools and frameworks for statically reasoning about resource

usage. �e obtained size change information forms the basis for the computation of actual

bounds on loop iterations and recursion depths; using counter instrumentation [77], ranking

functions [12, 18, 37, 134], recurrence relations [13, 14] and abstract interpretation [44, 150].

Automatic resource analysis for functional programs are based on sized types [140], term-

rewriting [23] and amortized resource analysis [82, 84, 90, 133].

Automatic amortized resource (AARA) was introduced for a strict �rst-order functional lan-

guage with built-in data types [84]. Since then, AARA techniques have been applied to univari-

ate polynomial bounds [80], multivariate bounds [82], higher-order functional programs [90]

and user-de�ned data types [83]. In this section, I will mainly focus on linear bounds for �rst-

order programs as it outlines the main ideas of AARA without complicating the type system.

2.2.1 Manual Amortized Analysis

O�en the cost of an operation on a data structure depends on its state. �us, it is natural to

account for the total cost of a sequence of operations on such a data structure. To analyze
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such a sequence of operations, Sleator and Tarjan [135] proposed amortized analysis with the

potential method.

�e concept of potential is inspired by the notion of potential energy in physics. �e idea

is to de�ne a potential function Φ : D → R≥0
that maps data structure D ∈ D to a non-

negative number. Operations on the data structure can then increase or decrease the potential.

�e amortized cost of an operation op(D) is then de�ned as the sum of its actual cost K and

the di�erence of the potential caused by op, i.e., K + Φ(op(D)) − Φ(D). �e sum of the

amortized costs over a sequence of operations and the initial potential of D then furnishes an

upper bound on the actual cost of the sequence.

A standard example that demonstrates the bene�ts of amortization is the analysis of a func-

tional queue, represented as two lists Lin and Lout. Enqueuing an element simply adds it to

the head ofLin, while dequeuing removes the element from the head ofLout. IfLout is empty,

the elements from Lin are transferred to Lout, thereby reversing the order of the elements.

�e cost of a dequeue operation for this queue depends on the state of Lout, whether its empty

or not. In the worst case, when Lout is empty, the cost of dequeue is linear. However, we

can introduce a potential Φ(Lin, Lout) = 2 |Lin|. �en, the amortized cost of enqueue is 3

– one to pay for consing to Lin, and two for the increase in potential. More importantly, the

amortized cost of dequeue is 1. If Lout is not empty, the cost of detach is 1, while there is

no change to the potential. While if Lout is empty, the potential stored in Lin is used to pay

for the cost of transfer from Lin to Lout. Formally, the cost of transfer is 2 |Lin|, equal to the

change in the potential. Hence, the amortized cost of dequeue remains 1, used to pay for the

detach from Lout a�er the transfer. �us, amortized analysis proves that the worst-case cost

of both enqueue and dequeue operations is constant.

2.2.2 Automatic Amortized Analysis

�e potential method from amortized analysis can be applied to statically analyze functional

programs. �e key idea here is that the arguments of a function store potential, which is

consumed during function evaluation. �e initial potential of the arguments therefore equals

the sum of the resource cost of the function, and the potential of the return value. �us, it acts

as an upper bound on the resource cost. Since the excess potential is stored in the result, this

technique is completely compositional.

Automation is a key requirement here since requiring the programmer to provide the potential

functions will signi�cantly increase their burden. To make automation feasible, it is necessary

to restrict the space of possible potential functions. �ere is a precision-scalability trade-o�

here since increasing the space of potential functions will improve the precision of resource

bounds, but will make automation more challenging.

I will restrict the potential functions to be linear and the language to be strict, �rst-order and

functional. I a�ach the potential of the data structure to its type. �en, a sound type checking
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algorithm statically veri�es that the potential is su�cient to pay for all operations that are

performed on this data structure during any possible evaluation of the program. Consider the

append function that takes two lists and appends the second list to the �rst. �e function is

implemented as follows.

let rec append l1 l2 =

match l1 with

| [] -> l2

| x::xs -> let ys = append xs l2 in x::ys

To understand the resource usage for append, we �rst need to �x the resource we are interested

in counting. For this example, suppose we count the number of cons (::) operations. �e above

code suggests that the number of cons operations equals the length of l1. To understand the

type-based analysis, consider the following type for append.

append : L1(A)× L0(A)
0/0−−→ L0(A)

Intuitively, this describes that a unit potential is a�ached to every element in l1, and no po-

tential on l2 and the result. In the nil branch of the match, the context is assigned the type

l1 : L1(A), l2 : L0(A). Since l1 is nil, the total potential of the context is 0, and l2 is directly

returned. In the cons branch, the context is typed as x : A, xs : L1(A), l2 : L0(A). Remark-

ably, the recursive call to append utilizes the same type, since xs and l2 have the same type as

described in the signature. A�er the recursive call, the context becomes x : A, ys : L0(A), l2 :

L0(A), and the unit potential stored in x is used to perform the cons operation.

�e type inference algorithm assigns variable potential annotations to append.

append : Lq1(A)× Lq2(A)
r/s−−→ Lq(A)

�e inference algorithm then derives linear constraints on the annotations. For append, the

constraints generated are q1 ≥ q2 + 1, and q2 = q, and r ≥ s. �ese constraints are solved

with an o�-the-shelf linear-programming solver (LP solver) whose goal is to minimize the

initial potential to derive the most precise bound. �e LP solver recovers the annotation values

described earlier, thus proving the exact bound |l1| for append.



Chapter 3

Re�nement Session Types

Traditional session types prescribe bidirectional communication protocols for concurrent com-

putations, where well-typed programs are guaranteed to adhere to the protocols. However,

simple session types cannot capture properties beyond the basic type of the exchanged mes-

sages. In response, we index session types with re�nements from linear arithmetic, capturing

intrinsic a�ributes of processes and data. �ese re�nements then play a central role in describ-

ing sequential and parallel complexity bounds on session-typed programs (Chapters 4 and 5).

�is chapter describes the metatheory of such indexed types. We show that, despite the de-

cidability of Presburger arithmetic, type equality and therefore also type checking are now

undecidable, which stands in contrast to analogous dependent re�nement type systems from

functional languages. We also present a practical incomplete algorithm for type equality and an

algorithm for type checking which is complete relative to an oracle for type equality. Process

expressions in this explicit language are rather verbose, so we also introduce an implicit form

and a sound and complete algorithm for reconstructing explicit programs, borrowing ideas

from the proof-theoretic technique of focusing. All the aforementioned ideas have been imple-

mented in an open-source language named Rast [56]. We conclude by illustrating our systems

and algorithms with a variety of examples that have been veri�ed in the Rast implementation.

3.1 Introduction

Basic session types have limited expressivity. As a simple example, consider the session type

o�ered by a queue data structure storing elements of type A.

queueA = N{ins : A( queueA,

del : ⊕{none : 1,

some : A⊗ queueA}}

�is type describes a queue interface supporting insertion and deletion. �e external choice
operator N dictates that the process providing this data structure accepts either one of two

16
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messages: the labels ins or del. In the case of the label ins, it then receives an element of

type A denoted by the( operator, and then the type recurses back to queueA. On receiving

a del request, the process can respond with one of two labels (none or some), indicated by

the internal choice operator ⊕. It responds with none and then terminates (indicated by 1)

if the queue is empty, or with some followed by the element of type A (expressed with the

⊗ operator) and recurses if the queue is nonempty. However, the simple session type does

not express the conditions under which the none and some branches must be chosen, which

requires tracking the length of the queue.

We propose extending session types with simple arithmetic re�nements to express, for in-

stance, the size of a queue. �e more precise type

queueA[n] = N{ins : A( queueA[n+ 1],

del : ⊕{none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ queueA[n− 1]}}

uses the index re�nement n to indicate the size of the queue. In addition, we introduce a type
constraint ?{φ}. Awhich can be read as “there exists a proof of φ” and is analogous to the asser-
tion of φ in imperative languages. Here, the process providing the queue must (conceptually)

send a proof of n = 0 a�er it sends none, and a proof of n > 0 a�er it sends some. It is

therefore constrained in its choice between the two branches based on the value of the index

n. Because the the index domain from which the propositions φ are drawn is Presburger arith-

metic and hence decidable, no proof of φ will actually be sent, but we can nevertheless verify

the constraint statically (which is the subject of this chapter) or dynamically (see [70, 71]). Al-

though not used in this example, we also add the dual !{φ}. A (for all proofs of φ, analogous

to the assumption of φ), and explicit quanti�ers ∃n.A and ∀n.A that send and receive natural

numbers, respectively.

Of course, arithmetic type re�nements are not new and have been explored extensively in

functional languages, for example, by Zenger [148], in DML [146], or in the form of Liquid
Types [127]. Variants have been adapted to session types as well [71, 75, 149], generally with

the implicit assumption that index re�nements are somehow “orthogonal” to session types.

In this chapter we show that, upon closer examination, this is not the case. In particular,

unlike in the functional se�ing, session type equality and therefore type checking become

undecidable. Remarkably, this is the case whether we treat session types equirecursively [66]

or isorecursively [101], and even in the quanti�er-free fragment. In response, we develop a

new algorithm for type equality which, though incomplete, easily handles the wide variety of

example programs we have tried. Moreover, it is naturally extensible through the additional

assertion of type invariants should the need arise.

With a practically e�ective type equality algorithm in hand, we then turn our a�ention to type
checking. It turns out that assuming an oracle for type equality, type checking is decidable

because it can be reduced to checking the validity of propositions in Presburger arithmetic.
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We de�ne type checking over a language where constructs related to arithmetic constraints

(∃n.A, ∀n.A, ?{φ}. A, and !{φ}. A) have explicit communication counterparts. Despite the

high theoretical complexity of deciding Presburger arithmetic, all our examples check very

quickly using Cooper’s decision procedure [48] with two optimizations.

Many programs in this explicit language are unnecessarily verbose and therefore tedious for

the programmer to write, because the process constructs pertaining to the re�nement layer

contribute only to verifying its properties, but not its observable computational outcomes. As

is common for re�nement types, we therefore also designed an implicit language for processes

where most constructs related to index re�nements are omi�ed. �e problem of reconstruction
is then to map such an implicit program to an explicit one which is sound (the result type-

checks) and complete (if there is a reconstruction, it can be found). Interestingly, the nature

of Presburger arithmetic makes full reconstruction impossible. For example, the proposition

∀n.∃k. (n = 2k ∨n = 2k+ 1) is true but the witness for k as a Skolem function of n (namely

bn/2c) cannot be expressed in Presburger arithmetic. Since witnesses are critical if we want

to understand the work performed by a computation, we require that type quanti�ers ∀n.A
and ∃n.A have explicit witnesses in processes. We provide a sound and complete algorithm

for the resulting reconstruction problem. �is algorithm exploits proof-theoretic properties of

the sequent calculus akin to focusing [20] to avoid backtracking and consequently provides

precise error messages that we have found to be helpful.

We have implemented our language, named Rast, in SML, where a programmer can choose

explicit or implicit syntax and the exact cost model for work analysis. �e implementation

consists of a lexer, parser, type checker, and reconstruction engine, with particular a�ention

to providing precise error messages.

3.2 Arithmetic Re�nements

Before we extend our language of types formally, we revisit the examples in order to motivate

the speci�c constructs available. We write V [e] for a type indexed by a sequence of arithmetic

expressions e. Since it has been appropriate for most of our examples, we restrict ourselves to

natural numbers rather than arbitrary integers.

Example 3.1 (�eues, v2). �eprovider of a queue should be constrained to answernone exactly
if the queue contains no elements and some if it is nonempty. �e queue type from Section 3.1
does not express this. �is means a client may need to have some redundant branches to account
for responses that should be impossible. Instead we use the re�ned type queueA[n] to stand for a
queue with n elements.

queueA[n] = N{ins : A( queueA[n+ 1],

del : ⊕{none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ queueA[n− 1]}}
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�e �rst branch is easy to understand: if we add an element to a queue of length n, it subsequently
contains n+ 1 elements. In the second branch we constrain the arithmetic variable n to be equal
to 0 if the provider sends none and positive if the provider sends some. In the la�er case, we
subtract one from the length a�er an element has been dequeued.

Conceptually, the type ?{φ}. A means that the provider must send a proof of φ, so it corre-

sponds to ∃p : φ.A. A characteristic of type re�nement, in contrast to fully dependent types,

is that the computation of A can only depend on the existence of a proof p, but not on its form.

Since our index domain is also decidable no actual proof needs to be sent (since one can be

constructed from φ automatically, if needed), just a token asserting its existence. �ere is also

a dual constructor !{φ}. A that licenses the assumption of φ, which, conceptually, corresponds

to receiving a proof of φ.

Example 3.2 (Binary Numbers). We would like the indexed type bin[n] to represent a binary
number with value n. Because the least signi�cant bit comes �rst, we expect, for example, that
bin[n] = ⊕{b0 : ?{2 | n}. bin[n/2], . . .}. However, while divisibility is available in Presburger
arithmetic, division itself is not; instead, we can express the constraint and the index of the recursive
occurrence using quanti�cation.

bin[n] = ⊕{b0 : ∃k. ?{n = 2 ∗ k}. bin[k],

b1 : ∃k. ?{n = 2 ∗ k + 1}. bin[k],

e : ?{n = 0}.1}

As a further re�nement, we could rule out leading zeros by adding the constraint n > 0 in the
branch for b0.

�e type ∃n.A means that the provider must send a natural number i and proceed at type

A[i/n], corresponding to existential quanti�cation in arithmetic. �e dual universal quanti�er

∀n.A requires the provider to receive a number i and proceed at type A[i/n].

We now extend our de�nitions to account for these new constructs. Below, i represents a

constant, while n represents a natural number variable.

Types A ::= . . .

| ?{φ}. A assert φ continue at type A

| !{φ}. A assume φ continue at type A

| ∃n.A send number i continue at type A[i/n]

| ∀n.A receive number i continue at type A[i/n]

| V [e] variable instantiation

Arith. Expressions e ::= i | e+ e | e− e | i× e | (i | e) | n

Arith. Propositions φ ::= e = e | e > e | > | ⊥ | φ ∧ φ | φ ∨ φ | ¬φ | ∃n. φ | ∀n. φ

Signature Σ ::= · | Σ, V [n | φ] = A
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An indexed type de�nition V [n | φ] = A requires every instance e of the sequence of variables

n to satisfy φ[e/n]. �is is veri�ed statically when a type signature is checked for validity, as

de�ned below. We useV for a collection of arithmetic variables and C (to signify constraints) for

an arithmetic proposition occurring among the antecedents of a judgment. We then have the

following rules de�ning the validity of signatures (` Σ signature), declarations (`Σ Σ′ valid),

and types (V ; C `Σ A valid) where V is a collection of arithmetic variables including all free

variables in constraint C and type A. We silently rename variables so that n does not already

occur in V in the ∃V and ∀V rules. We also call upon the semantic entailment judgment

V ; C � φ which means that ∀V. C ⊃ φ holds in arithmetic and � φ abbreviates · ; > � φ.

`Σ Σ valid
` Σ signature `Σ (·) valid

`Σ Σ′ valid n ; φ `Σ A valid A 6= V ′[e′]

`Σ Σ′, V [n | φ] = A valid

V ; C ∧ φ `Σ A valid
V ; C `Σ ?{φ}. A valid ?V

V ; C ∧ φ `Σ A valid
V ; C `Σ !{φ}. A valid !V

V, n ; C `Σ A valid
V ; C `Σ ∃n.A valid ∃V

n
V, n ; C `Σ A valid
V ; C `Σ ∀n.A valid ∀V

n

V [n | φ] = A ∈ Σ V ; C � φ[e/n]

V ; C `Σ V [e] valid tdef

We elide the compositional rules for all the other type constructors. Since we like to work

over natural numbers rather than integers, it is convenient to assume that every de�nition

V [n] = A abbreviates V [n | n ≥ 0] = A. �is means that in valid signatures every occurrence

V [e] is such that e ≥ 0 follows from the known constraints.

Example 3.3. �e declaration

queueA[n] = N{ins : A( queueA[n+ 1],

del : ⊕{none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ queueA[n− 1]}}

is valid because n ≥ 0 � n+ 1 ≥ 0 and n ≥ 0 ∧ n > 0 � n− 1 ≥ 0.

Unfolding a de�nition must substitute for the arithmetic variables we abstract over.

De�nition 3.1. unfoldΣ(V [e]) = A[e/n] ifV [n | φ] = A ∈ Σ and unfoldΣ(A) = A otherwise.

We say that a type is closed if it contains no free arithmetic variables n.

De�nition 3.2. A relation R on types is a type bisimulation if (A,B) ∈ R implies that for

S = unfoldΣ(A), T = unfoldΣ(B) we have

1. If S = ⊕{` : A`}`∈L then T = ⊕{` : B`}`∈L and (A`, B`) ∈ R for all ` ∈ L.

2. If S = N{` : A`}`∈L then T = N{` : B`}`∈L and (A`, B`) ∈ R for all ` ∈ L.
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3. If S = A1 ⊗A2, then T = B1 ⊗B2 and (A1, B1) ∈ R and (A2, B2) ∈ R.

4. If S = A1 ( A2, then T = B1 ( B2 and (A1, B1) ∈ R and (A2, B2) ∈ R.

5. If S = 1 then T = 1.

6. If S = ?{φ}. A′ then T = ?{ψ}. B′ and either (i) � φ, � ψ, and (A′, B′) ∈ R,

or (ii) � ¬φ and � ¬ψ.

7. If S = !{φ}. A′ then T = !{ψ}. B′ and either (i) � φ, � ψ, and (A′, B′) ∈ R,

or (ii) � ¬φ and � ¬ψ

8. If S = ∃m.A′ then T = ∃n.B′ and for all i ∈ N, (A′[i/m], B′[i/n]) ∈ R.

9. If S = ∀m.A′ then T = ∀n.B′ and for all i ∈ N, (A′[i/m], B′[i/n]) ∈ R.

De�nition 3.3. We say that A is equal to B, wri�en A ≡ B, if there is a type bisimulationR
such that (A,B) ∈ R.

An interesting point here is provided by the cases (ii) in the clauses (6) and (7). Because the

type must be closed, we know that φ and ψ will be either true or false. If both are false, no

messages can be sent along a channel of either type and therefore the continuation types A′

and B′ are irrelevant when considering type equality.

Fundamentally, due to the presence of arbitrary recursion and therefore non-termination, we

always view a type as a restriction of what a process might send or receive along some channel,

but it is neither required to send a message nor guaranteed to receive one. �is is similar to

functional programming with unrestricted recursion where an expression may not return a

value. �e de�nition based on observability of messages is then somewhat strict, as exempli�ed

by the next example.

Example 3.4. Consider

bin[n] = ⊕{b0 : ∃k. ?{n = 2 ∗ k}. bin[k],

b1 : ∃k. ?{n = 2 ∗ k + 1}. bin[k],

e : ?{n = 0}.1}

zero = ⊕{b0 : ∃k. ?{k = 0}. zero,

e : ?{0 = 0}.1}

We might expect bin[0] ≡ zero, but this is not so. A process of type bin[0] could send the label b1

and maybe even, say, 0 for k and then just loop forever (because there is no proof of 0 = 1). �e
type zero can not exhibit this behavior so the types are not equivalent.

In our implementation, missing branches for a choice in process de�nitions are reconstructed

with a continuation that marks it as impossible, which is then veri�ed by the type checker. We
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found this simple technique signi�cantly limited the need for subtyping or explicit de�nition

of types such as zero—instead, we just work with bin[0].

�e following properties of type equality are straightforward.

Lemma 3.4 (Properties of Type Equality). �e relation≡ is re�exive, symmetric, transitive and
a congruence on closed valid types.

3.3 Undecidability of Type Equality

We prove the undecidability of type equality by exhibiting a reduction from an undecidable

problem about two counter machines.

�e type system allows us to simulate two counter machines [106]. Intuitively, arithmetic

constraints allow us to model branching zero-tests available in the machine. �is, coupled with

recursion in the language of types, establishes undecidability. Remarkably, a small fragment

of our language containing only type de�nitions, internal choice (⊕) and assertions (?{φ}. A)

where φ just contains constraints n = 0 and n > 0 is su�cient to prove undecidability.

Moreover, the proof still applies if we treat types isorecursively. In the remainder of this section

we provide some details of the undecidability proof.

De�nition 3.5 (Two Counter Machine). A two counter machineM is de�ned by a sequence

of instructions ι1, ι2, . . . , ιm where each instruction is one of the following.

• “inc(cj); goto k” (increment counter j by 1 and go to instruction k)

• “zero(cj)? goto k : dec(cj); goto l” (if the value of the counter j is 0, go to instruction

k, else decrement the counter by 1 and go to instruction l)

• “halt” (stop computation)

A con�guration C of the machine M is de�ned as a triple (i, c1, c2), where i denotes the

number of the current instruction and cj ’s denote the value of the counters. A con�gurationC ′

is de�ned as the successor con�guration ofC , wri�en asC 7→ C ′ ifC ′ is the result of executing

the i-th instruction on C . If ιi = halt, then C = (i, c1, c2) has no successor con�guration. �e

computation ofM is the unique maximal sequence ρ = ρ(0)ρ(1) . . . such that ρ(i) 7→ ρ(i+1)

and ρ(0) = (1, 0, 0). Either ρ is in�nite, or ends in (i, c1, c2) such that ιi = halt and c1, c2 ∈ N.

�e halting problem refers to determining whether the computation of a two counter machine

M with given initial values c1, c2 ∈ N is �nite. Both the halting problem and its dual, the

non-halting problem, are undecidable.

�eorem 3.6. Given a valid signature Σ and two types A and B such that m,n ; > `Σ

A,B valid. �en it is undecidable whether for concrete i, j ∈ N we have A[i/m, j/n] ≡
B[i/m, j/n].



Re�nement Session Types 23

Proof. Given a two counter machine, we construct a signature Σ and two types A and B with

free arithmetic variablesm and n such that the computation of the machine starting with initial

counter values i and j is in�nite i� A[i/m, j/n] ≡ B[i/m, j/n] in Σ.

We de�ne types Tinf = ⊕{` : Tinf} and T ′inf = ⊕{`′ : T ′inf} for distinct labels ` and `′. Next,

for every instruction ιi, we de�ne types Ti and T ′i based on the form of the instruction.

• Case (ιi = inc(c1); goto k): We de�ne

Ti[c1, c2] = ⊕{inc1 : Tk[c1 + 1, c2]}
T ′i [c1, c2] = ⊕{inc1 : T ′k[c1 + 1, c2]}

• Case (ιi = inc(c2); goto k): We de�ne

Ti[c1, c2] = ⊕{inc2 : Tk[c1, c2 + 1]}
T ′i [c1, c2] = ⊕{inc2 : T ′k[c1, c2 + 1]}

• Case (ιi = zero(c1)? goto k : dec(c1); goto l): We de�ne

Ti[c1, c2] = ⊕{zero1 : ?{c1 = 0}. Tk[c1, c2], dec1 : ?{c1 > 0}. Tl[c1 − 1, c2]}
T ′i [c1, c2] = ⊕{zero1 : ?{c1 = 0}. T ′k[c1, c2], dec1 : ?{c1 > 0}. T ′l [c1 − 1, c2]}

• Case (ιi = zero(c2)? goto k : dec(c2); goto l): We de�ne

Ti[c1, c2] = ⊕{zero2 : ?{c2 = 0}. Tk[c1, c2], dec2 : ?{c2 > 0}. Tl[c1, c2 − 1]}
T ′i [c1, c2] = ⊕{zero2 : ?{c2 = 0}. T ′k[c1, c2], dec2 : ?{c2 > 0}. T ′l [c1, c2 − 1]}

• Case (ιi = halt): We de�ne

Ti[c1, c2] = Tinf

T ′i [c1, c2] = T ′inf

We set type A = T1[m,n] and B = T ′1[m,n]. Now suppose, the counter machine M is

initialized in the state (1, i, j). �e type equality question we ask is whether T1[i, j] ≡ T ′1[i, j].

�e two types only di�er at the halting instruction. IfM does not halt, the two types capture

exactly the same communication behavior, since the halting instruction is never reached and

they agree on all other instructions. IfM halts, the �rst type proceeds with label ` and the

second with `′ and they are therefore not equal. Hence, the two types are equal i�M does not

halt.

We can easily modify this reduction for an isorecursive interpretation of types, by wrapping

⊕{unfold : } around the right-hand side of each type de�nition to simulate the unfold

message. We also see that a host of other problems are undecidable, such as determining

whether two types with free arithmetic variables are equal for all instances. �is is the problem

that arises while type-checking parametric process de�nitions.
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3.4 A Practical Algorithm for Type Equality

Despite its undecidability, we have designed a coinductive algorithm for soundly approximat-

ing type equality. Similar to Gay and Hole’s algorithm [66], it proceeds by a�empting to con-

struct a bisimulation. Due to the undecidability of the problem, our algorithm can terminate in

three di�erent states: (1) we have succeeded in constructing a bisimulation, (2) we have found

a counterexample to type equality by �nding a place where the types may exhibit di�erent

behavior, or (3) we have terminated the search without a de�nitive answer. From the point of

view of type-checking, both (2) and (3) are interpreted as a failure to type-check (but there is a

recourse; see subsection 3.4.2). Our algorithm is expressed as a set of inference rules where the

execution of the algorithm corresponds to the bo�om-up construction of a deduction. �e al-

gorithm is deterministic (no backtracking) and the implementation is quite e�cient in practice

(see Section 3.8).

One of the basic operations in Gay and Hole’s algorithm is loop detection, that is, we have to

determine that we have already added an equation A ≡ B to the bisimulation we are con-

structing. Since we must treat open types, that is, types with free arithmetic variables subject

to some constraints, determining if we have considered an equation already becomes a di�cult

operation. To that purpose we make an initial pass over the given type and introduce fresh

internal names abstracted over their free type variables and known constraints. In the result-

ing signature de�ned type variables and type constructor alternates and we can perform loop

detection entirely on type de�nitions (whether internal or external).

Example 3.5 (�eues, v3). A�er creating internal names %i for the type of queue we obtain the
following signature (here parametric in A).

queueA[n] = N{ins : %0[n],del : %1[n]}
%0[n] = A( queueA[n+ 1] %3 = 1

%1[n] = ⊕{none : %2[n], some : %4[n]} %4[n] = ?{n > 0}.%5[n]

%2[n] = ?{n = 0}.%3 %5[n | n > 0] = A⊗ queueA[n− 1]

Based on the invariants established by internal names, the algorithm only needs to compare

two type variables or two structural types. �e rules are shown in Figure 3.1. �e judgment has

the form V ; C ; Γ ` A ≡ B where V contains the free arithmetic variables in the constraints

C and the types A and B, and Γ is a collection of closures 〈V ′ ; C′ ; V ′1 [e1
′] ≡ V ′2 [e2

′]〉. If a

derivation can be constructed, all ground instances of all closures are included in the resulting

bisimulation (see the proof of �eorem 3.10). A ground instance V ′1 [e1
′[σ′]] ≡ V ′2 [e2

′[σ′]] is

given by a substitution σ′ over variables in V ′ such that � C′[σ′].

�e rules for type constructors simply compare the components. If the type constructors (or

the label sets in the ⊕ and N rules) do not match, then type equality fails (having constructed

a counterexample to bisimulation) unless the⊥ rule applies. �is rules handles the case where

the constraints are contradictory and no communication is possible.
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V ; C ; Γ ` A` ≡ B` (∀` ∈ L)

V ; C ; Γ ` ⊕{` : A`}`∈L ≡ ⊕{` : B`}`∈L
⊕

V ; C ; Γ ` A` ≡ B` (∀` ∈ L)

V ; C ; Γ ` N{` : A`}`∈L ≡ N{` : B`}`∈L
N

V ; C ; Γ ` A1 ≡ B1 V ; C ; Γ ` A2 ≡ B2

V ; C ; Γ ` A1 ⊗A2 ≡ B1 ⊗B2
⊗

V ; C ; Γ ` A1 ≡ B1 V ; C ; Γ ` A2 ≡ B2

V ; C ; Γ ` A1 ( A2 ≡ B1 ( B2
( V ; C ; Γ ` 1 ≡ 1

1

V ; C � φ↔ ψ V ; C ∧ φ ; Γ ` A ≡ B
V ; C ; Γ ` ?{φ}. A ≡ ?{ψ}. B ?

V ; C � φ↔ ψ V ; C ∧ φ ; Γ ` A ≡ B
V ; C ; Γ ` !{φ}. A ≡ !{ψ}. B !

V, k ; C ; Γ ` A[k/m] ≡ B[k/n]

V ; C ; Γ ` ∃m.A ≡ ∃n.B ∃k

V, k ; C ; Γ ` A[k/m] ≡ B[k/n]

V ; C ; Γ ` ∀m.A ≡ ∀n.B ∀k
V ; C � ⊥

V ; C ; Γ ` A ≡ B ⊥

V ; C � e1 = e′1 ∧ . . . ∧ en = e′n
V ; C ; Γ ` V [e] ≡ V [e′]

refl

V1[v1 | φ1] = A ∈ Σ V2[v2 | φ2] = B ∈ Σ
γ = 〈V ; C ; V1[e1] ≡ V2[e2]〉

V ; C ; Γ, γ ` A[e1/v1] ≡ B[e2/v2]

V ; C ; Γ ` V1[e1] ≡ V2[e2]
expd

〈V ′ ; C′ ; V1[e1
′] ≡ V2[e2

′]〉 ∈ Γ V ; C � ∃V ′. C′ ∧ e1
′ = e1 ∧ e2

′ = e2

V ; C ; Γ ` V1[e1] ≡ V2[e2]
def

Figure 3.1: Algorithmic Rules for Type Equality

�e rule of re�exivity is needed explicitly here (but not in the version of Gay and Hole) because

due to the incompleteness of the algorithm we may otherwise fail to recognize type variables

with equal index expressions as equal.

Now we come to the key rules, expd and def . In the expd rule we expand the de�nitions of

V1[e1] and V2[e2], and we also add the closure 〈V ; C ; V1[e1] ≡ V2[e2]〉 to Γ. Since the

equality of V1[e1] and V2[e2] must hold for all its ground instances, the extension of Γ with the

corresponding closure remembers exactly that.

In the def rule we close o� the derivation successfully if all instances of the equation V1[e1] ≡
V2[e2] are already instances of a closure in Γ. �is is checked by the entailment in the second

premise, V ; C � ∃V ′. C′ ∧ E1 = e1 ∧ E2 = e2. �is entailment is veri�ed as a closed

∀∃ arithmetic formula, even if the original constraints C and C′ do not contain any quanti�ers.

While for Presburger arithmetic we can decide such a proposition using quanti�er elimination,

other constraint domains may not permit such a decision procedure.
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�e algorithm so far is sound, but potentially nonterminating because when encountering

variable/variable equations, we can use the expd rule inde�nitely. To ensure termination, we

restrict the expd rule to the case where no formula with the same type variables V1 and V2

is already present in Γ. �is also removes the overlap between these two rules. Note that if

type variables have no parameters, our algorithm specializes to Gay and Hole’s (with the small

optimizations of re�exivity and internal naming), which means our algorithm is sound and

complete on unindexed types.

Example 3.6 (Integer Counter). An integer counter with increment (inc), decrement (dec) and
sign-test (sgn) operations provides type intctr[x, y], where the current value of the counter is x−y
for natural numbers x and y.

intctr[x, y] = N{inc : intctr[x+ 1, y],

dec : intctr[x, y + 1],

sgn : ⊕{neg : ?{x < y}. intctr[x, y],

zer : ?{x = y}. intctr[x, y],

pos : ?{x > y}. intctr[x, y]}}

Under this de�nition our algorithm veri�es, for example, that an increment followed by a decre-
ment does not change the counter value. �at is,

x, y ; > ; · ` intctr[x, y] ≡ intctr[x+ 1, y + 1]

where we have elided the assumptions x, y ≥ 0. When applying expd, we assume that γ =

〈x′, y′ ; > ; intctr[x′, y′] ≡ intctr[x′ + 1, y′ + 1]〉. �en, for example, in the �rst branch (for
inc) we conclude x, y ; > ; γ ` intctr[x+ 1, y] ≡ intcr[x+ 2, y + 1] using the def rule and the
entailment x, y ; > � ∃x′.∃y′. x′ = x + 1 ∧ y′ = y ∧ x′ + 1 = x + 2 ∧ y′ + 1 = y + 1. �e
other branches are similar.

3.4.1 Soundness of the Type Equality Algorithm

We prove that the type equality algorithm is sound with respect to the de�nition of type equal-

ity. �e soundness is proved by constructing a type bisimulation from a derivation of the al-

gorithmic type equality judgment. We sketch the key points of the proofs.

�e �rst gap we have to bridge is that the type bisimulation is de�ned only for closed types,

because observations can only arise from communication along channels which, at runtime,

will be of closed type. So, if we can derive V ; C ; · ` A ≡ B then we should interpret this as

stating that for all ground substitutions σ over V such that � C[σ] we have A[σ] ≡ B[σ].

De�nition 3.7. Given a relation R on valid ground types and two types A and B such that

V ; C ` A,B valid, we write ∀V. C ⇒ A ≡R B if for all ground substitutions σ over V such

that � C[σ] we have (A[σ], B[σ]) ∈ R.
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Furthermore, we write ∀V. C ⇒ A ≡ B if there exists a type bisimulationR such that ∀V. C ⇒
A ≡R B.

Note that if V ; C � ⊥, then ∀V. C ⇒ A ≡ B is vacuously true, since there does not exist

a ground substitution σ such that � C[σ]. A key lemma is the following, which is needed to

show the soundness of the def rule.

Lemma 3.8. Suppose ∀V ′.C′ ⇒ V1[e1
′] ≡R V2[e2

′] holds. Further assume that V ; C � ∃V ′.C′∧
e1
′ = e1 ∧ e2

′ = e2 for some V, C, e1, e2. �en, ∀V.C ⇒ V1[e1] ≡R V2[e2] holds.

Proof. To prove ∀V. C ⇒ V1[e1] ≡R V2[e2], it is su�cient to show that V1[e1[σ]] ≡R V2[e2[σ]]

for any substitution σ over V such that � C[σ]. Applying this substitution to V ; C � ∃V ′. C′ ∧
e1
′ = e1∧e2

′ = e2, we infer ∃V ′. C′∧e1
′ = e1[σ]∧e2

′ = e2[σ] since� C[σ]. �us, there existsσ′

over V ′ such that � C′[σ′] holds, and e1
′[σ′] = e1[σ] and e2

′[σ′] = e2[σ]. And since ∀V ′. C′ ⇒
V1[e1

′] ≡R V2[e2
′], we deduce that for any ground substitution (including the current one)

σ′ over V ′, V1[e1
′[σ′]] ≡R V2[e2

′[σ′]] holds. �is implies that V1[e1[σ]] ≡R V2[e2[σ]] since

e1
′[σ′] = e1[σ] and e2

′[σ′] = e2[σ].

We construct the bisimulation from a derivation of V ; C ; Γ ` A ≡ B by (i) collecting

the conclusions of all the sequents, excepting only the def rule, and (ii) forming all ground

instances from them.

De�nition 3.9. Given a derivation D of V ; C ; Γ ` A ≡ B, we de�ne the set S(D) of

closures. For each sequent V ′ ; C′ ; Γ′ ` A′ ≡ B′ (except the conclusion of the def rule) we

include the closure 〈V ′ ; C′ ; A′ ≡ B′〉 in S(D).

�eorem 3.10. If V ; C ; · ` A ≡ B, then ∀V. C ⇒ A ≡ B.

Proof. We are given a derivation D0 of V0 ; C0 ; · ` A0 ≡ B0. Construct S(D0) and de�ne a

relationR on closed valid types as follows:

R = {(A[σ], B[σ]) | 〈V ; C ; A ≡ B〉 ∈ S(D0) and σ over V with � C[σ]}

We �rst prove that R is a type bisimulation. �en our theorem follows since the closure

〈V0 ; C0 ; A0 ≡ B0〉 ∈ S(D0).

Consider (A[σ], B[σ]) ∈ R where 〈V ; C ; A ≡ B〉 ∈ S(D0) for some σ over V and � C[σ].

First, consider the case where V ; C � ⊥. Under such a constraint, V ; C ; · ` A ≡ B holds

true due to the ⊥ rule. Furthermore, ∀V. C ⇒ A ≡ B holds vacuously, and the algorithm

is sound. For the remaining cases, we case analyze on the structure of A[σ] and assume that

there exists a ground substitution σ such that � C[σ].

Consider the case where A = ⊕{` : A`}`∈L. Since A and B are both structural, B = ⊕{` :

B`}`∈L. Since 〈V ; C ; A ≡ B〉 ∈ S(D0), by de�nition of S(D0), we get 〈V ; C ; A` ≡
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B`〉 ∈ S(D0) for all ` ∈ L. By the de�nition of R, we get that (A`[σ], B`[σ]) ∈ R. Also,

A[σ] = ⊕{` : A`[σ]}`∈L and similarly, B[σ] = ⊕{` : B`[σ]}`∈L. Hence, R satis�es the

appropriate closure condition for a type bisimulation.

Next, consider the case whereA = ?{φ}. A′. SinceA andB are both structural,B = ?{ψ}. B′.
Since 〈V ; C ; A ≡ B〉 ∈ S(D0), we obtain V ; C � φ ↔ ψ and 〈V ; C ∧ φ ; A′ ≡ B′〉 ∈
S(D0). �us, for any substitution σ such that � C[σ] ∧ φ[σ], we get that (A′[σ], B′[σ]) ∈ R
with A[σ] = ?{φ[σ]}. A′[σ] and B[σ] = ?{ψ[σ]}. B′[σ]. Since � φ[σ] and and V ; C � φ↔ ψ

we also obtain � ψ[σ] and the closure condition is satis�ed.

Next, consider the case where A = ∃m.A′. Since A and B are both structural, B = ∃n.B′.
Since 〈V ; C ; A ≡ B〉 ∈ S(D0), we get that 〈V, k ; C ; A′[k/m] ≡ B′[k/n]〉 ∈ S(D0). Since

k was chosen fresh and does not occur in C, we obtain that for any i ∈ N we have � C[σ, i/k]

and therefore (A′[σ, i/k], B′[σ, i/k]) ∈ R for all i ∈ N and the closure condition is satis�ed.

�e only case where a conclusion is not added to S(D0) is the def rule. In this case, adding

(∀V. C ⇒ V1[e1] ≡ V2[e2]) is redundant: �eorem 3.8 states that V1[e1[σ]] ≡R V2[e2[σ]] which

implies (V1[e1[σ]], V2[e2[σ]]) ∈ R.

3.4.2 Type Equality Declarations

Even though the type equality algorithm in Section 3.4 is incomplete, we have yet to �nd a

natural example where it fails a�er we added re�exivity as a general rule. But since we cannot

see a simple reason why this should be so, we made our type equality algorithm extensible by

the programmer via an additional form of declaration

∀V. C ⇒ V1[e1] ≡ V2[e2]

in signatures. Let ΓΣ denote the set of all such declarations. �en we check

V ; C ; ΓΣ ` V1[e1] ≡ V2[e2]

for each such declaration, seeding the construction of a bisimulation with all the given equa-

tions. �en, when type-checking has to decide the equality of two types, it starts not with the

empty context Γ but with ΓΣ. Our soundness proof can easily accommodate this more general

algorithm.

3.5 Formal Description of the Rast Language

In this section, we give a formal description of the Rast language. We have already seen the

rules for statics and dynamics for the basic session types in Chapter 2. Hence, this section will

primarily present the rules for the re�nement layer. We have already described the grammar

for types in Section 3.2. We now present the grammar for process expressions in Rast.
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Type Cont. Process Term Cont. Description
c : ⊕{` : A`}`∈L c : Ak c.k ; P P send label k along c

case c (`⇒ Q`)`∈L Qk branch on received label along c

c : N{` : A`}`∈L c : Ak case c (`⇒ P`)`∈L Pk branch on received label along c
c.k ; Q Q send label k along c

c : A⊗B c : B send c w ; P P send channel w : A along c
y ← recv c ; Q Q[w/y] receive channel w : A along c

c : A( B c : B y ← recv c ; P P [w/y] receive channel w : A along c
send c w ; Q Q send channel w : A along c

c : 1 — close c — send close along c
wait c ; Q Q receive close along c

Table 3.1: Basic session types with operational description

Procs P,Q ::= x.k ; P | case x (l⇒ P )l∈L

| send x y ; P | y ← recv x ; P

| close x | wait x ; P

| x↔ y | x← f y ; P

| assert x {φ} ; P | assume x {φ} ; P

| send x {e} ; P | {n} ← recv x ; P

�e typing judgment has the form of a sequent

V ; C ; ∆ `Σ P :: (x : A)

where V are index variables n, C are constraints over these variables expressed as a single

proposition, ∆ are the linear antecedents xi : Ai, P is a process expression, and x : A is the

linear succedent. We propose and maintain that the xi’s and x are all distinct, and that all

free index variables in C, ∆, P , and A are contained among V . Finally, Σ is a �xed signature

containing type and process de�nitions. Because it is �xed, we elide it from the presentation

of the rules. In addition we write V ; C � φ for semantic entailment (proving φ assuming C) in

the constraint domain where V contains all arithmetic variables in C and φ. Table 3.1 reviews

the basic session types their associated process terms, their continuation (both in types and

terms) and operational description.

We formalize the operational semantics as a system of multiset rewriting rules [45]. We intro-

duce semantic objects proc(c, P ) and msg(c,M) which mean that process P or message M

provide along channel c. A process con�guration is a multiset of such objects, where any two

channels provided are distinct (formally described in Section 3.4.1).

Process De�nitions Process de�nitions have the form ∆ ` f [n] = P :: (x : A) where f is

the name of the process and P its de�nition. In addition, n is a sequence of arithmetic variables
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that ∆, P and A can refer to. All de�nitions are collected in a �xed global signature Σ. For a

well-formed signature, we require that n ; > ; ∆ ` P :: (x : A) for every de�nition, thereby

allowing de�nitions to be mutually recursive. A new instance of a de�ned process f can be

spawned with the expression x← f [e] y ; Q where y is a sequence of channels matching the

antecedents ∆ and [e] is a sequence of arithmetic expression matching the variables [n]. �e

newly spawned process will use all variables in y and provide x to the continuation Q.

y′ : B ` f [n] = Pf :: (x′ : A) ∈ Σ

∆′ = (y : B)[e/n] V ; C ; ∆, (x : A[e/n]) ` Q :: (z : C)

V ; C ; ∆,∆′ ` (x← f [e] y ; Q) :: (z : C)
def

�e declaration of f is looked up in the signature Σ (�rst premise), and e is substituted for n

while matching the types in ∆′ and y (second premise). Similarly, the freshly created channel

x has type A from the signature with e substituted for n. �e corresponding semantics rule

also performs a similar substitution (a fresh).

(defC) : proc(c, x← f [e] d ; Q) 7→ proc(a, Pf [a/x, d/y′, e/n]), proc(c,Q[a/x])

where y′ : B ` f [n] = Pf :: (x′ : A) ∈ Σ.

Sometimes a process invocation is a tail call, wri�en without a continuation as x ← f [e] y.

�is is a short-hand for x′ ← f [e] y ; x↔ x′ for a fresh variable x′, that is, we create a fresh

channel and immediately identify it with x.

Type De�nitions As our queue example already showed, session types can be de�ned re-

cursively, departing from a strict Curry-Howard interpretation of linear logic, analogous to

the way pure ML or Haskell depart from a pure interpretation of intuitionistic logic. For this

purpose we allow (possibly mutually recursive) type de�nitions V [n | φ] = A in the signature

Σ. Here, n denotes a sequence of arithmetic variables. Again, for a well-formed signature,

we require A to be contractive [66] meaning A should not itself be a type name. Our type

de�nitions are equirecursive so we can silently replace type names V [e] indexed with arith-

metic re�nements by A[e/n] during type checking, and no explicit rules for recursive types

are needed.

All types in a signature must be valid, formally denoted with the judgment V ; C ` A valid,

which requires that all free arithmetic variables of C and A are contained in V , and that for

each arithmetic expression e in A we can prove V ′ ; C′ ` e : nat for the constraints C′ known

at the occurrence of e (implicitly proving that e ≥ 0).

3.5.1 �e Re�nement Layer

We describe quanti�ers (∃n.A, ∀n.A) and constraints (?{φ}. A, !{φ}. A) [52]. An overview of

the types, process expressions, and their operational meaning can be found in Table 3.2.
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Type Cont. Process Term Cont. Description
c : ∃n.A c : A[i/n] send c {e} ; P P provider sends value i of e along c

{n} ← recv c ; Q Q[i/n] client receives number i along c

c : ∀n.A c : A[i/n] {n} ← recv c ; P P [i/n] provider receives number i along c
send c {e} ; Q Q client sends value i of e along c

c : ?{φ}. A c : A assert c {φ} ; P P provider asserts φ on channel c
assume c {φ} ; Q Q client assumes φ on c

c : !{φ}. A c : A assume c {φ} ; P P provider assumes φ on channel c
assert c {φ} ; Q Q client asserts φ on c

Table 3.2: Re�ned session types with operational description

�anti�cation �e provider of (c : ∃n.A) should send a witness i along channel c and then

continue asA[i/n]. �e witness is speci�ed by an arithmetic expression ewhich, since it must

be closed at runtime, can be evaluated to a number i (following standard evaluation rules of

arithmetic). From the typing perspective, we just need to check that the expression e denotes a

natural number, using only the permi�ed variables in V . �is is represented with the auxiliary

judgment V ; C ` e : nat (implicitly proving that e ≥ 0 under constraint C).

V ; C ` e : nat V ; C ; ∆ ` P :: (x : A[e/n])

V ; C ; ∆ ` send x {e} ; P :: (x : ∃n.A)
∃R

V, n ; C ; ∆, (x : A) ` Q :: (z : C) (n fresh)

V ; C ; ∆, (x : ∃n.A) ` {n} ← recv x ; Q :: (z : C)
∃L

Statically, the client adds n to V to ensure that Q and A are closed w.r.t. V . Operationally, the

provider sends the arithmetic expression with the continuation channel as a message that the

client receives and appropriately substitutes.

(∃S) : proc(c, send c {e} ; P ) 7→ proc(c′, P [c′/c]), msg(c, send c {e} ; c↔ c′)

(∃C) : msg(c, send c {e} ; c↔ c′), proc(d, {n} ← recv c ; Q) 7→ proc(d,Q[e/n][c′/c])

�e dual type ∀n.A reverses the role of the provider and client. �e client sends (the value of)

an arithmetic expression e which the provider receives and binds to n.

V, n ; C ; ∆ ` Pn :: (x : A)

V ; C ; ∆ ` {n} ← recv x ; Pn :: (x : ∀n.A)
∀R

V ; C ` e : nat V ; ∆, (x : A[e/n]) ` Q :: (z : C)

V ; C ; ∆, (x : ∀n.A) ` send x {e} ; Q :: (z : C)
∀L

(∀S) : proc(d, send c {e} ; P ) 7→ msg(c′, send c {e} ; c′ ↔ c), proc(d, [c′/c]P )

(∀C) : proc(d, {n} ← recv c ; Q), msg(c′, send c {e} ; c′ ↔ c) 7→ proc(d, [e/n][c′/c]Q)
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Constraints Re�ned session types also allow constraints over index variables. As we have

already seen in the examples, these critically govern permissible messages. From the message-

passing perspective, the provider of (c : ?{φ}. A) should send a proof of φ along c and the

client should receive such a proof. However, since the index domain is decidable and future

computation cannot depend on the form of the proof (what is known in type theory as proof
irrelevance) such messages are not actually exchanged. Instead, it is the provider’s responsibil-

ity to ensure that φ holds, while the client is permi�ed to assume that φ is true. �erefore, and

in an analogy with imperative languages, we write assert c {φ} ; P for a process that asserts
φ for channel c and continues with P , while assume c {φ} ; Q assumes φ and continues with

Q.

�us, the typing rules for this new type constructor are

V ; C � φ V ; C ; ∆ ` P :: (x : A)

V ; C ; ∆ ` assert x {φ} ; P :: (x : ?{φ}. A)
?R

V ; C ∧ φ ; ∆, (x : A) ` Q :: (z : C)

V ; C ; ∆, (x : ?{φ}. A) ` assume x {φ} ; Q :: (z : C)
?L

Notice how the provider must verify the truth of φ given the currently known constraints C
(the premise V ; C � φ), while the client assumes φ by adding it to C.

Operationally, the provider creates a message containing the constraint that is received by the

client (c′ fresh).

(?S) : proc(c, assert c {φ} ; P ) 7→ proc(c′, [c′/c]P ), msg(c, assert c {φ} ; c↔ c′)

(?C) : msg(c, assert c {φ} ; c↔ c′), proc(d, assume c {φ′} ; Q) 7→ proc(d, [c′/c]Q)

In well-typed con�gurations (which arise from executing well-typed processes) the constraint

φ in these rules will always be closed and true so there is no need to check this explicitly.

�e dual operator !{φ}. A reverses the role of provider and client. �e provider of x : !{φ}. A
may assume the truth of φ, while the client must verify it. �e dual rules are

V ; C ∧ φ ; ∆ ` P :: (x : A)

V ; C ; ∆ ` assume x {φ} ; P :: (x : !{φ}. A)
!R

V ; C � φ V ; C ; ∆, (x : A) ` Q :: (z : C)

V ; C ; ∆, (x : !{φ}. A) ` assert x {φ} ; Q :: (z : C)
!L

�e remaining issue is how to type-check a branch that is impossible due to unsatis�able con-

straints. For example, if a client sends a del request to a provider along c : queueA[0], the type

then becomes

c : ⊕{none : ?{0=0}.1, some : ?{0>0}. A⊗ queueA[0−1]}
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�e client would have to branch on the label received and then assume the constraint asserted

by the provider

case c ( none⇒ assume c {0 = 0} ; P1

| some⇒ assume c {0 > 0} ; P2)

but what could we write for P2 in the some branch? Intuitively, computation should never

get there because the provider can not assert 0 > 0. Formally, we use the process expression

‘impossible’ to indicate that computation can never reach this spot:

case c ( none⇒ assume c {0 = 0} ; P1

| some⇒ assume c {0 > 0} ; impossible)

In implicit syntax (see Section 3.7) we could omit the some branch altogether and it would be

reconstructed in the form shown above. Abstracting away from this example, the typing rule

for impossibility simply checks that the constraints are indeed unsatis�able

V ; C � ⊥
V ; C ; ∆ ` impossible :: (x : A)

unsat

�ere is no operational rule for this scenario since in well-typed con�gurations the process

expression ‘impossible’ is dead code and can never be reached.

3.6 Type Safety

�e main theorems that establish the deep connection between our re�ned type system and op-

erational semantics are the usual type preservation and progress, also referred as session �delity
and deadlock freedom. At runtime, a program is represented using a set of semantic objects, i.e.

processes and messages together de�ned as a con�guration.

S ::= · | S,S ′ | proc(c, P ) | msg(c,M)

We say that proc(c, P ) (or msg(c,M)) provide channel c. We stipulate that no two distinct

semantic objects provide the same channel.

Type Preservation A key question then is how to type con�gurations? We de�ne a well-

typed con�guration using the judgment ∆1 Σ S :: ∆2 denoting that con�guration S uses

channels ∆1 and provides channels ∆2. �e rules for typing a con�guration are de�ned in

Figure 3.2. A con�guration is always typed w.r.t. a well-formed signature Σ, requiring that all

(i) all type de�nitions are valid and contractive, and (ii) all process de�nitions are well-typed.

Since the signature Σ is �xed, we elide it from the presentation.
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∆  (·) :: ∆
emp ∆1  S1 :: ∆2 ∆2  S2 :: ∆3

∆1  (S1,S2) :: ∆3

comp

· ; > ; ∆ ` P :: (x : A)

∆  proc(x, P ) :: (x : A)
proc

· ; > ; ∆ `M :: (x : A)

∆  msg(x,M) :: (x : A)
msg

Figure 3.2: Typing rules for a con�guration

�e rule emp de�nes that an empty con�guration provides all the channels ∆ that it uses. �e

comp rule composes two con�gurations S1 and S2; S1 provides channels ∆2 while S2 uses

channels ∆2. �e rule proc creates a con�guration out of a single process. Con�gurations

only exist at runtime where all arithmetic expressions in process terms are closed, i.e. they

do not refer to any free variables. Hence, we use V = · and C = > when typing process P

(premise in proc rule). Similar to proc, the rule msg creates a con�guration out of a single

message (where a message is also represented as a process).

Global Progress To state progress, we need the notion of a poised process [116]. A process

proc(c, P ) is poised if it is trying to receive a message on c. Dually, a message msg(c,M) is

poised if it is sending along c. A con�guration is poised if every message or process in the con-

�guration is poised. Conceptually, this means that the con�guration is trying to communicate

externally along one of the channels it uses or provides.

�eorem 3.11 (Type Safety). For a well-typed con�guration ∆1 Σ S :: ∆2:

(i) (Preservation) If S 7→ S ′, then ∆1 Σ S ′ :: ∆2

(ii) (Progress) Either S is poised, or S 7→ S ′.

Proof. �e proof of preservation proceeds by case analysis on the rules of operational seman-

tics, applying inversion to the given typing derivation of S , and then assembling a new deriva-

tion of S ′. Progress is proved by induction on the right-to-le� typing of S so that either S is

empty (and therefore poised) or S = (D, proc(c, P )) or S = (D,msg(c,M)). By induction

hypothesis, D can either take a step (and then so can S), or D is poised. In the la�er case, we

analyze the cases for P and M , applying multiple steps of inversion to show that in each case

either S can take a step or is poised.

3.7 Constraint Reconstruction

�e process expressions introduced so far in the language follow simple syntax-directed typing

rules. �is means they are immediately amenable to be interpreted as an algorithm for type-

checking, calling upon a decision procedure where arithmetic entailments and type equalities
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V ; C � φ V ; C ; ∆ i` P :: (x : A)

V ; C ; ∆ i` P :: (x : ?{φ}. A)
?R

V ; C ∧ φ ; ∆, (x : A) i` Q :: (z : C)

V ; C ; ∆, (x : ?{φ}. A) i` Q :: (z : C)
?L

V ; C ∧ φ ; ∆ i` P :: (x : A)

V ; C ; ∆ i` P :: (x : !{φ}. A)
!R

V ; C � φ V ; C ; ∆, (x : A) i` Q :: (z : C)

V ; C ; ∆, (x : !{φ}. A) i` Q :: (z : C)
!L

Figure 3.3: Implicit Typing Rules

need to be veri�ed. However, this requires the programmer to write a signi�cant number of

explicit process constructs pertaining to the re�nement layer in their code. Relatedly, this

hinders reuse: we are unable to provide multiple types to the same program so that it can be

used in di�erent contexts.

�is section introduces an implicit type system in which the source program never contains the

assume and assert expressions, i.e. constructs corresponding to proof constraints. Moreover,

impossible branches may be omi�ed from case expressions. �e missing branches and other

constructs are restored by a type-directed process of reconstruction.

Interestingly, the nature of Presburger arithmetic makes full reconstruction impossible. For

example, the proposition ∀n.∃k. (n = 2k ∨ n = 2k + 1) is true but the witness for k as

a Skolem function of n (namely bn/2c) cannot be expressed in Presburger arithmetic. Since

witnesses are critical for establishing correctness of programs, we require that type quanti�ers

∀n.A and ∃n.A have explicit witnesses in processes and we do not reconstruct them.

In the �rst phase, a case expression with a missing branch for label ` is transformed into a

branch ` ⇒ impossible so that type checking later veri�es that the omi�ed branch is indeed

impossible. �en assumes and asserts are inserted according to a reconstruction algorithm

described in this section.

Following branch reconstruction, the resulting process expression is checked with the implicit

typing judgment V ; C ; ∆ i` P :: (x : A). �e implicit system di�ers from the explicit

system in only one way: for the implicit constructs related to constraints (!R, !L, ?R, ?L), the

process expression does not change on application of these rules. Selected typing rules are

described in Figure 3.3 and illustrate that expressions P and Q are unchanged in the premise

and conclusion. For the remaining rules pertaining to base session types and quanti�ers (∃R,

∃L, ∀R, ∀L), no reconstruction is involved and the implicit rules exactly match the explicit

rules.

�e implicit rules are sound and complete with respect to the explicit system, since from an

implicit typing derivation we can read o� the corresponding explicit process expression and

vice versa. �e rules are also manifestly decidable since the types in the premise are smaller

than the conclusion for all the rules presented.

However, the implicit type system is highly nondeterministic. Since the process expressions

do not change on the application of implicit rules in Figure 3.3, they can be applied in many



Re�nement Session Types 36

di�erent orders. And each valid order corresponds to a di�erent explicit program, intuitively

changing the order in which constraints are sent and received. �us, an implicit source pro-

gram may correspond to many di�erent explicit programs. �e necessary backtracking would

greatly complicate error messages and would also be exponential and severely ine�cient.

To solve this problem, we introduce a novel forcing calculus which enforces an order among

these implicit constructs. �e core idea of this calculus is to follow the structure of each type,

but within that assume should be inserted as early as possible, and assert should be inserted as
late as possible. �is reasoning is sound since the constraints obey a monotonicity property: if a

constraint is true at a program point, it will always be true later in the program. �us, eagerly

assuming and lazily asserting constraints is sound: if a constraint can be proved now, it can

be proved later. It is also complete under the mild assumption that the types can be polarized

(explained below). Logically, the !R, ?L rules are invertible, and are applied eagerly while their

dual rules are applied lazily.

�is strategy is formally realized in the forcing calculus using the judgment V ; C ; ∆ ; Ω `
P :: (x : A). �e context is split into two: the linear context ∆ contains stable propositions on

which the invertible le� rules have been applied, while the ordered context Ω stores channels

on which invertible rules can possibly still be applied to. First, we assign polarities to the

type operators with implicit expressions, a notion borrowed from focusing [20] with a similar

function here. Type de�nitions are unfolded in order to determine their polarity, which is

always possible since type de�nitions are contractive. �e types that involve communication

are called structural and represented by S.

A+ ::= S | ?{φ}. A+

A− ::= S | !{φ}. A−

A ::= A+ | A−

S ::= ⊕{` : A}`∈L | N{` : A}`∈L | A⊗A | 1 | A( A | ∃n.A | ∀n.A

Not all types can be polarized in this manner, particularly types containing alternating proof

constraints e.g., !{φ}. ?{ψ}. A. When checking the validity of types before performing re-

construction we reject such types with alternating polarities. We also require that all process

declarations contain only structural types at the top-level. Both these restrictions turn out to

be mild in practice and can be resolved by introducing additional communications.

�us, the ? operator is positive, while ! is negative. �e structural types, denoted by S are

considered neutral. In the forcing calculus, the invertible rules are applied �rst.

V ; C ∧ φ ; ∆− ; Ω ` P :: (x : A−)

V ; C ; ∆− ; Ω ` P :: (x : !{φ}. A−)
!R

V ; C ∧ φ ; ∆− ; Ω · (x : A+) ` P :: (z : C+)

V ; C ; ∆− ; Ω · (x : ?{φ}. A+) ` P :: (z : C+)
?L
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If a negative type is encountered in the ordered context, it is considered stable (invertible rules

applied) and moved to ∆−.

V ; C ; ∆−, (x : A−) ; Ω ` P :: (z : C+)

V ; C ; ∆− ; Ω · (x : A−) ` P :: (z : C+)
move

�e ordered context Ω imposes an order on the channels on which these invertible rules are

applied.

Once all the invertible rules are applied, we reach a stable sequent of the form V ; C ; ∆− ; · `
P :: (x : A+), i.e., the ordered context is empty and the provided type A+

is positive. A stable

sequent implies that all constraints have been received. We send a constraint lazily, i.e., just

before communicating on that channel. We realize this by forcing the channel just before

communicating on it. As an example, while sending (or receiving) a label on channel x, we

force it e�ectively sending any pending constraints.

V ; C ; ∆− ; · ` x.k ; P :: [x : A+]

V ; C ; ∆− ; · ` x.k ; P :: (x : A+)
⊕FR

V ; C ; ∆, [x : A−] ; · ` case x (`⇒ Q`)`∈L :: (z : C+)

V ; C ; ∆, (x : A−) ; · ` case x (`⇒ Q`)`∈L :: (z : C+)
⊕FL

�e square brackets [·] indicates that the channel is forced, indicating that a communication is

about to happen on it. If there are assert constructs pending on the forced channel, they are

applied now.

V ; C � φ V ; C ; ∆− ; · ` P :: [x : A+]

V ; C ; ∆− ; · ` P :: [x : ?{φ}. A+]
?R

V ; C � φ V ; C ; ∆−, [x : A−] ; · ` P :: (z : C+)

V ; C ; ∆−, [x : !{φ}. A−] ; · ` P :: (z : C+)
!L

Finally, if a forced channel has a structural type, we apply the corresponding structural rule

and lose the forcing. Again, as an example, we consider the internal choice operator.

(k ∈ L) V ; C ; ∆− ; · ` P :: (x : Ak)

V ; C ; ∆− ; · ` (x.k ; P ) :: [x : ⊕{` : A`}`∈L]
⊕Rk

(∀` ∈ L) V ; C ; ∆ ; (x : A`) ` Q` :: (z : C+)

V ; C ; ∆, [x:⊕ {` : A`}] ; · ` case x (`⇒ Q`)::(z:C
+)
⊕L

In either case, applying the structural rule creates a possibly unstable sequent, thereby restart-

ing the inversion phase.

Remarkably, the forcing calculus is sound and complete with respect to the implicit type system,

assuming types can be polarized. Since every rule in the forcing calculus is also present in the
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implicit system, it is trivially sound. Moreover, applying assume eagerly, and assert lazily also

turns out to be complete due to the monotonicity property of constraints.

�eorem 3.12 (Soundness and Completeness). For (valid) polarized typesA and contexts ∆ we
have:

1. If V ; C ; ∆ i` P :: (x : A), then V ; C ; · ; ∆ ` P :: (x : A).

2. If V ; C ; · ; ∆ ` P :: (x : A), then V ; C ; ∆ i` P :: (x : A).

Proof. Part (1) of �eorem 3.12 corresponds to soundness. �e proof of soundness follows

by induction on the implicit typing judgment. Intuitively, soundness follows from the simple

observation that every rule in the forcing calculus is also valid in the implicit typing judgment.

�eorem 3.12 part (2) corresponds to completeness whose proof proceeds by induction on the

forcing judgment. �e proof relies on two key lemmas: (i) the rules !R and ?L are invertible,

and (ii) if V ; C ; ∆− ; Ω ` (x : A+) and V ; C � φ, then V ; C ; ∆− ; Ω ` (x : ?{φ}. A+),

i.e. asserting a constraint φ on a channel can be done at any program point where φ holds

assuming C, and thus, can be delayed.

If a process is well-typed in the implicit system, it is well-typed using the forcing calculus.

Once the typing derivation, i.e., ordering of the typing rules is �xed by the forcing calculus,

a unique explicit program is constructed by applying the explicit typing rules to the derivation.

�us, if a reconstruction is possible, the forcing calculus will �nd it! We use this calculus to

reconstruct the explicit program, which is then typechecked using the explicit typing system.

3.8 Implementation

We have implemented a prototype for Rast in Standard ML (8100 lines of code). �is implemen-

tation contains a lexer and parser (1200 lines), reconstruction engine (900 lines), an arithmetic

solver (1200 lines), a type checker (2500 lines), pre�y printer (400 lines), and an interpreter (200

lines). �e source code is well-documented and available open-source [56].

Syntax Table 3.3 describes the syntax for Rast programs. Each row presents the abstract

and concrete representation of a session type, and its corresponding providing expression. A

program contains a series of mutually recursive type and process declarations and de�nitions.

type v{n}... = A

decl f{n}... : (x1 : A1) ... (xn : An) |- (x : A)

proc x <- f {n}... x1 ... xn = P

Listing 3.1: Top-Level Declarations
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Abstract Types Concrete Types Abstract Syntax Concrete Syntax
⊕{l : A, . . .} +{l : A, ...} x.k x.k

N{l : A, . . .} &{l : A, ...} case x (`⇒ P )`∈L case x (l => P | ...)

A⊗B A * B send x w send x w

A( B A -o B y ← recv x y <- recv x

1 1 close x close x

wait x wait x

∃n.A ?n. A send x {e} send x {e}

∀n.A !n. A {n} ← recv x {n} <- recv x

?{φ}. A ?{phi}. A assert x {φ} assert x {phi}

!{φ}. A !{phi}. A assume x {φ} assume x {phi}

V [e] V{e1}{e2}...

x↔ y x <-> y

x← f x1 . . . xn x <- f x1 ... xn

Table 3.3: Abstract and Corresponding Concrete Syntax for Types and Expressions

�e �rst line is a type de�nition, where v is the type name with index variables n and A is

its de�nition. �e second line is a process declaration, where f is the process name, (x1 :

A1) . . . (xn : An) are the used channels and corresponding types, while the provided channel

is x of type A. Finally, the last line is a process de�nition for the same process f de�ned using

the process expression P . In addition, f can be parameterized by index variables n. We use a

hand-wri�en lexer and shi�-reduce parser to read an input �le and generate the corresponding

abstract syntax tree of the program. �e reason to use a hand-wri�en parser instead of a parser

generator is to anticipate the most common syntax errors that programmers make and respond

with the best possible error messages.

Validity Checking Once the program is parsed and its abstract syntax tree is extracted, we

perform a validity check on it. We check that all index re�nements, potentials, and delay op-

erators are non-negative. We also check that all index expressions are closed with respect to

the the index variables in scope, and similarly for type expressions. To simplify and improve

the e�ciency of the type equality algorithm, we also assign internal names to type subexpres-

sions [52, 58] parameterized over their free type and index variables. �ese internal names are

not visible to the programmer.

Reconstruction and Type Checking �e programmer can use a �ag in the program �le

to indicate whether they are using explicit or implicit syntax. If the syntax is explicit, the

reconstruction engine performs no program transformation. However, if the syntax is implicit,

we use the implicit type system to approximately type-check the program. Once completed,

we use the forcing calculus to insert assert and assume constructs.

�e implementation takes some care to provide constructive and precise error messages, in

particular as session types are likely to be unfamiliar. One technique is staging: �rst check
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approximate type correctness, ignoring re�nements and only if that check passes perform re-

construction and strict type checking. Another particularly helpful technique has been type
compression. Whenever the type checker expands a type V [e] with V [n] = B to B[e/n], we

record a reverse mapping back to V [e]. When printing types for error messages this mapping

is consulted, and complex types may be compressed to much simpler forms, greatly aiding

readability of error messages. �is is feasible in part because all intermediate subexpressions

have an explicit (internal) de�nition, simplifying the lookup. Finally, our implementation uses

a bi-directional [52, 58] type checking algorithm which reconstructs intermediate types for

each channel. �is helps localize the source of the error message as the program point where

reconstruction fails. We designed the abstract syntax tree to also contain the relevant source

code location information which is utilized while generating the error message.

Arithmetic Solver To determine the validity of arithmetic propositions that is used by our

re�nement layer, we use a straightforward implementation of Cooper’s decision procedure [48]

for Presburger arithmetic. We found a small number of optimizations were necessary, but the

resulting algorithm has been quite e�cient and robust.

1. We eliminate constraints of the form x = e (where x does not occur in e) by substituting

e for x in all other constraints to reduce the total number of variables.

2. We exploit that we are working over natural numbers so all solutions have a natural

lower bound, i.e., 0.

We also extend our solver to handle non-linear constraints. Since non-linear arithmetic is

undecidable, in general, we use a normalizer which collects coe�cients of each term in the

multinomial expression.

1. To check e1 = e2, we normalize e1 − e2 and check that each coe�cient of the normal

form is 0.

2. To check e1 ≥ e2, we normalize e1− e2 and check that each coe�cient is non-negative.

3. If we know that x ≥ c, we substitute y + c for x in the constraint that we are checking

with the knowledge that the fresh y ≥ 0.

4. We try to �nd a quick counterexample to validity by plugging in 0 and 1 for the index

variables.

If the constraint does not fall in the above two categories, we print the constraint and trust

that it holds. A user can then view these constraints manually and con�rm their validity. At

present, all of our examples pass without having to trust unsolvable constraints with our set

of heuristics beyond Presburger arithmetic.
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Interpreter �e current version of the interpreter pursues a sequential schedule following a

prior proposal [123]. We only execute programs that have no free type or index variables and

only one externally visible channel, namely the one provided. When the computation �nishes,

the messages that were asynchronously sent along this distinguished channel are shown, while

running processes waiting for input are displayed simply as a dash ’-’.

�e interpreter is surprisingly fast. For example, using a linear prime sieve to compute the

status (prime or composite) or all number in the range [2, 257] takes 27.172 milliseconds using

MLton during our experiments (see machine speci�cations below).

3.9 Further Examples

We present several di�erent kinds of examples from varying domains illustrating di�erent

features of the type system and algorithms. Table 3.4 describes the results: iLOC describes the

lines of source code in implicit syntax, eLOC describes the lines of code a�er reconstruction

(which inserts implicit constructs), #Defs shows the number of process de�nitions, R (ms) and

T (ms) show the reconstruction and type-checking time in milliseconds respectively. Note that

reconstruction is faster than type-checking since reconstruction does not involve solving any

arithmetic propositions. �e experiments were run on an Intel Core i5 2.7 GHz processor with

16 GB 1867 MHz DDR3 memory.

1. arithmetic: natural numbers in unary and binary representation indexed by their value

and processes implementing standard arithmetic operations.

2. integers: an integer counter represented using two indices x and y with value x− y.

3. linlam: expressions in the linear λ-calculus indexed by their size.

4. list: lists indexed by their size, and some standard operations such as append, reverse,
map, fold, etc. Also provides and implementation of stacks and queues using lists.

5. primes: the sieve of Eratosthenes to classify numbers as prime or composite.

6. segments: type seg[n] = ∀k.list[k] ( list[n + k] representing partial lists with a

constant-work append operation.

7. ternary: natural numbers and integers represented in balanced ternary form with digits

0, 1,−1, indexed by their value, and a few standard operations on them. �is example is

noteworthy since it is the only one stressing the arithmetic decision procedure.

8. theorems: processes representing valid circular [60] proofs of simple theorems such as

n(k + 1) = nk + n, n+ 0 = n, n ∗ 0 = 0, etc.

9. tries: a trie data structure to store multisets of binary numbers, with constant amortized

work insertion and deletion veri�ed with ergometric types.



Re�nement Session Types 42

Module iLOC eLOC #Defs R (ms) T (ms)
arithmetic 395 619 29 0.959 5.732

integers 90 125 8 0.488 0.659

linlam 88 112 10 0.549 1.072

list 341 642 37 3.164 4.637

primes 118 164 11 0.289 4.580

segments 48 76 8 0.183 0.225

ternary 270 406 20 0.947 140.765

theorems 79 156 13 0.182 1.095

tries 243 520 13 2.122 6.408

Total 1672 2820 149 8.883 165.173

Table 3.4: Case Studies

We highlight interesting examples from some case studies showcasing the invariants that can

be proved using arithmetic re�nements and nested polymorphism.

Linear λ-Calculus We implemented the linear λ-calculus with evaluation (weak head nor-

malization) of terms. We use higher-order abstract syntax, representing linear abstraction in

the object language by a process receiving a message corresponding to its argument.

type exp = +{ lam : exp -o exp ,

app : exp * exp }

We would like evaluation to return a value (a λ-abstraction), so we take advantage of the

structural nature of types (allowing us to reuse the label lam) to de�ne the value type.

type val = +{ lam : exp -o exp }

Rast can infer that val is a subtype of exp. We can derive constructors apply for expressions

and lambda for values (we do not need the corresponding constructor for expressions).

decl apply : (e1 : exp) (e2 : exp) |- (e : exp)

proc e <- apply e1 e2 =

e.app ; send e e1 ; e <-> e2

decl lambda : (f : exp -o exp) |- (v : val)

proc v <- lambda f = v.lam ; v <-> f

As a simple example, we follow the representation of a combinator that swaps the arguments

to a function.

(* swap = \f. \x. \y. (f y) x *)

decl swap : . |- (e : exp)

proc e <- swap =

e.lam ; f <- recv e ;

e.lam ; x <- recv e ;
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e.lam ; y <- recv e ;

fy <- apply f y ;

e <- apply fy x

Evaluation is now the following very simple process.

decl eval : (e : exp) |- (v : val)

proc v <- eval e =

case e ( lam => v <- lambda e

| app => e1 <- recv e ; % e = e2

v1 <- eval e1 ;

case v1 ( lam => send v1 e ;

v <- eval v1 ) )

If e sends a lam label, we just rebuild the expression as a value. If e sends an app label then e

represents a linear application e1 e2 and the continuation has type exp ⊗ exp. �is means we

receive a channel representing e1 and the continuation (still called e) behaves like e2. We note

this with a comment in the source. We then evaluate e1 which exposes a λ-expression along

the channel v1. We send e along v1, carrying out the reduction via communication. �e result

of this (still called v1) is evaluated to yield the �nal value v. �is program is available in the

repository at examples/linlam.rast.

We would now like to prove that the value of a linear λ-expression is smaller than or equal to

the original expression. At the same time we would like to rule out a class of so-called exotic
terms in the representation, which are possible due to the presence of recursion in the meta-

language. We achieve this by indexing the types exp and val with their size. For an application,

this is easy: the size is one more than the sum of the sizes of the subterms.

type exp{n} = +{ lam : ...

app : ?n1. ?n2. ?{n=n1+n2+1}. exp{n1} * exp{n2}}

�e size n2 + 1 of a λ-expression is one more than the size n2 of its body, but what is that in

our higher-order representation? �e body is a linear function takes an expression of size n1

and then behaves like an expression of size n1 +n2. Solving for n2 then gives use the following

type de�nitions and types for the constructor processes.

type exp{n} = +{lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1},

app : ?n1. ?n2. ?{n=n1+n2+1}. exp{n1} * exp{n2}}

type val{n} = +{ lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1} }

decl apply{n1}{n2} :

(e1 : exp{n1}) (e2 : exp{n2}) |- (e : exp{n1+n2+1})

decl lambda{n2} :

(f : !n1. exp{n1} -o exp{n1+n2}) |- (v : val{n2+1})
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�e universal quanti�cation over n1 in the type of lam is important, because a linear λ-

expression may be applied to an argument of any size. We also cannot predict the size of the

result of evaluation, so we have to use existential quanti�cation: �e value of an expression of

size n will have size k for some k ≤ n.

decl eval{n} : (e : exp{n}) |- (v : ?k. ?{k <= n}. val{k})

Because witnesses for quanti�ers are not reconstructed, the evaluation process has to send and

receive suitable sizes.

proc v <- eval{n} e =

case e ( lam => send v {n} ;

v <- lambda{n-1} e

| app => {n1} <- recv e ;

{n2} <- recv e ;

e1 <- recv e ;

v1 <- eval{n1} e1 ;

{k2} <- recv v1 ;

case v1 ( lam => send v1 {n2} ;

send v1 e ;

v2 <- eval{n2+k2 -1} v1 ;

{l} <- recv v2 ;

send v {l} ; v <-> v2))

Type-checking now veri�es that if evaluation terminates, the resulting value is smaller than

the expression (or of equal size if the expression is already a value). �e repository contains

the implementation in the �le examples/linlam-size.rast.

Trie Data Structure We now implement multisets of natural numbers (in binary form). One

of the key questions is how to maintain linearity in the design of the data structure and inter-

face. For example, should we be able to delete an element from the trie, not knowing a priori if

it is even in the trie? To avoid exceedingly complex types to account for these situations, the

process maintaining a trie o�ers an interface with two operations: insert (label ins) and delete

(label del). We index the type trie{n} with the number of elements in the trie, so inserting

an element always increases n by 1. If the element is already present, we just add 1 to its mul-

tiplicity. Deleting an element actually removes all copies of it and returns its multiplicity m.

If the element is not in the trie, we just return a multiplicity of m = 0. In either case, the trie

contains n−m elements a�erwards.

type trie{n} =

&{ins : !k. bin{k} -o trie{n+1},

del : !k. bin{k} -o ?m. ?{m <= n}. bin{m} * trie{n-m}}

�is type requires universal quanti�cation over k, (wri�en !k) which is the value of the number

inserted into or deleted from the trie on each interaction (which is arbitrary).
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�e basic idea of the implementation is that each bit in the number x : bin{k} addresses a

subtrie: if it is b0 we descend into the le� subtrie, if it is b1 we descent into the right subtrie.

If it is e we have found (or constructed) the node corresponding to x and we either increase

its multiplicity (for insert), or respond with its multiplicity and set the new multiplicity to zero

(for delete). We have two forms of processes: a leaf with zero elements and an interior node

with n0 +m+n1 elements (where n0 and n1 and the number of elements in the le� and right

subtries, and m is the multiplicity of the number corresponding to this node in the trie).

decl leaf : . |- (t : trie {0})

decl node{n0}{m}{n1} :

(l : trie{n0})(c : ctr{m})(r : trie{n1}) |- (t : trie{n0+m+n1})

�e code is somewhat repetitive, so we only show the code for inserting an element into an

interior node.

proc t <- node{n0}{m}{n1} l c r =

case t (

ins => {k} <- recv t ;

x <- recv t ;

case x ( b0 => {k’} <- recv x ;

l.ins ; send l {k’} ; send l x ;

t <- node{n0+1}{m}{n1} l c r

| b1 => {k’} <- recv x ;

r.ins ; send r {k’} ; send r x ;

t <- node{n0}{m}{n1+1} l c r

| e => wait x ;

c.inc ;

t <- node{n0}{m+1}{n1} l c r )

| del => ...)

What does type-checking verify in this case? It shows that the number of elements in the trie

increases and decreases as expected for each insert and delete operation. On the other hand, it

does not verify that the correct multiplicities are incremented or decremented, which is beyond

the reach of the current type system. �e source code is at examples/trie-work.rast.

3.10 Related Work

�e literature on session types is by now vast, so we focus our review of related work on binary
session types (rather than multiparty session types) with implementations (rather than theoret-

ical foundations). Among them, we can distinguish those that o�er a library or embedding to

a pre-existing language, and those that may be considered stand-alone language designs.
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Libraries �ere are a number of libraries for session types. Such libraries tend to have a very

di�erent �avor from Rast because they focus on practical usability in the context of a general-

purpose language. As such, the challenge usually is how to encode session types so programs

can be statically checked against them and how to achieve the expected dynamic behavior.

Among them we �nd libraries for Haskell [100, 112], Scala [130], OCaml [113], and Rust [89].

Noteworthy is the embedding of session types in ATS [147] because, unlike the others, ATS

supports arithmetic indexing similar to Rast. �e most recent library for Rust [46] is perhaps

the closest to Rast in that it extends the exact basic system of session types from Chapter 2

with shared types [25]. While some of these libraries permit limited polymorphism, none of

them support ergometric or temporal types.

Languages Designing complete languages like Rast frees the researcher from the limitations

and idiosyncrasies of the host language as they explore the design space. A relatively early

e�ort was the object-oriented language MOOL [141] which distinguishes linear and nonlinear

channels.

A di�erent style of language is SePi [24, 65] based on the π-calculus. It supports linear re-

�nements in terms of uninterpreted propositions (which may reference integers) in addition

to assert and assume primitives on them. �ey are not intended to capture internal properties

of data structures of processes; instead, they allow the programmer to express some security

properties.

�e CO2 middleware language [30, 31] supports binary timed session types. �e notion of time

here is external. As such, it does not measure work or span based on a cost model like Rast,

but speci�es interaction time windows for processes that can be enforced dynamically via

monitors.

Concurrent C0 [144] is an implementation of linear and shared session types as an extension

of C0, a small type-safe and memory-safe subset of C. It integrates the basic session types from

Chapter 2 with shared session type [25] in the context of an imperative language. Relatedly, the

Nomos language [57] integrates linear and shared ergometric session types with a functional

language to aid smart contract programming. Although Nomos does not support temporal

types and polymorphism, it embeds a linear programming solver to automatically infer the

exact potential annotations.

Links [64, 101, 102] is a language aimed at developing web applications. While based on a

di�erent foundations, it is related to SILL [73, 138] in that both integrate traditional functional

types with linear session types. As such, they can express many (nonlinear) programs that Rast

cannot, but they support neither arithmetic re�nements nor ergometric or temporal types.

Context-free session types [19, 137] generalize ordinary session types with sequential com-

position as well as permi�ing some polymorphism. �e linear sublanguage of context-free

session types can be modeled in Rast with nested polymorphism [58].
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3.11 Conclusion

�is chapter describes the Rast programming language. In particular, we focused on the con-

crete syntax, type checking and equality, and the re�nement layer [51, 52]. �e re�nements

rely on an arithmetic solver based on Cooper’s algorithm [48]. �e interpreter uses the shared

memory semantics introduced in recent work [123]. We concluded with several examples

demonstrating the e�cacy of the re�ned type system in expressing and verifying properties

about data structure sizes and values. All our examples have been veri�ed with our system,

and are available in an open-source repository [56].

In the future, we plan to address some limitations of the Rast language. One goal of Rast was

to explore the boundaries of purely linear programming with general recursion. O�en, this

imposes a certain programming discipline and can be inconvenient if we need to drop or dupli-

cate channels. Recent work on adjoint logic [122] uniformly integrates di�erent logical layers

into a uni�ed language by assigning modes to communication. We plan to utilize this adjoint

formulation to support shared [25] and unrestricted channels. Prior work on SILL [73] has

demonstrated such an integration is helpful in general-purpose programming. With respect

to re�nements, we intend to pursue richer constraint domains such as non-linear arithmetic,

particularly SMT.



Chapter 4

Work Analysis

�is chapter studies the foundations of worst-case resource analysis for session-typed pro-

grams. �e key idea here is to rely on resource-aware session types to describe the resource

bounds for inter-process communication. We extend session types to not only exchange mes-

sages, but also potential along a channel. �e potential (in the sense of classical amortized

analysis) may be spent by sending other messages as part of the network of interacting pro-

cesses, or maintained locally for future interactions. Resource analysis is static, using the type

system, and the runtime behavior of programs is not a�ected.

Here, I mainly focus on bounds on the total work performed by a system, counting the number

of messages that are exchanged. While this alone does not yet account for the concurrent

nature of message-passing programs, it constitutes a signi�cant and necessary �rst step. �e

derived bounds are also useful in their own right. For example, the information can be used in

scheduling decisions, to derive the number of messages that are sent along a speci�c channel,

or to statically decide whether we should spawn a new thread of control or execute sequentially

when possible. Additionally, bounds on the work of a process also serve as input to a Brent-

style theorem [36] that relates the complexity of the execution of a program on a k-processor

machine to the program’s work (this chapter) and span (next chapter).

�e analysis is based on a linear type system that extends standard session types with two new

type constructors, one to receive potential (/r) and one to send potential (.r). �e superscript

r declares the amount of potential that must be transferred (conceptually!). Since the interface

to a process is characterized entirely by the resource-aware session types of the channels it

interacts with, this design provides a compositional resource speci�cation. For closed programs

(which evolve into a closed network of interacting processes), the bound becomes a single

constant.

A conceptual challenge is to express symbolic bounds in a se�ing without static data struc-

tures and intrinsic sizes. �e innovation is that resource-aware session types describe bounds

as functions of interactions (messages sent) on a channel. A major technical challenge is to ac-

count for the global number of messages sent with local derivation rules: operationally, local

48
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message counts are forwarded to a parent process when a sub-process terminates. As a result,

local message counts are incremented by sub-processes in a non-local fashion. My solution is

that messages and processes carry potential to amortize the cost of a terminating sub-process

proactively as a side-e�ect of the communication.

�e main contributions are as follows. I present the �rst session type system for deriving para-

metric bounds on the resource usage of message-passing processes. I also prove the nontrivial

soundness of the type system with respect to an operational cost semantics that tracks the

total number of messages exchanged in a network of communicating processes. I also demon-

strate the e�ectiveness of the technique by deriving tight bounds for some standard examples

of amortized analysis from the literature on session types. I also show how resource-aware

session types can be used to specify and compare the performance characteristics of di�erent

implementations of the same protocol. �e analysis is currently manual, with automation le�

for future work.

4.1 Overview

�is section will motivate and informally introduce resource-aware session types and show

how they can be used to analyze the resource usage of message-passing processes. I describe

an implementation of a counter and use resource-aware session types to analyze its resource

usage. Like in the rest of this chapter, the resource we are interested in is the total number of

messages sent along all channels in the system.

As a �rst simple example, I consider natural numbers in binary form. A process providing a

natural number sends a stream of bits starting with the least signi�cant bit. �ese bits are

represented by messages zero and one, eventually terminated by $.

bits = ⊕{zero : bits, one : bits, $ : 1}

For instance, the number 6 = (110)2 would be represented by the sequence of messages

zero, one, one, $, close. A client of a channel c : bits has to branch on whether it receives zero,

one, or $. As a second example, I describe the interface to a counter. A client can repeatedly

send inc messages to a counter, until they want to read its value and send val. At that point

the counter will send a stream of bits representing its value as prescribed by the type bits.

ctr = N{inc : ctr, val : bits}

A well-known example of amortized analysis counts the number of bits that must be �ipped

to increment a counter. It turns out the amortized cost per increment is 2, so that n increments

require at most 2n bits to be �ipped. �is is observed by introducing a potential of 1 for every

bit that is 1 and using this potential to pay for the expensive case in which an increment triggers

many �ips. When the lowest bit is zero, it is �ipped to one (costing 1) and a remaining potential
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e b1 b0 b1
inc

s1 s2 s3 s4

e b1 b0 b0
s1 s2 s3 s4

e b1 b1 b0
s1 s2 s3 s4

inc

Figure 4.1: Binary counter system representing 5 = (101)2 with messages triggered when

inc message is received on s4.

of 1 is also stored with this bit. When the lowest bit is one, the stored potential is used to �ip

the bit back to zero (with no stored potential) and the remaining potential of 2 is passed along

for incrementing the higher bits.

A binary counter is modeled as a chain of processes where each process represents a single bit

(process b0 or b1) with a �nal process e at the end. Each of the processes in the chain provides a

channel of the ctr type, and each (except the last) also uses a channel of this type representing

the higher bits. For example, in the �rst chain in Figure 4.1, the process b0 o�ers along channel

s3 (indicated by • between b0 and s3) and uses channel s2. �is is formally wri�en as

· ` e :: (s1 : ctr) s1 : ctr ` b1 :: (s2 : ctr)

s2 : ctr ` b0 :: (s3 : ctr) s3 : ctr ` b1 :: (s4 : ctr)

�e de�nitions of e, b0, and b1 can be found in Figures 4.3 and 4.4. �e only channel visible to

an outside client (not shown) is s4. Figure 4.1 shows the messages triggered if an increment

message is received along s4.

Expressing resource bounds. My basic approach is that messages carry potential and pro-
cesses store potential. �is means the sender has to pay not just 1 unit for sending the message,

but whatever additional units to amortize future costs. In the amortized analysis of the counter,

each bit �ip corresponds exactly to an inc message, because that is what triggers a bit to be

�ipped. My cost model focuses on messages as prescribed by the session type and does not

count other operations, such as spawning a new process or terminating a process. �is choice

is not essential to the approach, but convenient here.

To capture the informal analysis we need to express in the type that we have to send 1 unit

of potential right a�er the label inc. We do this using the / operator indicating the required

potential with the superscript, postponing the discussion of val.

ctr = N{inc : /1ctr, val : /?bits}
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When types are assigned to processes, we use the more expressive resource-aware session

types. We indicate the potential stored in a particular process as a superscript on the turnstile.

t : ctr `0 b0 :: (s : ctr) (4.1)

t : ctr `1 b1 :: (s : ctr) (4.2)

· `0 e :: (s : ctr) (4.3)

�ese typing constraints can be veri�ed using the typing rules of the system, using the de�ni-

tions of b0, b1, and e. Informally, the reason is as follows:

b0: A�er b0 receives inc it receives 1 unit of potential. It continues as b1 (which requires no

communication) which stores this 1 unit (as prescribed from the type of b1 in Equa-

tion 13).

b1: A�er b1 receives inc it receives 1 unit of potential which, when combined with the stored

one, makes 2 units. It sends an inc message which consumes 1 unit, followed by sending

a unit potential, thereby consuming the 2 units. It has no remaining potential, which is

su�cient because it transitions to b0 which stores no potential (inferred from the type

of b0 in Equation 1).

e: A�er e receives inc it receives 1 unit of potential. It spawns a new process e and continues

as b1. Spawning a process is free, and e requires no potential, so it can store the potential

it received with b1 as required.

How do we handle the type annotation val : /?bits of the label val? Recall that bits = ⊕{zero :

bits, one : bits, $ : 1}. In our implementation, upon receiving a val message, a b0 or b1 process

will �rst respond with zero or one respectively. It then sends val along the channel it uses

(representing the higher bits of the number) and terminates by forwarding further communi-

cation to the higher bits in the chain. Figure 4.2 demonstrates the messages triggered when

val message is received along s4. �e e process will just send $ and close, indicating the empty

stream of bits.

�ere will be enough potential to carry out the required send operations if each process (b0,

b1, and e) carries an additional 2 units of potential. �ese could be imparted with the inc and

val messages by sending 2 more units with inc and 2 units with val. �at is, the following type

is valid:

bits = ⊕{zero : bits, one : bits, $ : 1}

ctr = N{inc : /3ctr, val : /2bits}

However, this type is a gross over-approximation! �e processes of a counter of value n, would

carry 2n additional potential while only 2 dlog(n+ 1)e + 2 are needed. To obtain this more

precise bound, we need to de�ne a more re�ned type.
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e b1 b0 b1
val

s1 s2 s3 s4

e b1 b0 b1
s1 s2 s3 s4

e b1 b0
s1 s2 s3 s4

val

one

=

Figure 4.2: Binary counter system representing 5 = (101)2 with messages triggered when

val message is received on s4.

A more precise analysis. �is requires that, in the type, either the number of bits in the

representation of a number or its value can be referred. �is form of internal measure is needed

only for type-checking purposes, not at runtime. It is also not intrinsically tied to a property

of a representation, the way the length of a list in a functional language is tied to its memory

requirements. We have already set the stage for indexing types using re�nements in Chapter 3.

We now employ re�nement type ctr[n] to denote a counter of value n. Following the reasoning

above, we obtain the following type:

bits = ⊕{zero : bits, one : bits, $ : 1}

ctr[n] = N{inc : /1ctr[n+ 1], val : /2dlog(n+1)e+2bits}

To check the types of our implementation, we need to revisit and re�ne the typing of the b0,

b1 and e processes.

b0[n] :: (t : ctr[n]) `0 (s : ctr[2n])

b1[n] :: (t : ctr[n]) `1 (s : ctr[2n+ 1])

e :: · `0 (s : ctr[0])

�e type system veri�es these types against the implementation of b0, b1, and e (see Figures 4.3

and 4.4, potential annotations marked in red). I will brie�y explain the type derivation of b0,

as shown in Figure 4.3 a�er the %. A�er receiving the inc message, the b0 process receives a

unit potential on s using the /1
type constructor. �is constructor is accompanied by the get

construct (line 4) which receives the unit potential which is stored in the process, as indicated

by the number on the turnstile. �e type on the right exactly matches b1’s type in the signature,

thereby making the call to b1 valid. Similarly, b0 receives 2 dlog(2n+ 1)e+2 units of potential

a�er receiving the val.

�e cost model of interest in this chapter counts the total number of messages exchanged in

the system. �is is realized formally by consuming a unit of potential before every message

sent. �e corresponding construct is work {1}, as indicated in line 7. �is consumes a unit

of potential, as indicated by the type on the right. A unit potential is similarly consumed on

line 9 before sending the val message on t (line 10). �e dual to the get construct is pay. �is
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1: b0[n] :: (t : ctr[n]) `0 (s : ctr[2n])
2: s← b0[n] t =
3: case s

4: (inc⇒ get s {1} ; % (t : ctr[n]) `1 s : ctr[2n+ 1]
5: s← b1[n] t

6: | val⇒get s {2 dlog(2n+ 1)e+ 2} ; % (t : ctr[n]) `2dlog(2n+1)e+2 s : bits

7: work {1} ; % (t : ctr[n]) `2dlog(2n+1)e+2−1 s : bits

8: s.zero ; % (t : ctr[n]) `2dlog(2n+1)e+1 s : bits

9: work {1} ; % (t : ctr[n]) `2dlog(2n+1)e+1−1 s : bits

10: t.val ; % (t : /2dlog(n+1)e+2bits) `2dlog(2n+1)e s : bits

11: pay t {2 dlog(n+ 1)e+ 2} ; % (t : bits) `2dlog(2n+1)e−2dlog(n+1)e−2 s : bits

12: s↔ t) % (t : bits) `0 s : bits

Figure 4.3: Implementation for b0 process with its type derivation.

is used to send potential on a channel, as indicated on line 11, consuming potential stored in

the process. Finally, the b0 process remains with no potential and can successfully terminate

by forwarding. Note that a process is not allowed to terminate while it stores potential as that

would violate the linearity constraint on the potential. �e derivations for b1 and e are similar

and described in Figure 4.4.

�e typing rules reduce the well-typedness of these processes to arithmetic inequalities which

can be solved by hand, for example, using that log(2n) = log(n) + 1. �e intrinsic measure n

and the precise potential annotations are not automatically derived, but come from our insight

about the nature of the algorithms.

�e typing derivation provides a proof certi�cate on the resource bound for a process. For

closed processes typed as

· `p Q :: (c : 1)

the number p provides a worst case bound on the number of messages sent during computation

of Q, which always ends with the process sending close along c, indicating termination.

4.2 Operational Cost Semantics

�e cost semantics for standard session types is augmented to track the total work performed

by the system. �e work is tracked by the local counter w in proc(c, w, P ) and msg(c, w,M)

propositions. For processP ,wmaintains the total work performed byP so far. When a process

executes the work {c} construct, its counterw is incremented by c. When a process terminates,

the respective predicate is removed from the con�guration, but its work done is preserved. A

process can terminate either by sending a close message, or by forwarding. In either case, the

process’ work is conveniently preserved in the msg predicate to pass it on to the client process.
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13: b1[n] :: (t : ctr[n]) `1 (s : ctr[2n+ 1])
14: s← b1[n] t =
15: case s

16: (inc⇒ get s {1} ; % (t : ctr[n]) `2 s : ctr[2n+ 2]

17: work {1} ; % (t : ctr[n]) `2−1 s : ctr[2n+ 2]

18: t.inc ; % (t : /1ctr[n+ 1]) `1 s : ctr[2n+ 2]

19: pay t {1} ; % (t : ctr[n+ 1]) `1−1 s : ctr[2n+ 2]
20: s← b0[n+ 1] t

21: | val⇒get s {2 dlog(2n+ 2)e+ 2} ; % (t : ctr[n]) `2dlog(2n+2)e+2 s : bits

22: work {1} ; % (t : ctr[n]) `2dlog(2n+2)e+2−1 s : bits

23: s.one ; % (t : ctr[n]) `2dlog(2n+2)e+1 s : bits

24: work {1} ; % (t : ctr[n]) `2dlog(2n+2)e+1−1 s : bits

25: t.val ; % (t : /2dlog(n+1)e+2bits) `2dlog(2n+2)e s : bits

26: pay t {2 dlog(n+ 1)e+ 2} ; % (t : bits) `2dlog(2n+2)e−2dlog(n+1)e−2 s : bits

27: s↔ t) % (t : bits) `0 s : bits

28: e :: · `0 (s : ctr[0])
29: s← e =
30: case s

31: (inc⇒ get s {1} ; % · `1 s : ctr[0 + 1]

32: t← e ; % (t : ctr[0]) `1 s : ctr[1]
33: s← b1[0] t

34: | val⇒get s {2 dlog(0 + 1)e+ 2} ; % · `2dlog(0+1)e+2 s : bits

35: work {1} ; % · `2−1 s : bits

36: s.$ ; % · `1 s : 1

37: work {1} ; % · `1−1 s : 1

38: close s) % · `0 s : 1

Figure 4.4: Implementations for b1 and e processes with their type derivations.

�e cost semantics is parametric in the cost model. �at is, the programmer can specify the

resource they intend to measure. �is is realized by the cost model by inserting a work construct

before the respective expressions. For instance, inserting a work {1} before each send will

count the total number of messages exchanged.

�e semantics is de�ned in Figure 4.5. Each rule consumes the propositions to the le� of 7→
and produces the proposition to its right. �e rules cutC and defC spawn a new process

with 0 work (as it has not done any work so far), while Qc continues with the same amount of

work. A forwarding process transfers its work to a corresponding message and terminates a�er

identifying the channels, as described in rules id+C and id−C . All other communication rules

create a message with work 0, which is then later received by its recipient, thereby transferring

the work done by the message (which it gathered by possibly interacting with forwarding

processes). �e standard semantics rules can be obtained by simply deleting the work counters.
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(cutC) proc(d,w, x← Px ; Qx) 7→ proc(c, 0, [c/x]Px), proc(d,w, [c/x]Qx) (c fresh)
(defC) proc(d,w, x← f ← e ; Q) 7→

proc(c, 0, [c/x, e/∆]P ), proc(d,w, [c/x]Q) (c fresh)

(id+C) msg(d,w,M), proc(c, w′, c↔ d) 7→ msg(c, w + w′, [c/d]M)
(id−C) proc(c, w, c↔ d),msg(e, w′,M(c)) 7→ msg(e, w + w′, [d/c]M(c))

(⊕S) proc(c, w, c.k ; P ) 7→ proc(c′, w, [c′/c]P ),msg(c, 0, c.k ; c↔ c′) (c′ fresh)
(⊕C) msg(c, w, c.k ; c↔ c′), proc(d,w′, case c (`⇒ Q`)`∈L) 7→

proc(d,w + w′, [c′/c]Qk)

(NS) proc(d,w, c.k ; Q) 7→ msg(c′, 0, c.k ; c′ ↔ c), proc(d,w, [c′/c]Q) (c′ fresh)
(NC) proc(c, w, case c (`⇒ Q`)`∈L),msg(c′, w′, c.k ; c′ ↔ c) 7→

proc(c′, w + w′, [c′/c]Qk)

(⊗S) proc(c, w, send c e ; P ) 7→
proc(c′, w, [c′/c]P ),msg(c, 0, send c e ; c↔ c′) (c′ fresh)

(⊗C) msg(c, w, send c e ; c↔ c′), proc(d,w′, x← recv c ; Q) 7→
proc(d,w + w′, [c′, e/c, x]Q)

((S) proc(d,w, send c e ; Q) 7→
msg(c′, 0, send c e ; c′ ↔ c), proc(d,w, [c′/c]Q) (c′ fresh)

((C) proc(c, w, x← recv c),msg(c′, w′, send c e ; c′ ↔ c) 7→
proc(c′, w + w′, [c′, d/c, x]P )

(1S) proc(c, w, close c) 7→ msg(c, w, close c)
(1C) msg(c, w, close c), proc(d,w′,wait c ; Q) 7→ proc(d,w + w′, Q)

Figure 4.5: Cost semantics tracking total work for programs

Work counter can be incremented only by executing the work construct.

(work) proc(c, w,work {w′} ; P ) 7→ proc(c, w + w′, P )

Finally, the two type constructors . and its dual / are used to exchange potential. �e potential

is only a theoretical construct, and potentials have no role to play at runtime.

(.S) proc(c, w, pay c {r} ; P ) 7→
proc(c′, w, [c′/c]P ),msg(c, 0, pay c {r} ; c↔ c′) (c′ fresh)

(.C) msg(c, w, pay c {r} ; c↔ c′), proc(d,w′, get c {r} ; Q) 7→
proc(d,w + w′, [c′/c]Q)

(/S) proc(d,w, pay c {r} ; Q) 7→
msg(c′, 0, pay c {r} ; c′ ↔ c), proc(d,w, [c′/c]Q) (c′ fresh)

(/C) proc(c, w, get c {r}),msg(c′, w′, pay c {r} ; c′ ↔ c) 7→
proc(c′, w + w′, [c′/c]P )

�e rules of the cost semantics are successively applied to a con�guration until the con�gu-

ration becomes empty or the con�guration is stuck and none of the rules can be applied. At



Work Analysis 56

any point in this local stepping, the total work performed by the system can be obtained by

summing the local counters w for each predicate in the con�guration.

4.3 Type System

�e typing judgment has the form

V ; C ; ∆ `
q

Σ P :: (x : A)

Intuitively, the judgment describes a process in state P using the context ∆ and signature Σ

and providing service along channel x of typeA. In other words, P is the provider for channel

x : A, and a client for all the channels in ∆. �e resource annotation q is a natural number

and de�nes the potential stored in the process P .

Σ de�nes the signature containing type and process de�nitions. It is de�ned as a �nite set of

type de�nitions V = A and process de�nitions ∆ `q f [n] = P :: (x : A). �e equation V = A

is used to de�ne the type variable V as type expressionA. We treat such de�nitions equirecur-
sively. �e process de�nition ∆ `q f [n] = P :: (x : A) de�nes a (possibly recursive) process

named f parameterized by index variables n implemented by P providing along channel x : A

and using the channels ∆ as a client, storing potential q. Because the signature is �xed, it is

elided from the presentation of the rules.

Figure 4.6 describes the usual typing rules for our system. �e interesting rules here are spawn

and id. �e spawn splits the potential r = p + q, and provides potential p to the spawned

process, and q to the continuation. A forwarding process x ↔ y must be typed with no

potential as it is about to terminate. �e rest of the rules are standard and I am omi�ing their

discussion. Deleting the potential annotation from the process typing judgment recovers the

typing rules for standard session types. Messages are typed exactly as processes.

In addition, the language has explicit rules for consuming and transfer of potential. Executing

the work {w} construct consumes w (non-negative) units from the potential stored in a pro-

cess. �us, a process must have at least w units of potential to execute this construct. �is is

expressed in the rule with the annotation q + w in the conclusion.

V ; C ; ∆ `q P :: (x : A)

V ; C ; ∆ `q+w work {w} ; P :: (x : A)
work

Similarly, executing a pay x {r} consumes r units from the process potential, while getx {r}
provides r units to the process potential. �e main innovation here is the introduction of

the two dual type operators, . and /. �e . operator expresses that the provider must pay

potential which is received by its client. Dually, the / operator requires that the provider

receives potential paid by the client. �e type guarantees that the potential paid by the sender
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V ; C � q = 0

V ; C ; y : A `q x↔ y :: (x : A)
id

V ; C � r = p+ q ∆ `p f [n] = P :: (x : A) ∈ Σ
∆1 =α ∆[e/n] V ; C ; ∆2, (x : A) `q Qx :: (z : C)

V ; C ; ∆1,∆2 `r (x← f y = Qx) :: (z : C)
spawn

V ; C ; ∆ `q P :: (x : Ak) (k ∈ L)

V ; C ; ∆ `q (x.k ; P ) :: (x : ⊕{` : A`}`∈L)
⊕R

V ; C ; ∆, (x : A`) `q Q` :: (z : C) (∀` ∈ L)

V ; C ; ∆, (x : ⊕{` : A`}`∈L) `q case x (`⇒ Q`)`∈L :: (z : C)
⊕L

V ; C ; ∆ `q P` :: (x : A`) (∀` ∈ L)

V ; C ; ∆ `q case x (`⇒ P`)`∈L :: (x : N{` : A`}`∈L)
NR

V ; C ; ∆, (x : Ak) `q Q :: (z : C)

V ; C ; ∆, (x : N{` : A`}`∈L) `q x.k ; Q :: (z : C)
NL

V ; C ; ∆, (y : A) `q Py :: (x : B)

V ; C ; ∆ `q (y ← recv x ; Py) :: (x : A( B)
( R

V ; C ; ∆, (x : B) `q Q :: (z : C)

V ; C ; ∆, (w : A), (x : A( B) `q (send x w ; Q) :: (z : C)
( L

V ; C ; ∆ `q P :: (x : B)

V ; C ; ∆, (w : A) `q send x w ; P :: (x : A⊗B)
⊗R

V ; C ; ∆, (y : A), (x : B) `q Qy :: (z : C)

V ; C ; ∆, (x : A⊗B) `q y ← recv x ; Qy :: (z : C)
⊗L

V ; C � q = 0

V ; C ; · `q close x :: (x : 1)
1R

V ; C ; ∆ `q Q :: (z : C)

V ; C ; ∆, (x : 1) `q wait x ; Q :: (z : C)
1L

Figure 4.6: Typing rules for resource-aware session types

equals what is gained by the recipient, thereby preserving the total potential of a con�guration.

V ; C � q ≥ r V ; C ; ∆ `q−r P :: (x : A)

V ; C ; ∆ `q pay x {r} ; P :: (x : .rA)
.R

V ; C ; ∆, (x : A) `q+r Q :: (z : C)

V ; C ; ∆, (x : .rA) `q getx {r} ; Q :: (z : C)
.L

V ; C ; ∆ `q+r P :: (x : A)

V ; C ; ∆ `q getx {r} ; P :: (x : /rA)
/R

V ; C � q ≥ r V ; C ; ∆, (x : A) `q−r Q :: (z : C)

V ; C ; ∆, (x : /rA) `q pay x {r} ; Q :: (z : C)
/L
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∆
0
� (·) :: ∆

empty ∆
E
� S :: ∆′ ∆′

E′

� S ′ :: ∆′′

∆
E+E′

� (S S ′) :: ∆′′
compose

· ; > ; ∆1 `q P :: (x : A)

∆,∆1

q+w

� (proc(x,w, P )) :: (∆, (x : A))

proc

· ; > ; ∆1 `q M :: (x : A)

∆,∆1

q+w

� (msg(x,w,M)) :: (∆, (x : A))

msg

Figure 4.7: Typing rules for a con�guration

4.4 Soundness

�is section demonstrates the soundness of the resource-aware type system with respect to the

operational cost semantics. So far, we have analyzed and type-checked processes in isolation.

However, as our cost semantics indicates, processes always exist in a con�guration interacting

with other processes. �us, we need to extend the typing rules to arbitrary con�gurations.

Con�guration Typing At runtime, a program evolves into a set of processes interacting via

typed channels. Such a con�guration is typed w.r.t. a well-formed signature. A signature Σ is

well formed if (a) every type de�nition V = A is contractive, and (b) every process de�nition

∆ `q f [n] = P :: (x : A) in Σ is well typed according to the process typing judgment, i.e.

n ; > ; ∆ `q P :: (x : A).

I use the following judgment to type a con�guration.

∆1

E
�Σ S :: ∆2

It states that Σ is well-formed and that the con�guration S uses the channels in the context

∆1 and provides the channels in the context ∆2. �e natural number E denotes the sum of

the total potential and work done by the system. I call E the energy of the con�guration.

�e con�guration typing judgment is de�ned using the rules presented in Figure 4.7. �e rule

empty de�nes that an empty con�guration is well-typed with energy 0. �e rule compose

composes two con�gurations S and S ′; S provides service on the channels in ∆′ while S ′ uses

the channels in ∆′. �e energy of the composed con�guration S S ′ is obtained by summing

up their individual energies. �e rule proc creates a con�guration out of a single process. �e

energy of this singleton con�guration is obtained by adding the potential of the process and the

work performed by it. Similarly, the rule msg creates a con�guration out of a single message.
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Soundness �eorem 4.1 is the main theorem of the chapter. It is a stronger version of a

classical type preservation theorem and the usual type preservation is a direct consequence.

Intuitively, it states that the energy of a con�guration never increases during an evaluation

step, i.e. the energy remains conserved.

�eorem 4.1 (Soundness). Consider a well-typed con�guration S w.r.t. a well-formed signature

Σ such that ∆1

E
�Σ S :: ∆2. If S 7→ S ′, then ∆1

E
�Σ S ′ :: ∆2.

�e proof of the soundness theorem is achieved by a case analysis on the cost semantics, fol-

lowed by an inversion on the typing of a con�guration. �e preservation theorem is a corollary

since soundness implies that the con�guration S ′ is well-typed.

�e soundness implies that the energy of an initial con�guration is an upper bound on the en-

ergy of any con�guration it will ever step to. In particular, if a con�guration starts with 0 work,

the initial energy (equal to initial potential) is an upper bound on the total work performed by

an evaluation starting in that con�guration.

Corollary 4.2 (Upper Bound). If ∆1

E
�Σ S :: ∆2, and S 7→∗ S ′, then E ≥W ′, whereW ′ is the

total work performed by the con�guration S ′, i.e. the sum of the work performed by each process
and message in S ′. In particular, if the work done by the initial con�guration S is 0, then the
potential P of the initial con�guration satis�es P ≥W ′.

Proof. Applying the Soundness theorem successively, we get that if S 7→∗ S ′ and ∆1

E
� S ::

∆2, then ∆1

E
� S ′ :: ∆2. Also, E = P ′ + W ′, where P ′ is the total potential of S ′, while W ′

is the total work performed so far in S ′. Since P ′ ≥ 0, we get that W ′ ≤ P ′ + W ′ = E. In

particular, if W = 0, we get that P = P + W = E ≥ W ′, where P and W are the potential

and work of the initial con�guration respectively.

�e progress theorem is a direct consequence of progress in SILL [138]. Our cost semantics are

a cost observing semantics, i.e. it is just annotated with counters observing the work. Hence,

any runtime step that can be taken by a program in SILL can be taken in this language.

4.5 Case Study: Stacks and�eues

As an illustration of the type system, I present a case study on stacks and queues. Stacks and

queues have the same interaction protocol: they store elements of a variable typeA and support

inserting and deleting elements. �ey only di�er in their implementation and resource usage.

�eir common interface type is expressed as the simple session type storeA (parameterized by

type variable A and size n).
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storeA[n] = N{ ins : A( storeA[n+ 1],

del : ⊕{none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ storeA[n− 1]}}

�e session type dictates that a process providing a service of type storeA[n] gives a client the

choice to either insert (ins) or delete (del) an element of type A. Upon receipt of the label ins, the

providing process expects to receive a channel of type A to be enqueued and recurses. Upon

receipt of the label del, the providing process either indicates that the queue is empty (none),

in which case it terminates, or that there is an element stored in the queue (some), in which

case it deletes this element, sends it to the client, and recurses.

To account for the resource cost, I add potential annotations leading to the storeA type to

obtain two di�erent resource-aware types for stacks and queues. �e cost model again counts

the total number of messages exchanged.

Stacks �e type for stacks is de�ned as follows.

stackA[n] = N{ ins : A( stackA[n+ 1],

del : /2 ⊕ {none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ stackA[n− 1]}}

A stack is implemented using a sequence of elem processes terminated by an empty process.

Each elem process stores an element of the stack, while empty denotes the end of stack.

Inserting an element simply spawns a new elem process (which has no cost in our cost model),

thus having no resource cost. Deleting an element terminates the elem process at the head.

Before termination, it sends two messages back to the client, either none followed by close

or some followed by element. �us, deletion has a resource cost of 2. �is is re�ected in the

stackA type, where ins and del are annotated with none and 2 units of potential respectively.

�eues �e queue interface is achieved by using the same storeA type and annotating it with

a di�erent potential. �e tight potential bound depends on the number of elements stored in

the queue. Hence, a precise resource-aware type needs access to this internal measure in the

type. A type queueA[n] intuitively de�nes a queue of size n (for n > 0).

queueA[n] = N{ ins : /2n(A( queueA[n+ 1]),

del : /2 ⊕ {none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ queueA[n− 1]}}

A queue is also implemented by a sequence of elem processes, connected via channels, termi-

nated by the empty process, similar to a stack.
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For each insertion, the ins label along with the element travels to the end of the queue. �ere,

it spawns a new elem process that holds the inserted element. Hence, the resource cost of each

insertion is 2n where n is the size of the queue. On the other hand, deletion is similar to that

of stack and has a resource cost of 2. Again, this is re�ected in the queueA type, where ins and

del are annotated with 2n and 2 units of potential respectively.

�e resource-aware types show that stacks are more e�cient than queues. �e label ins is

annotated with no potential for stackA and with 2n for queueA. �e label del has the same an-

notation in both types. Hence, an e�ciency comparison can be performed by simply observing

the resource-aware session types.

�eues as two stacks In a functional language, a queue is o�en implemented with two lists.

�e idea is to enqueue into the �rst list and to dequeue from the second list. If the second list is

empty, the the �rst list is copied over to the second list , thereby reversing its order. Since the

cost of the dequeue operation varies drastically between the dequeue operations, amortized

analysis is again instrumental in the analysis of the worst-case behavior and shows that the

worst-case amortized cost for deletion is actually a constant. �e type of the queue is

queueA[n] = N{ ins : /6(A( queueA[n+ 1]),

del : /2 ⊕ {none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ queueA[n− 1]}}

Resource-aware session types enable us to translate the amortized analysis to the distributed

se�ing. �e type prescribes that an insertion has an amortized cost of 6 while the deletion has

an amortized cost of 2. �e main idea here is that the elements are inserted with a constant

potential in the �rst list. While deleting, if the second list is empty, then this stored potential

in the �rst list is used to pay for copying the elements over to the second list. As demonstrated

from the resource-aware type, this implementation is more e�cient than the previous queue

implementation, which has a linear resource cost for insertion.

4.6 Related Work

In the context of process calculi, capabilities [136] and static analyses [92] have been used

to statically restrict communication for controlling bu�er sizes in languages without session

types. For session-typed communication, upper bounding the size of message queues is simpler

and studied in the compiler for Concurrent C0 [144]. In contrast to capabilities, our potential

annotations do not control bu�er sizes but provide a symbolic description of the number of

messages exchanged at runtime. It is not clear how capabilities could be used to perform such

an analysis.

Type systems for static resource bound analysis for sequential programs have been exten-

sively studied (e.g., [47, 95]). �e work is based on type-based amortized resource analysis.
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Automatic amortized resource analysis (AARA) has been introduced as a type system to auto-

matically derive linear [84] and polynomial bounds [83] for sequential functional programs. It

can also be integrated with program logics to derive bounds for imperative programs [21, 42].

Moreover, it has been used to derive bounds for term-rewrite systems [86] and object-oriented

programs [85]. A recent work also considers bounds on the parallel evaluation cost (also called

span) of functional programs [81]. �e innovation of our work is the integration of AARA and

session types and the analysis of message-passing programs that communicate with the outside

world. Instead of function arguments, our bounds depend on the messages that are sent along

channels. As a result, the formulation and proof of the soundness theorem is quite di�erent

from the soundness of sequential AARA.

I am only aware of a couple of other works that study resource bounds for concurrent programs.

Gimenez et al. [68] introduced a technique for analyzing the parallel and sequential space

and time cost of evaluating interaction nets. While it also based on linear logic and potential

annotations, the �avor of the analysis is quite di�erent. Interaction nets are mainly used to

model parallel evaluation while session types focus on the interaction of processes. A main

innovation of our work is that processes can exchange potential via messages. It is not clear

how we can represent the examples we consider in this article as interaction nets. Albert et

al. [15, 17] have studied techniques for deriving bounds on the cost of concurrent programs

that are based on the actor model. While the goals of the work are similar to ours, the used

technique and considered examples are dissimilar. A major di�erence is that our method is

type-based and compositional. A unique feature of our work is that types describe bounds as

functions of the messages that are sent along a channel.

4.7 Future Directions

I brie�y mention some important future directions with regard to work analysis.

Work Inference To completely automate the type system, it is crucial to infer the work

bounds, not just check them. �is entails inserting pay or get constructors with every con-

tinuation with a parametric value and then obtaining constraints on these parameters. �en a

solver tries to solve these constraints while minimizing the number of such constructors that

need to be inserted. If an algorithmic version of this inference is implemented, a programmer

will simply write the original simple session-typed program, and the inference engine will infer

the resource-aware type, along with the resource bound.

Process Scheduling Inferring work bounds has several applications. One such direction to

explore is the use of resource bounds in process scheduling. For instance, oracle schedulers [11]

can use a priori knowledge of the runtime of each parallel thread to calculate thread creation

overheads and enhance e�ciency. �us, resource-aware session types can be used to design

an e�cient scheduling algorithm that maximizes throughput.
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Time Analysis

Analyzing the complexity of concurrent, message-passing processes poses additional chal-

lenges over sequential programs. To begin with, we need information about the possible inter-

actions between processes to enable compositional and local reasoning about concurrent cost.

In addition to the structure of communication, the timing of messages is of central interest

for analyzing concurrent cost. With information on message timing we may analyze not only

properties such as the rate or latency with which a stream of messages can proceed through a

pipeline, but also the span of a parallel computation, which can be de�ned as the time of the

�nal response message assuming maximal parallelism.

�ere are several possible ways to enrich session types with timing information. A challenge

is to �nd a balance between precision and �exibility. We would like to express precise times

according to a global clock as in synchronous data �ow languages whenever that is possible.

However, sometimes this will be too restrictive. For example, we may want to characterize

the response time of a concurrent queue where enqueue and dequeue operations arrive at

unpredictable intervals.

In this chapter, I develop a type system that captures the parallel complexity of session-typed

message-passing programs by adding temporal modalities next (©A), always (�A), and even-
tually (♦A), interpreted over a linear model of time. When considered as types, the temporal

modalities express properties of concurrent programs such as the message rate of a stream, the

latency of a pipeline, the response time of concurrent data structure, or the span of a fork/join

parallel program, all in the same uniform manner. �e results complement my prior work on

expressing the work of session-typed processes in the same base language [54]. Together, they

form a foundation for analyzing the parallel complexity of session-typed processes.

�e type system is constructed conservatively over the base language of session types, which

makes it quite general and easily able to accommodate various concrete cost models. �e lan-

guage contains standard session types and process expressions, and their typing rules remain

unchanged. �ey correspond to processes that do not induce cost and send all messages at the

constant time 0.

63
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To model computation cost, a new syntactic form delay is introduced, which advances time by

one step. A particular cost semantics is speci�ed by taking an ordinary, non-temporal program

and adding delays capturing the intended cost. For example, if only the blocking operations

should cost one unit of time, a delay is added before the continuation of every receiving con-

struct. If sends should have unit cost as well, a delay is added immediately a�er each send

operation. Processes that contain delays cannot be typed using standard session types.

To type processes with non-zero cost, I �rst introduce the type ©A, which is inhabited only

by the process expression (delay ; P ). �is forces time to advance on all channels that P can

communicate along. �e resulting types prescribe the exact time a message is sent or received

and sender and receiver are precisely synchronized.

As an example, consider a stream of bits terminated by $, expressed as the recursive type

bits = ⊕{b0 : bits, b1 : bits, $ : 1}

where ⊕ stands for internal choice and 1 for termination, ending the session. A simple cost

model for asynchronous communication prescribes a cost of one unit of time for every receive

operation. A stream of bits then needs to delay every continuation to give the recipient time to

receive the message, expressing a rate of one. �is can be captured precisely with the temporal

modality ©A:

bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}

A transducer neg that negates each bit it receives along channelx and passes it on along channel

y would be typed as

x : bits ` neg :: (y : ©bits)

expressing a latency of one. A process negneg that puts two negations in sequence has a latency

of two, compared with copy which passes on each bit, and id which terminates and identi�es

the channel y with the channel x, short-circuiting the communication.

x : bits ` negneg :: (y : ©©bits) x : bits ` copy :: (y : ©bits) x : bits ` id :: (y : bits)

All these processes have the same extensional behavior, but di�erent latencies. �ey also have

the same rate since a�er the pipelining delay, the bits are sent at the same rate they are received,

as expressed in the common type bits used in the context and the result.

While precise and minimalistic, the resulting system is o�en too precise for typical concurrent

programs such as pipelines or servers. I therefore introduce the dual type formers ♦A and�A

to talk about varying time points in the future. Remarkably, even if part of a program is typed

using these constructs, we can still make precise and useful statements about other aspects.
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For example, consider a transducer compress that shortens a stream by combining consecutive

1 bits so that, for example, 00110111 becomes 00101. For such a transducer, we cannot bound

the latency statically, even if the bits are received at a constant rate like in the type bits. So we

have to express that a�er seeing a 1 bit we will eventually see either another bit or the end of

the stream. For this purpose, we introduce a new type sbits with the same message alternatives

as bits, but di�erent timing. In particular, a�er sending b1, either the next bit or end-of-stream

is eventually sent (♦sbits), rather than immediately.

sbits = ⊕{b0 : ©sbits, b1 : ©♦sbits, $ : ©1}
x : bits ` compress :: (y : ©sbits)

We write©♦sbits instead of ♦sbits for the continuation type a�er b1 to express that there will

always be a delay of at least one; to account for the unit cost of receive in this particular cost

model.

�e dual modality, �A, is useful to express, for example, that a server providing A is always
ready, starting from “now”. As an example, consider the following temporal type of an interface

to a process of type �queueA with elements of type �A. It expresses that there must be at

least four time units between successive enqueue operations and that the response to a dequeue

request is immediate, only one time unit later (N stands for external choice, the dual to internal

choice).

queueA = N{ enq : ©(�A( ©3�queueA),

deq : ©⊕{ none : ©1, some : ©(�A⊗©�queueA) } }

As an example of a parametric cost analysis, the following type can be given to a process that

appends inputs l1 and l2 to yield l, where the message rate on all three lists is r + 2 units of

time (that is, the interval between consecutive list elements needs to be at least 2).

l1 : listA[n], l2 : ©(r+4)n+2 listA[k] ` append[n, k, r] :: (l : ©©listA[n+ k])

It expresses that append has a latency of two units of time and that it inputs the �rst message

from l2 a�er (r + 4)n+ 2 units of time, where n is the number of elements sent along l1.

To analyze the span of a fork/join parallel program, we capture the time at which the (�nal)

answer is sent. For example, the type tree[h] describes the span of a process that computes the

parity of a binary tree of height hwith boolean values at the leaves. �e session type expresses

that the result of the computation is a single boolean that arrives at time 5h+3 a�er the parity

request.

tree[h] = N{ parity : ©5h+3 bool }
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In summary, the main contributions of the chapter are (1) a generic framework for parallel cost

analysis of asynchronously communicating session-typed processes rooted in a novel combi-

nation of temporal and linear logic, (2) a soundness proof of the type system with respect to a

timed operational semantics, showing progress and type preservation (3) instantiations of the

framework with di�erent cost models, e.g. where either just receives, or receives and sends,

cost one time unit each, and (4) examples illustrating the scope of my method. My technique

for proving progress and preservation does not require dependency graphs and may be of in-

dependent interest. I further provide decidable systems for time reconstruction and subtyping
that greatly simplify the programmer’s task. �ey also enhance modularity by allowing the

same program to be assigned temporally di�erent types, depending on the context of use.

5.1 �e Temporal Modality Next (©A)

�is section introduces actual cost by explicitly advancing time. Remarkably, all the rules pre-

sented so far in Chapter 2 remain literally unchanged. �ey correspond to the cost-free frag-

ment of the language in which time never advances. In addition, I have a new type construct

©A (read: next A) with a corresponding process construct (delay ; P ), which advances time

by one unit. In the corresponding typing rule

∆ ` P :: (x : A)

©∆ ` (delay ; P ) :: (x : ©A)
©LR

I abbreviate y1:©A1, . . . , ym:©Am by ©(y1:A1, . . . , ym:Am). Intuitively, when (delay ; P )

idles, time advances on all channels connected to P . Computationally, I delay the process for

one time unit without any external interactions. To understand this computation, I introduce

semantic objects proc(c, t, P ) and msg(c, t,M) which mean that process P or message M

provide along channel c and are at an integral time t.

(©C) proc(c, t, delay ; P ) 7→ proc(c, t+ 1, P )

�ere is a subtle point about forwarding: A process proc(c, t, c← d) may be ready to forward

a message before a client reaches time t while in all other rules the times must match exactly.

We can avoid this mismatch by transforming uses of forwarding x ← y at type ©nS where

S 6= ©(−) to (delayn ; x ← y). In this discussion I have used the following notation which

will be useful later:

©0A = A delay0 ; P = P

©n+1A = ©©nA delayn+1 ; P = delay ; delayn ; P
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5.1.1 Modeling a Cost Semantics

My system allows us to represent a variety of di�erent abstract cost models in a straightforward

way. I will mostly use two di�erent abstract cost models. In the �rst, called R, I assign unit

cost to every receive (or wait) action while all other operations remain cost-free. We may be

interested in this since receiving a message is the only blocking operation in the asynchronous

semantics. A second one, called RS and considered in Section 5.4, assigns unit cost to both

send and receive actions.

To capture R I take a source program and insert a delay operation before the continuation of

every receive. I write this delay as tick in order to remind the reader that it arises systematically

from the cost model and is never wri�en by the programmer. In all other respects, tick is just

a synonym for delay.

For example, the copy process would become

bits = ⊕{b0 : bits, b1 : bits, $ : 1}

y : bits ` copy :: (x : bits) % No longer correct!
x← copy← y =

case y ( b0⇒ tick ; x.b0 ; x← copy← y

| b1⇒ tick ; x.b1 ; x← copy← y

| $⇒ tick ; x.$ ; wait y ; tick ; close x )

As indicated in the comment, the type of copy is now no longer correct because the bits that

arrive along y are delayed by one unit before they are sent along x. We can observe this

concretely by starting to type-check the �rst branch

y : bits ` copy :: (x : bits)

x← copy← y =

case y ( b0⇒ % y : bits ` x : bits

tick ; . . .)

We see that the delay tick does not type-check, because neither x nor y have a type of the

form ©(−). We need to rede�ne the type bits so that the continuation type a�er every label

is delayed by one, anticipating the time it takes to receive the label b0, b1, or $. Similarly, we

capture in the type of copy that its latency is one unit of time.

bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}

y : bits ` copy :: (x : ©bits)

With these declarations, we can now type-check the de�nition of copy. I show the intermediate

type of the used and provided channels a�er each interaction.
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x← copy← y =

case y ( b0⇒ % y : ©bits ` x : ©bits

tick ; % y : bits ` x : bits

x.b0 ; % y : bits ` x : ©bits

x← copy← y % well-typed by type of copy
| b1⇒ % y : ©bits ` x : ©bits

tick ; % y : bits ` x : bits

x.b1 ; % y : bits ` x : ©bits

x← copy← y

| $⇒ % y : ©1 ` x : ©bits

tick ; % y : 1 ` x : bits

x.$ ; % y : 1 ` x : ©1

wait y ; % · ` x : ©1

tick ; % · ` x : 1

close x )

Armed with this experience, we now consider the increment process plus1. Again, we expect

the latency of the increment to be one unit of time. Since we are interested in detailed type-

checking, I show the transformed program, with a delay tick a�er each receive.

bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}

y : bits ` plus1 :: (x : ©bits)

x← plus1← y =

case y ( b0⇒ tick ; x.b1 ; x← y % type error here!
| b1⇒ tick ; x.b0 ; x← plus1← y

| $⇒ tick ; x.$ ; wait y ; tick ; close x )

�e branches for b1 and $ type-check as before, but the branch for b0 does not. I make the

types at the crucial point explicit:

x← plus1← y =

case y ( b0⇒ tick ; x.b1 ; % y : bits ` x : ©bits

x← y % ill-typed, since bits 6= ©bits

| . . . )

�e problem here is that identifying x and y removes the delay mandated by the type of plus1.

A solution is to call copy to reintroduce the latency of one time unit.

y : bits ` plus1 :: (x : ©bits)

x← plus1← y =

case y ( b0⇒ tick ; x.b1 ; x← copy← y
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| b1⇒ tick ; x.b0 ; x← plus1← y

| $⇒ tick ; x.$ ; wait y ; tick ; close x )

In order to write plus2 as a pipeline of two increments we need to delay the second increment

explicitly in the program and stipulate, in the type, that there is a latency of two.

y : bits ` plus2 :: (x : ©©bits)

x← plus2← y =

z ← plus1← y ; % z : ©bits ` x : ©©bits

delay ; % z : bits ` x : ©bits

x← plus1← z

Programming with so many explicit delays is tedious, but fortunately a source program with-

out all these delay operations (but explicitly temporal session types) can be transformed au-

tomatically in two steps: (1) insert the delays mandated by the cost model (here: a tick a�er

each receive), and (2) perform time reconstruction to insert the additional delays so the result

is temporally well-typed or issue an error message if this is impossible (see [55]).

5.1.2 �e Interpretation of a Con�guration

Let us reconsider the program to produce the number 6 = (110)2 under the cost model R
where each receive action costs one unit of time. �ere are no receive operations in this pro-

gram, but time reconstruction must insert a delay a�er each send in order to match the delays

mandated by the type bits.

bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}

· ` six :: (x : bits)

x← six = x.b0 ; delay ; x.b1 ; delay ; x.b1 ; delay ; x.$ ; delay ; close x

Executing proc(c0, 0, c0 ← six) then leads to the following con�guration

msg(c4, 4, close c4),

msg(c3, 3, c3.$ ; c3 ← c4),

msg(c2, 2, c2.b1 ; c2 ← c3),

msg(c1, 1, c1.b1 ; c1 ← c2),

msg(c0, 0, c0.b0 ; c0 ← c1)

�ese messages are at increasing times, which means any client of c0 will have to immediately

(at time 0) receive b0, then (at time 1) b1, then (at time 2) b1, etc. In other words, the time

stamps on messages predict exactly when the message will be received. Of course, if there is

a client in parallel this state may never be reached because, for example, the �rst b0 message

along channel c0 may be received before the continuation of the sender produces the message
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b1. So di�erent con�gurations may be reached depending on the scheduler for the concur-

rent processes. It is also possible to give a time-synchronous semantics in which all processes

proceed in parallel from time 0 to time 1, then from time 1 to time 2, etc.

5.2 �e Temporal Modalities Always (�A) and Eventually (♦A)

�e strength and also the weakness of the system so far is that its timing is very precise.

Consider a process compress that combines runs of consecutive 1’s to a single 1. For example,

compressing 11011100 should yield 10100. First, in the cost-free the process is de�ned as

bits = ⊕{b0 : bits, b1 : bits, $ : 1}

y : bits ` compress :: (x : bits)

y : bits ` skip1s :: (x : bits)

x← compress← y =

case y ( b0⇒ x.b0 ; x← compress← y

| b1⇒ x.b1 ; x← skip1s← y

| $⇒ x.$ ; wait y ; close x )

x← skip1s← y =

case y ( b0⇒ x.b0 ; x← compress← y

| b1⇒ x← skip1s← y

| $⇒ x.$ ; wait y ; close x )

�e problem is that program cannot be typed under the cost mode R, where every receive

takes one unit of time. Actually worse: there is no way to insert next-time modalities into the

type and additional delays into the program so that the result is well-typed. �is is because if

the input stream is unknown we cannot predict how long a run of 1’s will be, but the length

of such a run will determine the delay between sending a bit 1 and the following bit 0.

�e best we can say is that a�er a bit 1 compress will eventually send either a bit 0 or the end-

of-stream token $. �is is the purpose of the type ♦A. We capture this timing in the type sbits

(for slow bits).

bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}
sbits = ⊕{b0 : ©sbits, b1 : ©♦sbits, $ : ©1}

y : bits ` compress :: (x : ©sbits)

y : bits ` skip1s :: (x : ©♦sbits)

�e next section introduces the process constructs and typing rules so that compress and skip1s
programs can be revised to have the right temporal semantics.
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5.2.1 Eventually A

A process providing ♦A promises only that it will eventually provide A. �ere is a somewhat

subtle point here: since not every action may require time and because we do not check termi-

nation separately, x : ♦A expresses only that if the process providing x terminates it will even-

tually provide A. �us, it expresses non-determinism regarding the (abstract) time at which

A is provided, rather than a strict liveness property. �erefore, ♦A is somewhat weaker than

one might be used to from LTL [118]. When restricted to a purely logical fragment, without

unrestricted recursion, the usual meaning is fully restored so I feel the terminology is justi�ed.

Imposing termination, for example along the lines of Fortier and Santocanale [63] or Toninho

et al. [139] is an interesting item for future work but not necessary for our present purposes.

When a process o�ering c : ♦A is ready, it will send a now! message along c and then continue

at type A. Conversely, the client of c : ♦A will have to be ready and waiting for the now!

message to arrive along c and then continue at type A. I use (when? c ; Q) for the corre-

sponding client. �ese explicit constructs are a conceptual device and may not need to be part

of an implementation. �ey also make type-checking processes entirely syntax-directed and

trivially decidable.

�e typing rules for now! and when? are somewhat subtle.

∆ ` P :: (x : A)

∆ ` (now! x ; P ) :: (x : ♦A)
♦R

∆ delayed� ∆, x : A ` Q :: (z : C) C delayed♦

∆, x : ♦A ` (when? x ; Q) :: (z : C)
♦L

�e ♦R rule just states that, without constraints, we can at any time decide to communicate

along x : ♦A and then continue the session at type A. �e ♦L rule expresses that the process

must be ready to receive a now! message along x : ♦A, but there are two further constraints.

Because the process (when? x ; Q) may need to wait an inde�nite period of time, the rule

must make sure that communication along z and any channel in ∆ can also be postponed

an inde�nite period of time. �e predicate C delayed♦ describes that C must have the form

©∗♦C ′ to require that C may be delayed a �xed �nite number of time steps and then must be

allowed to communicate at an arbitrary time in the future. Similarly, for every channel y : B

in ∆, B must have the form ©∗�B, where � (as the dual of ♦) is introduced in Section 5.2.

In the operational semantics, the central restriction is that when? is ready before the now!

message arrives so that the continuation can proceed immediately as promised by the type.

(♦S) proc(c, t, now! c ; P ) 7→ proc(c′, t, [c′/c]P ),msg(c, t, now! c ; c← c′) (c′ fresh)

(♦C) msg(c, t, now! c ; c← c′), proc(d, s,when? c ; Q) 7→ proc(d, t, [c′/c]Q) (t ≥ s)

To rewrite the compress process in our cost modelR, I �rst insert tick before all the actions that

must be delayed according to our cost model. �en I insert appropriate additional delay, when?,



Time Analysis 72

and now! actions. While compress turns out to be straightforward, skip1s creates a di�culty

a�er it receives a b1:

bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}
sbits = ⊕{b0 : ©sbits, b1 : ©♦sbits, $ : ©1}

y : bits ` compress :: (x : ©sbits)

y : bits ` skip1s :: (x : ©♦sbits)

x← compress← y =

case y ( b0⇒ tick ; x.b0 ; x← compress← y

| b1⇒ tick ; x.b1 ; x← skip1s← y

| $⇒ tick ; x.$ ; wait y ; tick ; close x )

x← skip1s← y =

case y ( b0⇒ tick ; now! x ; x.b0 ; x← compress← y

| b1⇒ tick ; % y : bits ` x : ♦sbits

x′ ← skip1s← y ; % x′ : ©♦sbits ` x : ♦sbits

x← idle← x′ % with x′ : ©♦sbits ` idle :: (x : ♦sbits)

| $⇒ tick ; now! x ; x.$ ; wait y ; tick ; close x )

At the point where I would like to call skip1s recursively, I have

y : bits ` x : ♦sbits

but y : bits ` skip1s :: (x : ©♦sbits)

which prevents a tail call since ©♦sbits 6= ♦sbits. Instead skip1s is called to obtain a new

channel x′ and then use another process called idle to go from x′ : ©♦sbits to x : ♦sbits.

Intuitively, it should be possible to implement such an idling process: x : ♦sbits expresses at
some time in the future, including possibly right now while x′ : ©♦sbits says at some time in the
future, but not right now.

To type the idling process, the©LR rule needs to be generalized to account for the interactions

of ©A with �A and ♦A. A�er all, they speak about the same underlying model of time.

5.2.2 Interactions of ©A and ♦A

Recall the le�/right rule for ©:

∆ ` P :: (x : A)

©∆ ` (delay ; P ) :: (x : ©A)
©LR

If the succedent were x : ♦A instead of x : ©A, we should still be able to delay since we can

freely choose when to interact along x. We could capture this in the following rule (superseded
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later by a more general form of ©LR):

∆ ` P :: (x : ♦A)

©∆ ` (delay ; P ) :: (x : ♦A)
©♦

I keep ♦A as the type of x since I want to retain the full �exibility of using x at any time in the

future a�er the initial delay. I will generalize the rule once more in the next section to account

for interactions with �A.

With this, I can de�ne and type the idling process parametrically over A:

x′ : ©♦A ` idle :: (x : ♦A)

x← idle← x′ = delay ; x← x′

�is turns out to be an example of subtyping (see [55]), which means that the programmer

actually will not have to explicitly de�ne or even reference an idling process. �e program-

mer simply writes the original skip1s process (without referencing the idle process) and our

subtyping algorithm will use the appropriate rule to typecheck it successfully.

5.2.3 Always A

�e last temporal modality, wri�en as �A (read: always A), is dual to ♦A. If a process P

provides x : �A it means it is ready to receive a now! message along x at any point in the

future. In analogy with the typing rules for ♦A, but �ipped to the other side of the sequent,

we obtain

∆ delayed� ∆ ` P :: (x : A)

∆ ` (when? x ; P ) :: (x : �A)
�R

∆, x : A ` Q :: (z : C)

∆, x : �A ` (now! x ; Q) :: (z : C)
�L

�e operational rules just reverse the role of provider and client from the rules for ♦A.

(�S) proc(d, t, now! c ; Q) 7→ msg(c′, t, now! c ; c′ ← c), proc(d, t, [c′/c]Q) (c′ fresh)

(�C) proc(c, s,when? c ; P ),msg(c′, t, now! c ; c′ ← c) 7→ proc(c′, t, [c′/c]P ) (s ≤ t)

As an example for the use of �A, and also to introduce a new kind of example, I specify and

implement a counter process that can receive inc and val messages. When receiving an inc it

will increment its internally maintained counter, when receiving val it will produce a �nite bit

stream representing the current value of the counter. In the cost-free se�ing the type is

bits = ⊕{b0 : bits, b1 : bits, $ : 1}
ctr = N{inc : ctr, val : bits}

A counter is implemented by a chain of processes, each holding one bit (either bit0 or bit1) or

signaling the end of the chain (empty). For this purpose we implement three processes:
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d : ctr ` bit0 :: (c : ctr)

d : ctr ` bit1 :: (c : ctr)

· ` empty :: (c : ctr)

c← bit0← d =

case c ( inc⇒ c← bit1← d % increment by continuing as bit1
| val⇒ c.b0 ; d.val ; c← d ) % send b0 on c, send val on d, identify c and d

c← bit1← d =

case c ( inc⇒ d.inc ; c← bit0← d % send inc (carry) on d, continue as bit1
| val⇒ c.b1 ; d.val ; c← d ) % send b1 on c, send val on d, identify c and d

c← empty =

case c ( inc⇒ e← empty ; % spawn a new empty process with channel e

c← bit1← e % continue as bit1
| val⇒ c.$ ; close c ) % send $ on c and close c

Using our standard cost model R there is a problem: the carry bit (the d.inc message sent in

the bit1 process) is sent only on every other increment received because bit0 continues as bit1
without a carry, and bit1 continues as bit0 with a carry. So it will actually take 2k increments

received at the lowest bit of the counter (which represents the interface to the client) before an

increment reaches the kth process in the chain. �is is not a constant number, so the behavior

cannot be characterized exactly using only the next time modality. Instead, I require, from a

certain point on, a counter is always ready to receive either an inc or val message.

bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}
ctr = �N{inc : ©ctr, val : ©bits}

In the program, the ticks are mandated by our cost model and some additional delay, when?, and

now! actions are present to satisfy the stated types. �e two marked lines may look incorrect,

but are valid based on the generalization of the ©LR rule in Section 5.2.

d : ©ctr ` bit0 :: (c : ctr)

d : ctr ` bit1 :: (c : ctr)

· ` empty :: (c : ctr)

c← bit0← d =

when? c ; % d : ©ctr ` c : N{. . .}
case c ( inc⇒ tick ; % d : ctr ` c : ctr

c← bit1← d

| val⇒ tick ; % d : ctr ` c : bits

c.b0 ; % d : ctr ` c : ©bits

now! d ; d.val ; % d : ©bits ` c : ©bits

c← d )
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c← bit1← d =

when? c ; % d : ctr ` c : N{. . .}
case c ( inc⇒ tick ; % d : ctr ` c : ctr (see Section 5.2)

now! d ; d.inc ; % d : ©ctr ` c : ctr

c← bit0← d

| val⇒ tick ; % d : ctr ` c : bit (see Section 5.2)
c.b1 ; % d : ctr ` c : ©bits

now! d ; d.val ; % d : ©bits ` c : ©bits

c← d )

c← empty =

when? c ; % · ` c : N{. . .}
case c ( inc⇒ tick ; % · ` c : ctr

e← empty ; % e : ctr ` c : ctr

c← bit1← e

| val⇒ tick ; c.$ ; % · ` c : ©1

delay ; close c )

5.2.4 Interactions Between Temporal Modalities

Just as©A and♦A interacted in the rules since their semantics is based on the same underlying

notion of time, so do ©A and �A. Executing a delay allows any channel of type �A that is

used and leaves its type unchanged because we are not obligated to communicate along it at

any particular time. To cover all the cases, I introduce a new notation, writing [A]−1
L and [A]−1

R

on types and extend it to contexts. Depending on one’s point of view, this can be seen as

stepping forward or backward by one unit of time.

[©A]−1
L = A [©A]−1

R = A [x : A]−1
L = x : [A]−1

L

[�A]−1
L = �A [�A]−1

R = unde�ned [x : A]−1
R = x : [A]−1

R

[♦A]−1
L = unde�ned [♦A]−1

R = ♦A [·]−1
L = ·

[S]−1
L = unde�ned [S]−1

R = unde�ned [∆,∆′]−1
L = [∆]−1

L , [∆′]−1
L

Here, S stands for any basic session type constructor as in Table 2.1. We use this notation in

the general rule ©LR which can be found in Figure 5.1 together with the �nal set of rules for

�A and ♦A. In conjunction with the rules in Chapter 2 this completes the system of temporal

session types where all temporal actions are explicit. �e rule©LR only applies if both [∆]−1
L

and [x : A]−1
R are de�ned.

A type A is called patient if it does not force communication along a channel x : A at any

particular point in time. Because the direction of communication is reversed between the two

sides of a sequent, a typeA is patient if it has the form©∗�A′ if it is among the antecedents, and

©∗♦A′ if it is in the succedent. �e judgmentsA delayed� andA delayed♦ are a shorthand for
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[∆]−1
L ` P :: [x : A]−1

R

∆ ` (delay ; P ) :: (x : A)
©LR ©∗�A delayed� ©∗♦A delayed♦

∆ ` P :: (x : A)

∆ ` (now! x ; P ) :: (x : ♦A)
♦R

∆ delayed� ∆, x:A ` Q :: (z : C) C delayed♦

∆, x:♦A ` (when? x ; Q) :: (z : C)
♦L

∆ delayed� ∆ ` P :: (x : A)

∆ ` (when? x ; P ) :: (x : �A)
�R

∆, x:A ` Q :: (z : C)

∆, x:�A ` (now! x ; Q) :: (z : C)
�L

Figure 5.1: Explicit Temporal Typing Rules

patient types. Further, A delayed� is extended to contexts ∆ delayed� if for every declaration

(x : A) ∈ ∆, A delayed� holds.

5.3 Preservation and Progress

�e main theorems that exhibit the deep connection between our type system and the timed

operational semantics are the usual type preservation and progress, sometimes called session
�delity and deadlock freedom, respectively.

5.3.1 Con�guration Typing

A key question is how we type con�gurations C. Con�gurations consist of multiple processes

and messages, so they both use and provide a collection of channels. And even though we treat

a con�guration as a multiset, typing imposes a partial order on the processes and messages

where a provider of a channel appears to the le� of its client.

Configuration C ::= · | C C′ | proc(c, t, P ) | msg(c, t,M)

�e predicates proc(c, t, P ) and msg(c, t,M) provide c. I stipulate that no two distinct pro-

cesses or messages in a con�guration provide the same channel c. Also recall that messages

M are simply processes of a particular form and are typed as such. �e possible messages (of

which there is one for each type constructor) can be read of from the operational semantics.

�ey are summarized here for completeness.

M ::= (c.k ; c← c′) | (c.k ; c′ ← c) | close c | (send c d ; c′ ← c) | (send c d ; c← c′)

�e typing judgment has the form ∆′ � C :: ∆ meaning that if composed with a con�guration

that provides ∆′, the result will provide ∆.

∆ � (·) :: ∆
empty

∆0 � C1 :: ∆1 ∆1 � C2 :: ∆2

∆0 � (C1 C2) :: ∆2

compose
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To type processes and messages, I begin by considering preservation: I would like to achieve

that if ∆′ � C :: ∆ and C 7→ C′ then still ∆′ � C′ :: ∆. Without the temporal modalities, this is

guaranteed by the design of the sequent calculus: the right and le� rules match just so that cut

reduction (which is the basis for reduction in the operational semantics) leads to a well-typed

deduction. �e key here is what happens with time. Consider the special case of delay. When

we transition from delay ; P to P we strip one©modality from ∆ andA, but because we also

advance time from t to t+ 1, the © modality is restored, keeping the interface type invariant.

When we also consider types �A and ♦A the situation is a li�le less straightforward because

of their interaction with ©. I reuse the idea of the solution, allowing the subtraction of time

from a type, possibly stopping when I meet a � or ♦.

[A]−0
L = A [A]−0

R = A

[A]
−(t+1)
L = [[A]−tL ]−1

L [A]
−(t+1)
R = [[A]−tR ]−1

R

�is is extended to channel declarations in the obvious way. Additionally, the imprecision of

�A and ♦A may create temporal gaps in the con�guration that need to be bridged by a weak

form of subtyping A <: B,

m ≤ n
©m�A <: ©n�A

�weak
m ≥ n

©m♦A <: ©n♦A
♦weak A <: A

refl

�is relation is speci�ed to be re�exive and clearly transitive. I extend it to contexts ∆ in the

obvious manner. In the �nal rules, I also account for some channels that are not used by P or

M but just passed through.

∆′ <: ∆ [∆]−tL ` P :: [c : A]−tR A <: A′

∆0,∆
′ � proc(c, t, P ) :: (∆0, c : A′)

proc

∆′ <: ∆ [∆]−tL `M :: [c : A]−tR A <: A′

∆0,∆
′ � msg(c, t,M) :: (∆0, c : A′)

msg

5.3.2 Type Preservation

With the four rules for typing con�gurations (empty, compose, proc and msg), type preser-

vation is relatively straightforward. We need some standard lemmas about being able to split

a con�guration and be able to move a provider (whether process or message) to the right in

a typing derivation until it rests right next to its client. Regarding time shi�s, we need the

following properties.

Lemma 5.1 (Time Shi�).

(i) If [A]−tL = [B]−tR and both are de�ned then A = B.

(ii) [[A]−tL ]−sL = [A]
−(t+s)
L and if either side is de�ned, the other is as well.
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(iii) [[A]−tR ]−sR = [A]
−(t+s)
R and if either side is de�ned, the other is as well.

�eorem 5.2 (Type Preservation). If ∆′ � C :: ∆ and C 7→ D then ∆′ � D :: ∆.

Proof. By case analysis on the transition rule, applying inversion to the given typing derivation,

and then assembling a new derivation of D.

Type preservation on basic session types is a simple special case of this theorem.

5.3.3 Global Progress

A process or message is said to be poised if it is trying to communicate along the channel that it

provides. A poised process is comparable to a value in a sequential language. A con�guration

is poised if every process or message in the con�guration is poised. Conceptually, this implies

that the con�guration is trying to communicate externally, i.e. along one of the channel it

provides. �e progress theorem then shows that either a con�guration can take a step or it is

poised. To prove this I show �rst that the typing derivation can be rearranged to go strictly

from right to le� and then proceed by induction over this particular derivation.

�e question is how can we prove that processes are either at the same time (for most interac-

tions) or that the message recipient is ready before the message arrives (for when?, now!, and

some forwards)? �e key insight here is in the following lemma.

Lemma 5.3 (Time Inversion).

(i) If [A]−sR = [A]−tL and either side starts with a basic session type constructor then s = t.

(ii) If [A]−tL = �B and [A]−sR 6= ©(−) then s ≤ t and [A]−sR = �B.

(iii) If [A]−tR = ♦B and [A]−sL 6= ©(−) then s ≤ t and [A]−sL = ♦B.

�eorem 5.4 (Global Progress). If · � C :: ∆ then either

(i) C 7→ C′ for some C′, or

(ii) C is poised.

Proof. By induction on the right-to-le� typing of C so that either C is empty (and therefore

poised) or C = (D proc(c, t, P )) or C = (D msg(c, t,M)). By induction hypothesis, D can

either take a step (and then so can C), or D is poised. In the la�er case, we analyze the cases

for P and M , applying multiple steps of inversion and Lemma 5.3 to show that in each case

either C can take a step or is poised.
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5.4 Further Examples

�is section presents example analyses of some of the properties that we can express in the

type system, such as the response time of concurrent data structures and the span of a fork/join

parallel program.

In some examples I use parametric de�nitions, both at the level of types and processes. For

example, stackA describes stacks parameterized over a type A, listA[n] describes lists of n

elements, and tree[h] describes binary trees of height h. Process de�nitions are similarly pa-

rameterized. �ey exist as families of ordinary de�nitions and calculated accordingly, at the

metalevel, which is justi�ed since they are only implicitly quanti�ed across whole de�nitions.

�is common practice (for example, in work on interaction nets [68]) avoids signi�cant syn-

tactic overhead, highlighting conceptual insight. It is of course possible to internalize such

parameters (see, for example, work on re�nement of session types [74] or explicitly polymor-

phic session types [40, 73]).

5.4.1 Response Times: Stacks and�eues

To analyze response times, I present concurrent stacks and queues. A stack data structure

provides a client with a choice between a push and a pop. A�er a push, the client has to

send an element, and the provider will again behave like a stack. A�er a pop, the provider

will reply either with the label none and terminate (if there are no elements in the stack), or

send an element and behave again like a stack. In the cost-free model, this is expressed in the

following session type.

stackA = N{ push : A( stackA,

pop : ⊕{ none : 1, some : A⊗ stackA } }

A stack is implemented as a chain of processes. �e bo�om to the stack is de�ned by the

process empty, while a process elem holds a top element of the stack as well as a channel with

access to the top of the remainder of the stack.

x : A, t : stackA ` elem :: (s : stackA)

· ` empty :: (s : stackA)

�e cost model I would like to consider here isRS where both receives and sends cost one unit

of time. Because a receive costs one unit, every continuation type must be delayed by one tick

of the clock, which is denoted by pre�xing continuations by the © modality. �is delay is not

an artifact of the implementation, but an inevitable part of the cost model—one reason I have

distinguished the synonyms tick (delay of one, due to the cost model) and delay (delay of one,

to correctly time the interactions). In this section of examples I will make the same distinction
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for the next-time modality: I write ‘A for a step in time mandated by the cost model, and ©A

for a delay necessitated by a particular set of process de�nitions.

As a �rst approximation,

stackA = N{ push : ‘(A( ‘stackA),

pop : ‘⊕ { none : ‘1, some : ‘(A⊗ ‘stackA) } }

�ere are several problems with this type. �e stack is a data structure and has li�le or no

control over when elements will be pushed onto or popped from the stack. �erefore a type

�stackA should be used to indicate that the client can choose the times of interaction with the

stack. While the elements are held by the stack time advances in an indeterminate manner.

�erefore, the elements stored in the stack must also have type �A, not A (so that they are

always available).

stackA = N{ push : ‘(�A( ‘�stackA),

pop : ‘⊕ { none : ‘1, some : ‘(�A⊗ ‘�stackA) } }

x : �A, t : �stackA ` elem :: (s : �stackA)

· ` empty :: (s : �stackA)

�is type expresses that the data structure is very e�cient in its response time: there is no

additional delay a�er it receives a push and then an element of type �A before it can take

the next request, and it will respond immediately to a pop request. It may not be immediately

obvious that such an e�cient implementation actually exists in theRS cost model, but it does.

I use the implicit form from [55] omi�ing the tick constructs a�er each receive and send, and

also the when? before each case that goes along with type �A.

s← elem← x t =

case s ( push⇒ y ← recv s ;

s′ ← elem← x t ; % previous top of stack, holding x
s← elem← y s′ % new top of stack, holding y

| pop⇒ s.some ;

send s x ; % send channel x along s
s← t ) % s is now provided by t, via forwarding

s← empty =

case s ( push⇒ y ← recv s ;

e← empty ; % new bo�om of stack
s← elem← y e

| pop⇒ s.none ;

close s )
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�e speci�cation and implementation of a queue is very similar. �e key di�erence in the

implementation is that when a new element is received, it is passed along the chain of processes

until it reaches the end. So instead of

s′ ← elem← x t ; % previous top of stack, holding x
s← elem← y s′ % new top of stack, holding y

I write

t.enq ;

send t y ; % send y to the back of the queue
s← elem← x t

in the push branch of elem process. �ese two send operations take two units of time, which

must be re�ected in the type: a�er a channel of type �A has been received, there is a delay of

an additional two units of time before the provider can accept the next request.

queueA = N{ enq : ‘(�A( ‘©©�queueA),

deq : ‘⊕ { none : ‘1, some : ‘(�A⊗ ‘�queueA) } }

x : �A, t : ©©�queueA ` elem :: (s : �queueA)

· ` empty :: (s : �queueA)

Time reconstruction will insert the additional delays in the empty process through subtyping,

using �queueA ≤ ©©�queueA. I have syntactically expanded the tail call so the second use

of subtyping is more apparent.

s← empty =

case s ( enq⇒ y ← recv s ; % y : �A ` s : ©©�queueA
e← empty ; % y : �A, e : �queueA ` s : ©©�queueA
s′ ← elem← y e ; % �queueA ≤ ©©�queueA (on e)

s← s′ % �queueA ≤ ©©�queueA (on s′)

| deq⇒ s.none ;

close s )

�e di�erence between the response times of stacks and queues in the cost model is mini-

mal: both are constant, with the queue being two units slower. �is is in contrast to the total

work [54] which is constant for the stack but linear in the number of elements for the queue.

�is di�erence in response times can be realized by typing clients of both stacks and queues.

Compare clients Sn and Qn that insert n elements into a stack and queue, respectively, send

the result along channel d, and then terminate. I show only their type below, omi�ing the

implementations.
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x1 : �A, . . . , xn : �A, s : �stackA ` Sn :: (d : ©2n (�stackA ⊗ ‘1))

x1 : �A, . . . , xn : �A, s : �queueA ` Qn :: (d : ©4n (�queueA ⊗ ‘1))

�e types demonstrate that the total execution time of Sn is only 2n+ 1, while it is 4n+ 1 for

Qn. �e di�erence comes from the di�erence in response times. Note that we can infer precise

execution times, even in the presence of the � modality in the stack and queue types.

5.4.2 Span Analysis: Trees

I use trees to illustrate an example that is typical for fork/join parallelism and computation of

span. In order to avoid integers, I just compute the parity of a binary tree of height h with

boolean values at the leaves. I do not show the obvious de�nition of xor, which in theRS cost

model requires a delay of four from the �rst input.

bool = ⊕{ b0 : ‘1, b1 : ‘1 }

a : bool, b : ©2 bool ` xor :: (c : ©4 bool)

In the de�nition of leaf and node I have explicated the delays inferred by time reconstruction,

but not the tick delays. �e type of tree[h] gives the span of this particular parallel computation

as 5h+ 2. �is is the time it takes to compute the parity under maximal parallelism, assuming

that xor takes 4 cycles as shown in the type above.

tree[h] = N{ parity : ‘©5h+2 bool }

· ` leaf :: (t : tree[h])

t← leaf =

case t ( parity⇒ % · ` t : ©5h+2 bool

% delay5h+2
% · ` t : bool

t.b0 ; % · ` t : 1

close t )

l : ©1tree[h], r : ©3 tree[h] ` node :: (t : tree[h+ 1])

t← node← l r =

case t ( parity⇒ % l : tree[h], r : ©2 tree[h] ` t : ©5(h+1)+2 bool

l.parity ; % l : ©5h+2 bool, r : ©1tree[h] ` t : ©5(h+1)+1 bool

% delay % l : ©5h+1 bool, r : tree[h] ` t : ©5h+5 bool

r.parity ; % l : ©5h bool, r : ©5h+2 bool ` t : ©5h+4 bool

% delay5h
% l : bool, r : ©2 bool ` t : ©4 bool

t← xor← l r )

�e type l : © tree[h] comes from the fact that, a�er receiving a parity request, it is �rst sent

out the parity request to the le� subtree l. �e type r : ©3 tree[h] is determined from the delay
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of 2 between the two inputs to xor. �e magic number 5 in the type of tree was derived in re-

verse from se�ing up the goal of type-checking the node process under the constraints already

mentioned. It can also be thought of as 4+1, where 4 is the time to compute the exclusive or at

each level and 1 as the time to propagate the parity request down each level.

As is o�en done in abstract complexity analysis, I can also impose an alternative cost model.

For example, I may count only the number of calls to xor while all other operations are cost

free. �en I would have

a : bool, b : bool ` xor :: (c : ©bool)

tree[h] = N{ parity : ©h bool }
· ` leaf :: (t : tree[h])

l : tree[h], r : tree[h] ` node :: (t : tree[h+ 1])

with the same code but di�erent times and delays from before. �e reader is invited to recon-

struct the details.

5.5 Related Work

Most closely related is work on space and time complexity analysis of interaction nets by

Gimenez and Moser [68], which is a parallel execution model for functional programs. While

also inspired by linear logic and, in particular, proof nets, it treats only special cases of the ad-

ditive connectives and recursive types and does not have analogues of the� and ♦modalities.

It also does not provide a general source-level programming notation with a syntax-directed

type system. On the other hand it incorporates sharing and space bounds, which are beyond

the scope of this work.

Session types and process calculi. Another related thread is the research on timed multi-

party session types [35] for modular veri�cation of real-time choreographic interactions. �eir

system is based on explicit global timing interval constraints, capturing a new class of commu-

nicating timed automata, in contrast to our system based on binary session types in a general

concurrent language. �erefore, their system has no need for general � and ♦ modalities,

the ability to pass channels along channels, or the ability to identify channels via forwarding.

�eir work is complemented by an expressive dynamic veri�cation framework in real-time

distributed systems [111], which I do not consider. Semantics counting communication costs

for work and span in session-typed programs were given by Silva et al. [132], but no techniques

for analyzing them were provided.

In addition to the work on timed multiparty session types, time has been introduced into the π-

calculus (see, for example, Saeedloei and Gupta [129]) or session-based communication prim-

itives (see, for example, López et al. [103]) but generally these works do not develop a type

system. Kobayashi [91] extends a (synchronous) π-calculus with means to count parallel re-

duction steps. He then provides a type system to verify time-boundedness. �is is more general



Time Analysis 84

in some dimension than our work because of a more permissive underlying type and usage sys-

tem, but it lacks internal and external choice, genericity in the cost model, and provides bounds

rather than a �ne gradation between exact and inde�nite times. Session types can also be de-

rived by a Curry-Howard interpretation of classical linear logic [143] but I am not aware of

temporal extensions. I conjecture that there is a classical version of our system where � and

♦ are dual and © is self-dual.

Reactive programming. Synchronous data �ow languages such as Lustre [78], Esterel [33],

or Lucid Synchrone [120] are time-synchronous with uni-directional �ow and thus may be

compared to the fragment of our language with internal choice (⊕) and the next-time modal-

ity (©A), augmented with existential quanti�cation over basic data values like booleans and

integers (which we have omi�ed here only for the sake of brevity). �e global clock would map

to our underlying notion of time, but data-dependent local clocks would have to be encoded at

a relatively low level using streams of option type, compromising the brevity and elegance of

these languages. Furthermore, synchronous data �ow languages generally permit sharing of

channels, which, although part of many session-typed languages [25, 39], require further inves-

tigation with temporal modalities. On the other hand, I support a number of additional types

such as external choice (N) for bidirectional communication and higher-order channel-passing

(A ( B, A ⊗ B). In the context of functional reactive programming, a Nakano-style [110]

temporal modality has been used to ensure productivity [93]. A di�erence in my work is that

I consider concurrent processes and that the types prescribe the timing of messages.

Computational interpretations of ©A. A �rst computational interpretation of the next-

time modality under a proofs-as-programs paradigm was given by Davies [59]. �e basis is

natural deduction for a (non-linear!) intutionistic linear-time temporal logic with only the

next-time modality. Rather than capturing cost, the programmer could indicate staging by

stipulating that some subexpressions should be evaluated “at the next time”. �e natural oper-

ational semantics then is a logically-motivated form of partial evaluation which yields a resid-

ual program of type ©A. �is idea was picked up by Feltman et al. [62] to instead split the

program statically into two stages where results from the �rst stage are communicated to the

second. Again, neither linearity (in the sense of linear logic), nor any speci�c cost semantics

appears in this work.

Other techniques. Inferring the cost of concurrent programs is a fundamental problem

in resource analysis. Ho�mann and Shao [81] introduce the �rst automatic analysis for de-

riving bounds on the worst-case evaluation cost of parallel �rst-order functional programs.

�eir main limitation is that they can only handle parallel computation; they don’t support

message-passing or shared memory based concurrency. Blelloch and Reid-Miller [34] use

pipelining [114] to improve the complexity of parallel algorithms. However, they use fu-

tures [79], a parallel language construct to implement pipelining without the programmer hav-

ing to specify them explicitly. �e runtime of algorithms is determined by analyzing the work
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and depth in a language-based cost model. �e work relates to ours in the sense that pipelines

can have delays, which can be data dependent. However, the algorithms they analyze have

no message-passing concurrency or other synchronization constructs. Albert et al. [16] de-

vised a static analysis for inferring the parallel cost of distributed systems. �ey �rst perform

a block-level analysis to estimate the serial cost, then construct a distributed �ow graph (DFG)

to capture the parallelism and then obtain the parallel cost by computing the maximal cost

path in the DFG. However, the bounds they produce are modulo a points-to and serial cost

analysis. Hence, an imprecise points-to analysis will result in imprecise parallel cost bounds.

Moreover, since their technique is based on static analysis, it is not compositional and a whole

program analysis is needed to infer bounds on each module. Recently, a bounded linear typing

discipline [67] modeled in a semiring was proposed for resource-sensitive compilation. It was

then used to calculate and control execution time in a higher-order functional programming

language. However, this language did not support recursion.

5.6 Future Directions

I have presented a system of temporal session types that can accommodate and analyze concur-

rent programs with respect to a variety of di�erent cost models. Types can vary in precision,

based on desired and available information, and includes latency, rate, response time, and span

of computations. It is constructed in a modular way, on top of a system of basic session types,

and therefore lends itself to easy generalization. I have illustrated the type system through a

number of simple programs on streams of bits, binary counters, lists, stacks, queues, and trees.

I mention some of the further challenges that need to be addressed in this domain of temporal

session types.

Inference Inference of time bounds will make resource-aware session types more practical

and usable. �e most severe di�culty here is the © operator. Computing the number of ©

operators to insert at a program point is non-trivial. �e idea here would be similar to work

inference. �e inference engine �rst inserts a parametric amount of delay and then the type-

checker determines the constraints on the inserted delays. A solver then tries to determine the

value of said delays. �e� and ♦ operators do not involve any parameters and they should be

easier to handle.

Dependent Types Time bounds are o�en dependent on the type re�nements applied to

session types. However, these dependencies bring along their own challenges. �ey require

an arithmetic solver engine in the type checker, along with a system that allows parameters in

types and process de�nitions. Moreover, they exacerbate the non-determinism in subtyping.



Chapter 6

Session Types for Digital Contracts

Digital contracts are computer protocols that describe and enforce the execution of a contract.

With the rise of blockchains and cryptocurrencies such as Bitcoin [109], Ethereum [145], and

Tezos [72], digital contracts have become popular in the form of smart contracts, which provide

potentially distrusting parties with programmable money and an enforcement mechanism that

does not rely on third parties. Smart contracts have been used to implement auctions [1],

investment instruments [108], insurance agreements [88], supply chain management [96], and

mortgage loans [107]. In general, digital contracts hold the promise to reduce friction, lower

cost, and broaden access to �nancial infrastructure.

Smart contracts have not only shed light on the bene�ts of digital contracts but also on their

potential risks. Like all so�ware, smart contracts can contain bugs and security vulnerabili-

ties [22], which can have direct �nancial consequences. A well-known example, is the a�ack

on �e DAO [108], resulting in a multi-million dollar the� by exploiting a contract vulnerabil-

ity. Maybe even more important than the direct �nancial consequences is the potential erosion

of trust as a result of such failures.

Contract languages today are derived from existing general-purpose languages like JavaScript

(Ethereum’s Solidity [1]), Go (in the Hyperledger project [38]), or OCaml (Tezos’ Liquidity [5]).

While this makes contract languages look familiar to so�ware developers, it is inadequate to

accommodate the domain-speci�c requirements of digital contracts.

• Instead of centering contracts on their interactions with users, the high-level protocol of

the intended interactions with a contract is buried in the implementation code, hampering

understanding, formal reasoning, and trust.

• Resource (or gas) usage of digital contracts is of particular importance for transparency and

consensus. However, obliviousness of resource usage in existing contract languages makes it

hard to predict the cost of executing a contract and prevent denial-of-service vulnerabilities.

• Existing languages fail to enforce linearity of assets, endangering the validity of a contract

when assets get duplicated or deleted, accidentally or maliciously [105].

86
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As a result, developing a correct smart contract is no easier than developing bug-free so�ware

in general. Additionally, vulnerabilities are harder to �x, because changes in the code may

proliferate into changes in the contract itself.

�is chapter presents the type-theoretic foundations of Nomos, a programming language for

digital contracts whose genetics match the domain-speci�c requirements to provide strong

static guarantees that facilitate the design of correct contracts. In particular, Nomos’ type sys-

tem makes explicit the protocols governing a contract, provides static bounds on the resource

cost of interacting with a contract, and enforces a linear treatment of a contract’s assets.

To express and enforce the protocols underlying a contract, Nomos is based on resource-aware
session types [54]. �e types describe the protocol of interaction between users and contracts

and serve as a high-level description of the functionality of the contract. Type checking can

be automated and guarantees that Nomos programs follow the given protocol. In this way, the

key functionality of the contract is visible in the type, and contract development is centered on

the interaction of the contract with the world. In addition to the interaction, resource-aware

types also make the transaction cost visible in the type. �is makes transactions transparent in

their resource usage, and type checking again guarantees that the transactions do not exceed

the resource usage prescribed by the type.

To eliminate a class of bugs in which the internal state of a contract loses track of its assets

or performs unintended transactions, Nomos integrates a linear type system [142] into a func-

tional language. Linear type systems use the ideas of Girard’s linear logic [69] to ensure that

certain data is neither duplicated nor discarded by a program. Programming languages such as

Rust [8] have demonstrated that substructural type systems are practical in industrial-strength

languages. Moreover, linear types are compatible with session types, which are themselves

based on linear logic [25, 39, 116, 138, 143].

In addition to the design of the Nomos language, this chapter makes the following technical

contributions.

1. Linear session types that support controlled sharing [25, 26] have been integrated into a

conventional functional type system. To leave the logical foundation intact, the integra-

tion is achieved by a contextual monad [138] (Section 6.3) that gives process expressions

�rst-class status in the functional language. Moreover, shared session types [25] are

recast to accommodate the explicit notions of contracts and clients (Section 6.2).

2. I prove the type soundness of Nomos with respect to a novel asynchronous cost seman-

tics using progress and preservation (Section 6.5).

6.1 Nomos by Example

�is section provides an overview of the main features of Nomos based on a simple auction

contract.
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Explicit Protocols of Interaction Digital contracts, like traditional contracts, follow a pre-
de�ned protocol. For instance, an auction contract distinguishes a bidding phase, where bidders

submit their bids, possibly multiple times, from a subsequent collection phase, where the high-

est bidder receives the lot while all other bidders receive their bids back. In Solidity [1], the

bidding phase of an auction is typically implemented as the bid function below. �is function

receives a bid (msg.value) from a bidder (msg.sender) and adds it to the bidder’s total previous

bids (bidValue).

function bid() public payable {

require (status == running);

bidder = msg.sender; bid = msg.value;

bidValue[bidder] = bidValue[bidder] + bid; }

To guarantee that a bid can only be placed in the bidding phase, the contract uses the state

variable status to track the di�erent phases of a contract. �e require statement tests whether

the auction is still running and thus accepts bids. It is checked at run-time and aborts the

execution if the condition is not met. It is the responsibility of the programmer to de�ne state

variables, update them, and introduce corresponding guards.

Rather than burying the contract’s interaction protocol in implementation code by means of

state variables and run-time checks, Nomos allows the explicit expression and static enforce-

ment of protocols with session types. �e auction’s protocol amounts to the below session

type:

auction = ↑SL/22 ⊕ {running : N{bid : id→ money( ↓SLauction, % recv bid from client

cancel : .21↓SLauction}, % client canceled

ended : N{collect : id→⊕{won : lot⊗ ↓SLauction, % client won

lost : money ⊗ .7↓SLauction}, % client lost

cancel : .21↓SLauction}} % client canceled

We �rst focus on how the session type de�nes the main interactions of a contract with a bidder

and ignore the operators ↑SL, ↓SL, /, and . for now. To distinguish the two main phases an

auction can be in, the session type uses an internal choice (⊕), leading the contract to either

send the label running or ended, depending on whether the auction still accepts bids or not,

respectively. Dual to an internal choice is an external choice (N), which leaves the choice to

the client (i.e., bidder) rather than the provider (i.e., contract). For example, in case the auction

is running, the client can choose between placing a bid (label bid) or backing out (cancel).

In the former case, the client indicates their identi�er (type id), followed by a payment (type

money). Nomos session types allow transfer of both non-linear (e.g., id) and linear assets (e.g.,

money), using the operators arrow (→) and ((), respectively. Should the auction have ended,

the client can choose to check their outcome (label collect) or back out (cancel). In the case of

collect, the auction will answer with either won or lost. In the former case, the auction will

send the lot, in the la�er case, it will return the client’s bid. �e linear product (⊗) is dual to
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( and denotes the transfer of a linear value from the contract to the client. �e auction type

guarantees that a client cannot collect during the running phase, while they cannot bid during

the ended phase.

Nomos uses shared session types [25] to guarantee that bidders interact with the auction in

mutual exclusion from each other and that the sequences of actions are executed atomically. To

demarcate the parts of the protocol that become a critical section, the above session type uses

the ↑SL and ↓SL modalities. �e ↑SL modality denotes the beginning of a critical section, the ↓SL
modality denotes its end. Programmatically, ↑SL translates into an acquire of the auction session

and ↓SL into its release, which is only sound if the protocol behaves like an auction a�erwards

(equi-synchronizing type).

Contracts are implemented by processes, revealing the concurrent, message-passing nature of

session-typed languages. �e process run below implements the auction’s running phase.

Line 2 gives the process’ signature, indicating that it o�ers a shared session of type auction

along the channel sa and uses a linear hash map b : hashmapid,bid of bids indexed by id and a

linear lot l. �e bid session type (line 1) can be queried for the stored identi�er and bid value,

and is o�ered by a process (not shown) that internally stores this identi�er and money. Line 4

onward list the process body. Line 1 de�nes session types bid and bids, respectively.

1: stype bid = N{addr : id× bid,val : money}, stype bids = hashmapid,bid

2: (b : bids), (l : lot) ` run :: (sa : auction) % syntax for process declaration

3: sa← run b l = % syntax for process de�nition

4: la← accept sa ; % accept a client acquire request

5: la.running ; % auction is running

6: case la ( bid⇒ r ← recv la ; % receive identi�er r : id

7: m← recv la ; % receive bid m : money

8: sa← detach la ; % detach from client

9: b′ ← addbid r b m ; % store bid internally

10: sa← check b′ l % check if threshold reached

11: | cancel⇒ sa← detach la ; % detach from client

12: sa← run b l) % recurse

�e contract process �rst accepts an acquire request by a bidder (line 4) and then sends the

message running (line 5), indicating the auction status and waiting for the bidder’s choice.

Should the bidder choose to make a bid, the process waits to receive the bidder’s identi�er

(line 6) followed by money equivalent to the bidder’s bid (line 7). A�er this linear exchange,

the process leaves the critical section by issuing a detach (line 8), matching the bidder’s release

request. Internally, the process stores the pair of the bidder’s identi�er and bid in the data

structure bids (line 9). �e ended protocol of the contract is governed by a di�erent process

(not shown), responsible for distributing the bids back to the clients. �e contract transitions

to the ended state when the number of bidders reaches a threshold (stored in auction). �is
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is achieved by the check process (line 10) which checks if the threshold has been reached and

makes this transition, or calls run otherwise. Should the bidder choose to cancel, the contract

simply detaches and recurses (lines 11,12).

Re-Entrancy Vulnerabilities A contract function is re-entrant if, once called by a user,

it can potentially be called again before the previous call has completed. As an illustration,

consider the following collect function of the auction contract in Solidity where the funds are

transferred to the bidder before the hash map is updated to re�ect this change.

function collect() public payable {

require (status == ended);

bidder = msg.sender; bid = bidValue[bidder];

bidder.send(bid); bidValue[bidder] = 0; }

function () payable {

// ’auction’ variable stores the

// address to auction contract

auction.collect(); }

A bidder can now cause re-entrancy by creating a dummy contract with an unnamed fallback
function (on the bo�om) that calls the auction’s collect function. �is call is triggered when

collect calls send (last line in collect), leading to an in�nite recursive call to collect, depleting

all funds from the auction. �e message-passing framework of session types eliminates this

vulnerability. While session types provide multiple clients access to a contract, the acquire-

release discipline ensures that clients interact with the contract in mutual exclusion. To a�empt

re-entrancy, a bidder will need to acquire the auction contract twice without releasing it.

Linear Assets Nomos integrates a linear type system that tracks the assets stored in a pro-

cess. �e type system enforces that assets are never duplicated, but only exchanged between

processes. Moreover, the type system prevents a process from terminating while it holds lin-

ear assets. For example, the auction contract treats money and lot as linear assets, which is

witnessed by the use of the linear operators ( and ⊗ for their exchange. In contrast, no

provisions to handle assets linearly exist in Solidity, allowing such assets to be created out of

thin air, duplicated, or discarded. In the above bid function, for instance, the language does

not prevent the programmer from writing bidValue[bidder] = bid instead, losing the bidder’s

previous bid.

Resource Cost Another important aspect of digital contracts is their resource usage. On a

blockchain, executing a contract function, or transaction, requires new blocks to be added to

the blockchain. In existing blockchains like Ethereum, this is done by miners who charge a

fee based on the gas usage of the transaction, indicating the cost of its execution. Precisely

computing this cost statically is important because the sender of a transaction must pay this
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fee to the miners along with sending the transaction. If the sender does not pay a su�cient

amount, the transaction will be rejected by the miners and the sender’s fee is lost!

Nomos uses resource-aware session types [54] to statically analyze the resource cost of a trans-

action. �ey operate by assigning an initial potential to each process. �is potential is con-

sumed by each operation that the process executes or can be transferred between processes

to share and amortize cost. �e cost of each operation is de�ned by a cost model. If the cost

model assigns a cost to each operation as equivalent to their gas cost during execution, the

potential consumed during a transaction re�ects upper bound on the gas usage.

Resource-aware session types express the potential as part of the session type using the op-

erators / and .. �e / operator prescribes that the client must send potential to the contract,

with the amount of potential indicated as a superscript. Dually, . prescribes that the contract

must send potential to the client. In case of the auction contract, we require the client to pay

potential for the operations that the contract must execute, both while placing and collecting

their bids. If the cost model assigns a cost of 1 to each contract operation, then the maximum

cost of an auction session is 22 (taking the max number of operations in all branches). �us,

we require the client to send 22 units of potential at the start of a session using /22
. In the

lost branch of the auction type, on the other hand, the contract returns 7 units of potential to

the client using .7
. �is simulates gas usage in smart contracts, where the sender initiates a

transaction with some initial gas, and the le�over gas at the end of the transaction is returned

to the sender. In contrast to existing smart contract languages like Solidity, which provide no

support for analyzing the cost of a transaction, Nomos’ type checker has automatically inferred

these potential annotations and guarantees that well-typed transactions cannot run out of gas.

Bringing It All Together Combining all these features soundly in one language is chal-

lenging. In Nomos, we achieve this by using di�erent typing judgments and modes, identifying

the role of the process o�ered along that channel. �e mode R denotes purely linear processes
for linear assets or private data structures, such as b and l in the auction. �e modes S and L

denote sharable processes, i.e., contracts, that are either in their shared or linear phase such as

sa and la, respectively. �e mode T denotes a transaction process that can refer to shared and

linear processes and is issued by a user, such as bidder in the auction. �e mode assignment

carries over into the process typing judgments imposing invariants (De�nition 6.1) that are key

to type safety. �e mode annotations are automatically inferred by the type checker relieving

programmers from this burden.

Typing Judgment For typing Nomos processes, we use the judgment Ψ ; Γ ; ∆ `q P ::

(x : A). As we introduce each concept, the role of each symbol will become clear. Henceforth,

we indicate the current concepts from the judgment in black while the concepts that will be

introduced in later sections are marked in blue.
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6.2 Sharing Contracts

Multi-user support is fundamental to digital contract development. Linear session types, as

de�ned in Chapter 3, unfortunately preclude such sharing because they restrict processes to

exactly one client; only one bidder for the auction, for instance (who will always win!). To sup-

port multi-user contracts, we base Nomos on shared session types [25]. Shared session types

impose an acquire-release discipline on shared processes to guarantee that multiple clients

interact with a contract in mutual exclusion of each other. When a client acquires a shared

contract, it obtains a private linear channel along which it can communicate with the contract

undisturbed by any other clients. Once the client releases the contract, it loses its private linear

channel and only retains a shared reference to the contract.

A key idea of shared session types is to li� the acquire-release discipline to the type level.

Generalizing the idea of type strati�cation [32, 116, 126], session types are strati�ed into a

linear and shared layer with two adjoint modalities going back and forth between them:

AS ::= ↑SL AL shared session type

AL ::= . . . | ↓SL AS linear session types

�e ↑SL type modality translates into an acquire, while the dual ↓SL type modality into a re-
lease. Whereas mutual exclusion is one key ingredient to guarantee session �delity (a.k.a. type

preservation) for shared session types, the other key ingredient is the requirement that a ses-

sion type is equi-synchronizing. A session type is equi-synchronizing if it imposes the invariant

on a process to be released back to the same type at which the process was previously acquired.

�is is also the key behind eliminating re-entrancy vulnerabilities since it prevents a user from

interrupting an ongoing session in the middle and initiating a new one.

Recall the process typing judgment in Nomos Ψ ; Γ ; ∆ `q P :: (xm : A) denoting a processP

o�ering service of type A along channel x at mode m. �e contexts Γ and ∆ store the shared

and linear channels that P can refer to, respectively (Ψ and q are explained later and thus

marked in blue in Figure 6.2). �e strati�cation of channels into layers arises from a di�erence

in structural properties that exist for types at a mode. Shared propositions exhibit weakening,

contraction and exchange, thus can be discarded or duplicated, while linear propositions only

exhibit exchange.

Allowing Contracts to Rely on Linear Assets As exempli�ed by the auction contract,

a digital contract typically amounts to a process that is shared at the outset, but oscillates

between shared and linear to interact with clients, one at a time. Crucial for this pa�ern is the

ability of a contract to maintain its linear assets (e.g., money or lot for the auction) regardless

of its mode. Unfortunately, current shared session types [25] do not allow a shared process

to rely on any linear channels, requiring any linear assets to be consumed before becoming

shared. �is precaution was logically motivated [124] and also crucial for type preservation.
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AR ::= ⊕{` : AR}`∈L | N{` : AR}`∈L | 1 | Am(m AR | Am ⊗m AR

| τ → AR | τ ×AR

AL ::= ⊕{` : AL}`∈L | N{` : AL}`∈L | 1 | Am(m AL | Am ⊗m AL

| τ → AL | τ ×AL | ↓SL AS

AS ::= ↑SL AL

AT ::= AR

Figure 6.1: Grammar for shared session types

A key novelty of our work is to li� this restriction while maintaining type preservation. �e

main concern regarding preservation is to prevent a process from acquiring its client, which

would result in a cycle in the linear process tree. To this end, we factorize the process typing

judgment according to the three roles that arise in digital contract programs: contracts, trans-
actions, and linear assets. Since contracts are shared and thus can oscillate between shared and

linear, we get 4 sub-judgments for typing processes, each characterized by the mode of the

channel being o�ered.

De�nition 6.1 (Process Typing). �e judgment Ψ ; Γ ; ∆ `q P :: (xm : A) is categorized

according to mode m. �is factorization imposes certain invariants on the judgment outlined

below. L(A) denotes the language generated by the grammar of A.

1. If m = R, then (i) Γ is empty, (ii) for all dk ∈ ∆ =⇒ k = R, and (iii) A ∈ L(AR).

2. If m = S, then (i) for all dk ∈ ∆ =⇒ k = R, and (ii) A ∈ L(AS).

3. If m = L, then (i) for all dk ∈ ∆ =⇒ k = R ∨ k = L, and (ii) A ∈ L(AL).

4. If m = T, then A ∈ L(AT).

Figure 6.1 shows the session type grammar in Nomos. �e �rst sub-judgment in De�nition 6.1

is for typing linear assets. �ese type a purely linear process P using a purely linear context

∆ (types belonging to grammar AR in Figure 6.1) and o�ering a purely linear type A along

channel xR. �e mode R of the channel indicates that a purely linear session is o�ered. �e

second and third sub-judgments are for typing contracts. �e second sub-judgment shows the

type of a contract process P using a shared context Γ and a purely linear channel context

∆ (judgment ∆ purelin) and o�ering shared type A on the shared channel xS. Once this

shared channel is acquired by a user, the shared process transitions to its linear phase, whose

typing is governed by the third sub-judgment. �e o�ered channel transitions to linear mode

L, while the linear context may now contain channels at modes R or L. Finally, the fourth

typing judgment types a linear process, corresponding to a transaction holding access to shared

channels Γ and linear channels ∆, and o�ering at mode T.

�is novel factorization upholds preservation while allowing shared contract processes to rely

on linear resources. �e modes impose the ordering R < S < L < T among the linear

channels in the con�guration. A process (o�ering a channel) at a certain mode is allowed to
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rely only on processes at the same or lower mode. �ese are exactly the conditions imposed by

De�nition 6.1. �is introduces an implicit ordering among the linear processes depending on

their mode, thus eliminating cycles in the process tree. Relatedly, shared processes can only

refer to shared channels (at mode S) or purely linear channels (at mode R) as exempli�ed by the

judgment ∆ purelin in Figure 6.2. Formally, ∆ purelin denotes that for all dk ∈ ∆ =⇒ k = R.

�is ensures that a shared contract must release all processes it has acquired before itself being

released. �is further enforces an ordering in which the channels are acquired and released,

thus allowing contracts to interact with other contracts without compromising type safety.

Shared session types introduce new typing rules into our system, concerning the acquire-
release constructs (see Figure 6.2). In rule ↑SL L, an acquire is applied to the shared channel

xS :↑SL AL in Γ and yields a linear channel xL added to ∆ when successful. A contract process

can accept an acquire request along its o�ering shared channel xS. A�er the accept is success-

ful, the shared contract process transitions to its linear phase, now o�ering along the linear

channel xL (rule ↑SL R).

�e synchronous dynamics of the acquire-accept pair is

(↑SL C) : proc(aS, w
′, xL ← accept aS ; PxL), proc(cm, w, xL ← acquire aS ; QxL) 7→

proc(aL, w
′, PaL), proc(cm, w,QaL)

�is rule exploits the invariant that a contract process’ providing channel a can come at two

di�erent modes, a linear one aL, and a shared one aS. �e linear channel aL is substituted for

the channel variable xL occurring in the process terms P and Q.

�e dual to acquire-accept is release-detach. A client can release linear access to a contract

process, while the contract process detaches from the client. �e corresponding typing rules

are presented in Figure 6.2. �e e�ect of releasing the linear channel xL is that the continuation

Q loses access to xL, while a new reference to xS is made available in the shared context Γ. �e

contract, on the other hand, detaches from the client by transitioning its o�ering channel from

linear mode xL back to the shared mode xS. Both right rules ↑SL R and ↓SL R require ∆ purelin

ensuring that a shared process releases all shared channels before themselves being released.

Operationally, the release-detach rule is inverse to the acquire-accept rule.

(↓SL C) : proc(aL, w
′, xS ← detach aL ; PxS), proc(cm, w, xS ← release aL ; QxS) 7→

proc(aS, w
′, PaS), proc(cm, w,QaS)

6.3 Adding a Functional Layer

To support general-purpose programming pa�erns, Nomos combines linear channels with con-

ventional data structures, such as integers, lists, or dictionaries. To re�ect and track di�erent
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Ψ ; Γ ; ∆ `q P :: (xm : A) Process P uses shared channels in Γ and o�ers A along x.

Ψ ; Γ ; ∆, (xL : AL) `q Q :: (zm : C)

Ψ ; Γ, (xS :↑SL AL) ; ∆ `q xL ← acquire xS ; Q :: (zm : C)
↑SL L

∆ purelin Ψ ; Γ ; ∆ `q P :: (xL : AL)

Ψ ; Γ ; ∆ `q xL ← accept xS ; P :: (xS :↑SL AL)
↑SL R

Ψ ; Γ, (xS : AS) ; ∆ `q Q :: (zm : C)

Ψ ; Γ ; ∆, (xL :↓SL AS) `q xS ← release xL ; Q :: (zm : C)
↓SL L

∆ purelin Ψ ; Γ ; ∆ `q P :: (xS : AS)

Ψ ; Γ ; ∆ `q xS ← detach xL ; P :: (xL :↓SL AS)
↓SL R

Figure 6.2: Typing rules corresponding to the shared layer.

classes of data in the type system, we take inspiration from prior work [116, 138] and incorpo-

rate processes into a functional core via a linear contextual monad that isolates session-based

concurrency. To this end, we introduce a separate functional context to the typing of a process.

�e linear contextual monad encapsulates open concurrent computations, which can be passed

in functional computations but also transferred between processes in the form of higher-order
processes, providing a uniform integration of higher-order functions and processes.

�e types are separated into a functional and concurrent part, mutually dependent on each

other. �e functional types τ are given by the type grammar below.

τ ::= τ → τ | τ + τ | τ × τ | int | bool | Lq(τ)

| {AR ← AR}R | {AS ← AS ; AR}S | {AT ← AS ; A}T

�e types are standard, except for the potential annotation q ∈ N in list type Lq(τ), which we

explain in Section 6.4, and the contextual monadic types in the last line, which are the topic of

this section. �e expressivity of the types and terms in the functional layer are not important

for the development in this paper. �us, we do not formally de�ne functional terms M but

assume that they have the expected term formers such as function abstraction and application,

type constructors, and pa�ern matching. We also de�ne a standard type judgment for the

functional part of the language.

Ψ p M : τ term M has type τ in functional context Ψ (potential p discussed later)

Contextual Monad �e main novelty in the functional types are the three type formers

for contextual monads, denoting the type of a process expression. �e type {AR ← AR}R
denotes a process o�ering a purely linear session type AR and using the purely linear vector

of types AR. �e corresponding introduction form in the functional language is the monadic



Session Types Digital Contracts 96

Ψ ; Γ ; ∆ `q P :: (xm : A) Process P uses functional values in Ψ.

r = p+ q ∆ = dR : D Ψ . (Ψ1,Ψ2)

Ψ1 
p M : {A← D} Ψ2 ; · ; ∆′, (xR : A) `q Q :: (zR : C)

Ψ ; · ; ∆,∆′ `r xR ←M dR ; Q :: (zR : C)
{}ERR

Ψ, (y : τ) ; Γ ; ∆ `q P :: (xm : A)

Ψ ; Γ ; ∆ `q y ← recv xm ; P :: (xm : τ → A)
→ R

r = p+ q Ψ . (Ψ1,Ψ2) Ψ1 
p M : τ

Ψ2 ; Γ ; ∆, (xm : A) `q Q :: (zk : C)

Ψ ; Γ ; ∆, (xm : τ → A) `r send xm M ; Q :: (zk : C)
→ L

Figure 6.3: Typing rules corresponding to the functional layer.

value constructor {cR ← P ← dR}, denoting a runnable process o�ering along channel cR

that uses channels dR, all at mode R. �e corresponding typing rule for the monad is (ignore

the blue portions)

∆ = dR : D Ψ ; · ; ∆ `q P :: (xR : A)

Ψ q {xR ← P ← dR} : {A← D}R
{}IR

�e monadic bind operation implements process composition and acts as the elimination form

for values of type {AR ← AR}R. �e bind operation, wri�en as cR ← M dR ; Qc, composes

the process underlying the monadic termM , which o�ers along channel cR and uses channels

dR, with Qc, which uses cR. �e typing rule for the monadic bind is rule {}ERR in Figure 6.3.

�e linear context is split between the monadM and continuationQ, enforcing linearity. Sim-

ilarly, the potential in the functional context is split using the sharing judgment (.), explained

in Section 6.4. �e shared context Γ is empty in accordance with the invariants established in

De�nition 6.1 (i), since the mode of o�ered channel x is R. �e e�ect of executing a bind is

the spawn of the purely linear process corresponding to the monad M , and the parent process

continuing with Q. �e corresponding operational semantics rule (named spawnRR) is given

as follows:

proc(dR, w, xR ← {x′R ← Px′R,y ← y} a ; Q) 7→ proc(cR, 0, PcR,a), proc(dR, w, [cR/xR]Q)

�e above rule spawns the process P o�ering along a globally fresh channel cR, and using

channels a. �e continuation processQ acts as a client for this fresh channel cR. �e other two

monadic types correspond to spawning a shared process {AS ← AS ; AR}S and a transaction

process {AT ← AS ; A}T at mode S and T, respectively. �eir rules are analogous to {}IR
and {}ERR.
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Value Communication Communicating a value of the functional language along a channel

is expressed at the type level by adding the following two session types.

A ::= . . . | τ → A | τ ×A

�e type τ → A prescribes receiving a value of type τ with continuation typeA, while its dual

τ × A prescribes sending a value of type τ with continuation A. �e corresponding typing

rules for arrow (→ R,→ L) are given in Figure 6.3 (rules for× are inverse). Receiving a value

adds it to the functional context Ψ, while sending it requires proving that the value has type

τ . Semantically, sending a value M : τ creates a message predicate along a fresh channel c+
m

containing the value:

(→ S) : proc(dk, w, send cm M ; P ) 7→ msg(c+
m, 0, send cm M ; c+

m ↔ cm),

proc(dk, w, [c
+
m/cm]P )

�e recipient process substitutes M for x, and continues to o�er along the fresh continuation

channel received by the message. �is ensures that messages are received in the order they are

sent. �e rule is formalized below.

(→ C) : proc(cm, w
′, x← recv cm ; Q),msg(c+

m, w, send cm M ; c+
m ↔ cm) 7→

proc(c+
m, w + w′, [c+

m/cm][M/x]Q)

Tracking Linear Assets As an illustration, consider the type money introduced in the auc-

tion example (Section 6.1). �e type is an abstraction over funds stored in a process and is

described as

money =

N{value : int×money, % send value

add : money(R money, % receive money and add it

subtract : int→ ⊕{sufficient : money ⊗R money, % receive int, send money

insufficient : money} % funds insu�cient to subtract

coins : listcoin} % send list of coins

�e type supports querying for value, and addition and subtraction. �e type also expresses

insu�ciency of funds in the case of subtraction. �e provider process only supplies money to

the client if the requested amount is less than the current balance, as depicted in the sufficient

label. �e type is implemented by a wallet process that internally stores a linear list of coins

and an integer representing its value. Since linearity is only enforced on the list of coins in the

linear context, we trust the programmer updates the integer in the functional context correctly

during transactions. �e process is typed and implemented as (modes of channels l and m is

R, skipped in the de�nition for brevity)
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1: (n : int) ; (lR : listcoin) ` wallet :: (mR : money)

2: m← wallet n l =

3: case m % case analyze on label received on m

4: (value⇒ send m n ; % receive value, send n

5: m← wallet n l
6: | add⇒m′ ← recv m ; % receive m′ : money to add

7: m′.value ; % query value of m′

8: v ← recv m′ ;

9: m′.coins ; % extract list of coins stored in m′

10: k ← append l m′ ; % append list received to internal list

11: m← wallet (n+ v) k

12: | subtract⇒ n′ ← recv m ; % receive int to subtract

13: if (n′ > n) then

14: m.insufficient ; % funds insu�cient

15: m← wallet n l
16: else

17: m.sufficient ; % funds su�cient

18: l′ ← remove n′ l ; % remove n′ coins from l

19: k ← recv l′ ; % and create its own list

20: m′ ← wallet n′ k ; % new wallet process for subtracted funds

21: send m m′ ; % send new money channel to client

22: m← wallet (n− n′) l′

23: | coins⇒m↔ l)

If thewallet process receives the message value, it sends back the integern, and recurses (lines 4

and 5). If it receives the message add followed by a channel of type money (line 6), it queries

the value of the received moneym′ (line 7), stores it in v (line 8), extracts the coins stored inm′

(line 9), and appends them to its internal list of coins (line 10). Similarly, if the wallet process

receives the message subtract followed by an integer, it compares the requested amount against

the stored funds. If the balance is insu�cient, it sends the corresponding label, and recurses

(lines 14 and 15). Otherwise, it removes n′ coins using the remove process (line 18), creates a

money abstraction using the wallet process (line 20), sends it (line 21) and recurses. Finally,

if the wallet receives the message coins, it simply forwards its internal list along the o�ered

channel.

6.4 Tracking Resource Usage

Resource usage is particularly important in digital contracts: Since multiple parties need to

agree on the result of the execution of a contract, the computation is potentially performed

multiple times or by a trusted third party. �is immediately introduces the need to prevent
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denial of service a�acks and to distribute the cost of the computation among the participating

parties.

�e predominant approach for smart contracts on blockchains like Ethereum is not to restrict

the computation model but to introduce a cost model that de�nes the gas consumption of low

level operations. Any transaction with a smart contract needs to be executed and validated

before adding it to the global distributed ledger, i.e., blockchain. �is validation is performed

by miners, who charge fees based on the gas consumption of the transaction. �is fee has to

be estimated and provided by the sender prior to the transaction. If the provided amount does

not cover the gas cost, the money falls to the miner, the transaction fails, and the state of the

contract is reverted back. Overestimates bear the risk of high losses if the contract has �aws

or vulnerabilities.

It is not trivial to decide on the right amount for the fee since the gas cost of the contract does

not only depend on the requested transaction but also on the (a priori unknown) state of the

blockchain. �us, precise and static estimation of gas cost facilitates transactions and reduces

risks. We discuss our approach of tracking resource usage, both at the functional and process

layer.

Functional Layer Numerous techniques have been proposed to statically derive resource

bounds for functional programs [23, 43, 50, 94, 125]. In Nomos, we adapt the work on automatic

amortized resource analysis (AARA) [82, 84] that has been implemented in Resource Aware

ML (RaML) [83]. RaML can automatically derive worst-case resource bounds for higher-order

polymorphic programs with user-de�ned inductive types. �e derived bounds are multivariate

resource polynomials of the size parameters of the arguments. AARA is parametric in the

resource metric and can deal with non-monotone resources like memory that can become

available during the evaluation.

As an illustration, consider the function applyInterest that iterates over a list of balances and

applies interest on each element, multiplying them by a constant c. We use tick annotations to

de�ne the resource usage of an expression in this article. We have annotated the code to count

the number of multiplications. �e resource usage of an evaluation of applyInterest b is |b|.

let applyInterest balances =

match balances with

| [] -> []

| hd::tl -> tick(1); (c*hd)::(applyInterest tl)

(* consume unit potential for tick *)

�e idea of AARA is to decorate base types with potential annotations that de�ne a potential

function as in amortized analysis. �e typing rules ensure that the potential before evaluating

an expression is su�cient to cover the cost of the evaluation and the potential de�ned by

the return type. �is posterior potential can then be used to pay for resource usage in the
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continuation of the program. For example, we can derive the following resource-annotated

type.

applyInterest : L1(int) −−→0/0 L0(int)

�e type L1(int) denotes a list of integers assigning a unit potential to each element in the list.

�e return value, on the other hand, has no potential. �e annotation on the function arrow

indicates that we do not need any potential to call the function and that no constant potential

is le� a�er the function call has returned.

In a larger program, we might want to call the function applyInterest again on the result of a

call to the function. In this case, we would need to assign the type L1(int) to the resulting list

and require L2(int) for the argument. In general, the type for the function can be described

with symbolic annotations with linear constraints between them. To derive a worst-case bound

for a function the constraints can be solved by an o�-the-shelf LP solver, even if the potential

functions are polynomial [82, 83].

In Nomos, we simply adopt the standard typing judgment of AARA for functional programs.

Ψ q M : τ

It states that under the resource-annotated functional context Ψ, with constant potential q, the

expression M has the resource-aware type τ .

�e operational cost semantics is de�ned by the judgment

M ⇓ V | µ

which states that the closed expression M evaluates to the value V with cost µ. �e type

soundness theorem states that if · q M : τ and M ⇓ V | µ then q ≥ µ.

More details about AARA can be found in the literature [83, 84] and the Nomos supplementary

material.

Process Layer To bound the resource usage of a process, Nomos features resource-aware

session types [54] for work analysis. Resource-aware session types describe resource contracts

for inter-process communication. �e type system supports amortized analysis by assigning

potential to both messages and processes. �e derived resource bounds are functions of in-

teractions between processes. As an illustration, consider the following resource-aware list

interface from prior work [54].

listA = ⊕{nil0 : 10, cons1 : A
0
⊗ listA}
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�e type prescribes that the provider of a list must send one unit of potential with every cons

message that it sends. Dually, a client of this list will receive a unit potential with every cons

message. All other type constructors are marked with potential 0, and exchanging the corre-

sponding messages does not lead to transfer of potential.

While resource-aware session types in Nomos are equivalent to the existing formulation [54],

our version is simpler and more streamlined. Instead of requiring every message to carry a

potential (and potentially tagging several messages with 0 potential), we introduce two new

type constructors for exchanging potential.

A ::= . . . | .rA | /rA

�e type .rA requires the provider to pay r units of potential which are transferred to the

client. Dually, the type /rA requires the client to pay r units of potential that are received by

the provider. �us, the reformulated list type becomes

listA = ⊕{nil : 1, cons : .1(A⊗ listA)}

�e reformulation is more compact since we need to account for potential in only the typing

rules corresponding to .rA and /rA.

With all aspects introduced, the process typing judgment

Ψ ; Γ ; ∆ `q P :: (xm : A)

denotes a process P accessing functional variables in Ψ, shared channels in Γ, linear channels

in ∆, o�ers service of type A along channel x at mode m and stores a non-negative constant

potential q. Similarly, the expressing typing judgment

Ψ p M : τ

denotes that expression M has type τ in the presence of functional context Ψ and potential p.

Figure 6.4 shows the rules that interact with the potential annotations. In the rule /R, processP

storing potential q receives r units along the o�ered channel xm : /rA using the get construct

and the continuation executes with p = q+ r units of potential. In the dual rule /L, a process

storing potential q = p + r sends r units along the channel xm : /rA in ∆ using the pay
construct, and the continuation remains with p units of potential. �e typing rules for the

dual constructor .rA are the exact inverse. Finally, executing the tick (r) construct consumes

r potential from the stored process potential q, and the continuation remains with p = q − r
units, as described in the tick rule.

�e tick construct is used to simulate a cost model in Nomos. If an operation (e.g., sending

a message, calling a function, etc.) has a cost of r, this cost is simulated by inserting tick (r)
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Ψ ; Γ ; ∆ `q P :: (xm : A) Process P has potential q.

p = q + r Ψ ; Γ ; ∆ `p P :: (xm : A)

Ψ ; Γ ; ∆ `q getxm {r} ; P :: (xm : /rA)
/R

q = p+ r Ψ ; Γ ; ∆, (xm : A) `p P :: (zk : C)

Ψ ; Γ ; ∆, (xm : /rA) `q pay xm {r} ; P :: (zk : C)
/L

q = p+ r Ψ ; Γ ; ∆ `p P :: (xm : A)

Ψ ; Γ ; ∆ `q tick (r) ; P :: (xm : A)
tick

Figure 6.4: Selected typing rules corresponding to potential.

just before the operation. �en, the tick operations are the only ones that cost potential, thus

simplifying the type system. �ese tick operations are automatically inserted by the Nomos

type checker, using a prede�ned cost model that assigns a constant cost to each operation. In

addition, our implementation provides some standard cost models, for instance, that assign a

unit cost to each internal operation and sending a message.

Integration Since both AARA for functional programs and resource-aware session types are

based on the integration of the potential method into their type systems, their combination is

natural. �e two points of integration of the functional and process layer are (i) spawning a

process, and (ii) sending/receiving a value from the functional layer. Recall the spawn rule

{}ERR from Figure 6.3. A process storing potential r = p + q can spawn a process corre-

sponding to the monadic expression M , if M needs p units of potential to evaluate, while the

continuation needs q units of potential to execute. Moreover, the functional context Ψ is shared

in the two premises as Ψ1 and Ψ2 using the judgment Ψ . (Ψ1,Ψ2). �is judgment, already

explored in prior work [83] describes that the base types in Ψ are copied to both Ψ1 and Ψ2,

but the potential is split up. For instance, Lq1+q2(τ) . (Lq1(τ), Lq2(τ)). �e rule → L in

Figure 6.3 follows a similar pa�ern. A process Q storing r = p+ q potential sends a monadic

expression M needing p units of potential to evaluate, and the continuation remains with q

units of potential to execute. �e p units of potential are consumed to evaluate M to a value

before sending since only values are exchanged at runtime. �us, the combination of the two

type systems is smooth, assigning a uniform meaning to potential, both for the functional and

process layer. Remarkably, this technical device of exchanging functional values can be used

to exchange non-constant potential with messages. For instance, exchanging a list l : Lq(τ)

will exchange q · n units of potential where n is the size of the list l.

Operational Cost Semantics �e resource usage of a process (or message) is tracked in

semantic objects proc(c, w, P ) and msg(c, w,N) using the local counters w. �is signi�es

that the process P (or message N ) has performed work w so far. �e rules of semantics that

explicitly a�ect the work counter are
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M ⇓ V | µ
proc(cm, w, P [M ]) 7→ proc(cm, w + µ, P [V ])

internal

�is rule describes that if an expression M evaluates to V with cost µ, then the process P [M ]

depending on monadic expression M steps to P [V ], while the work counter increments by

µ, denoting the total number of internal steps taken by the process. At the process layer, the

work increments on executing a tick operation.

proc(cm, w, tick (µ) ; P ) 7→ proc(cm, w + µ, P )

A new process (or message) is spawned with w = 0, and a terminating process transfers its

work to the corresponding message it interacts with before termination, thus preserving the

total work performed by the system.

6.5 Type Soundness

�e main theorems that exhibit the connections between our type system and the operational

cost semantics are the usual type preservation and progress. First, De�nition 6.1 asserts certain

invariants on process typing judgment depending on the mode of the channel o�ered by a

process. �is mode, remains invariant, as the process evolves. �is is ensured by the process

typing rules, which remarkably preserve these invariants despite being parametric in the mode.

Lemma 6.2 (Invariants). �e typing rules on the judgment Ψ ; Γ ; ∆ `q (xm : A) preserve
the invariants outlined in De�nition 6.1, i.e., if the conclusion satis�es the invariant, so do all the
premises.

Con�guration Typing At run-time, a program evolves into a number of processes and mes-

sages, represented by proc and msg predicates. �is multiset of predicates is referred to as a

con�guration (abbreviated as Ω).

Ω ::= · | Ω, proc(c, w, P ) | Ω,msg(c, w,N)

A key question is how to type these con�gurations because a con�guration both uses and

provides a number of channels. �e solution is to have the typing impose a partial order among

the processes and messages, requiring the provider of a channel to appear before its client. We

stipulate that no two distinct processes or messages in a well-formed con�guration provide

the same channel c.

�e typing judgment for con�gurations has the form Σ ; Γ0

E
� Ω :: (Γ ; ∆) de�ning a

con�guration Ω providing shared channels in Γ and linear channels in ∆. Additionally, we

need to track the mapping between the shared channels and their linear counterparts o�ered

by a contract process, switching back and forth between them when the channel is acquired
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or released respectively. �is mapping, along with the type of the shared channels, is stored

in Γ0. E is a natural number and stores the sum of the total potential and work as recorded in

each process and message. We call E the energy of the con�guration. �e supplement details

the con�guration typing rules.

Finally, Σ denotes a signature storing the type and function de�nitions. A signature is well-

formed if (i) every type de�nition V = AV is contractive [66] and (ii) every function de�nition

f = M : τ is well-typed according to the expression typing judgment Σ ; · p M : τ . �e

signature does not contain process de�nitions; every process is encapsulated inside a function

using the contextual monad.

�eorem 6.3 (Type Preservation).

• If a closed well-typed expression · q M : τ evaluates to a value, i.e.,M ⇓ V | µ, then q ≥ µ

and · q−µ V : τ .

• Consider a closed well-formed and well-typed con�gurationΩ such thatΣ ; Γ0

E
� Ω :: (Γ ; ∆).

If the con�guration takes a step, i.e. Ω 7→ Ω′, then there exist Γ′0,Γ
′ such that Σ ; Γ′0

E
� Ω′ ::

(Γ′ ; ∆), i.e., the resulting con�guration is well-typed. Additionally, Γ0 ⊆ Γ′0 and Γ ⊆ Γ′.

�e preservation theorem is standard for expressions [83]. For processes, we proceed by induc-

tion on the operational cost semantics and inversion on the con�guration and process typing

judgment.

To state progress, we need the notion of a poised process [116]. A process proc(cm, w, P ) is

poised if it is trying to receive a message on cm. Dually, a message msg(cm, w,N) is poised if it

is sending along cm. A con�guration is poised if every message or process in the con�guration

is poised. Intuitively, this means that the con�guration is trying to interact with the outside

world along a channel in Γ or ∆. Additionally, a process can be blocked [25] if it is trying to

acquire a contract process that has already been acquired by some process. �is can lead to

the possibility of deadlocks.

�eorem6.4 (Progress). Consider a closed well-formed and well-typed con�gurationΩ such that

Γ0

E
� Ω :: (Γ ; ∆). Either Ω is poised, or it can take a step, i.e., Ω 7→ Ω′, or some process in Ω is

blocked along aS for some shared channel aS and there is a process proc(aL, w, P ) ∈ Ω.

�e progress theorem is weaker than that for binary linear session types, where progress guar-

antees deadlock freedom due to absence of shared channels.

6.6 Related Work

Existing smart contracts on Ethereum are predominantly implemented in Solidity [1], a stat-

ically typed object-oriented language in�uenced by Python and Javascript. Contracts in So-

lidity are similar to classes containing state variables and function declarations. However,
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the language provides no information about the resource usage of a contract. Languages like

Vyper [9] address resource usage by disallowing recursion and in�nite-length loops, thus mak-

ing estimation of gas usage decidable. However, both languages still su�er from re-entrancy

vulnerabilities. Bamboo [3], on the other hand, makes state transitions explicit and avoids re-

entrance by design. However, none of these languages describe and enforce communication

protocols statically.

Domain speci�c languages have also been designed for other blockchains apart from Ethereum.

Rholang [7] is formally modeled by the ρ-calculus, a re�ective higher-order extension of the

π-calculus. Michelson [6] is a purely functional stack-based language that has no side e�ects.

Liquidity [5] is a high-level language that complies with the security restrictions of Michelson.

Scilla [131] is an intermediate-level language where contracts are structured as communicating

automata providing a continuation-passing style computational model to the language seman-

tics. In contrast to this work, none of these languages use linear type systems to track assets

stored in a contract.

Session types have been integrated into a functional language in prior work [138]. However,

this integration does not account for resource usage, nor sharing. Similarly, shared session

types [25] have previously not been integrated with a functional layer or tracked for resource

usage. Moreover, existing shared session types [25] disallow shared processes to rely on any

linear resources, a restriction we li� in Nomos. Resource usage has previously been explored

separately for a functional language [83] and the process layer [54], but the two have never

been integrated together.

6.7 Future Directions

Currently, the strong safety guarantees of Nomos only hold when both contracts and clients

are well-typed. �is raises the concern of how contracts implemented in Nomos can interact

with clients that are not implemented in Nomos. Currently, the contracts do not have error

handling mechanisms. One approach here is to introduce runtime monitoring. �ese monitors

are wrapped around the contracts and observe the type of the data that is being exchanged

on the channels. If they catch a type mismatch, they force the contract to safely return to a

well-formed state and resume interaction with other clients.



Chapter 7

Implementation of Nomos

Chapter 6 described the theory of Nomos, along with its static and dynamic semantics and type

safety theorems. �is chapter complements the previous chapter by describing the implemen-

tation of Nomos along with speci�c features making it easier to write smart contracts.

7.1 Overview of Nomos with an Auction Implementation

We highlight the main features of the Nomos language using the implementation of an auction

contract in concrete syntax. An auction operates in two phases: a running phase where bidders

bid into the auction followed by an ended phase where bidders collect their earnings. If a bidder

wins the auction, they receive the lot, otherwise they receive their bids back.

�e �rst key idea behind Nomos is to express and enforce the contract protocols like the auction

via session types. �e auction session type is de�ned as

type auction =

/\ <{20} +{ running : money -o |{3}> \/ auction ,

ended : +{won : lot * |{5}> \/ auction ,

lost : money * |{0}> \/ auction }}

We �rst ignore the operators <{q}| and |{q}> for natural numbers q (described later) and

describe the remaining type.

�e type initiates with /\ (↑SL in abstract syntax) indicating that auction is a shared session

type [25] that must be acquired by a bidder to interact with the contract. Shared session types

guarantee that bidders interact with the auction in mutual exclusion and their interaction with

the auction executes atomically. Once the action contract is acquired, it replies either with

running or ended indicating the phase of the auction. In the former case, the auction receives

money using the -o constructor (( in abstract syntax) followed by the bidder releasing the

contract matching the \/ (↓SL in abstract syntax, dual to ↑SL) constructor in the type. In the

106
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la�er case, the auction determines if the bidder won or lost the election. If the bidder wins, the

auction sends the won label followed by sending the lot using the * constructor (⊗ in abstract

syntax, dual to(). If the bidder loses, the auction sends the lost label followed by returning

the bidder’s money back. In either case, the type recurses back to auction a�er a \/ indicating

that the bidder must release the auction.

�e second key feature of Nomos is that it statically enforces that assets are never duplicated

nor discarded, but only transferred between processes. Nomos’ type system relies on session

types [39] that are rooted in linear logic [69]. �is linear type system tracks the assets stored

in a process. For instance, the auction contract treats money and lot as linear assets, which is

witnessed by the use of the linear logic operators( and ⊗ for their exchange.

Finally, an important aspect of smart contracts is their execution cost. Blockchains such as

Ethereum [145] charge users a fee proportional to the execution (aka gas) cost of their transac-

tion. A unique feature of Nomos is that it uses resource-aware session types [54] to statically

analyze the execution cost of a transaction. �ey operate by assigning an initial potential to

each process. �is potential is consumed by each operation that the process executes or can be

transferred between processes to share and amortize cost. �e cost of each operation is de�ned

by a cost model.

Resource-aware session types express the potential as part of the session type using the op-

erators <{q}| and |{q}> (/q and .q in abstract syntax). �e <{q}| operator prescribes that

the client must send q potential to the contract, with the amount of potential indicated as a

superscript. Dually, |{q}> prescribes that the contract must send q potential to the client. In

case of the auction contract, we require the client to pay potential for the operations that the

contract must execute, both while placing and collecting their bids. If the cost model assigns a

cost of 1 to each contract operation, then the maximum cost of an auction session is 20 (tak-

ing the maximum execution cost all branches). �us, we require the client to send 20 units of

potential at the start of a session using <{20}|. In the won branch of the auction type, on the

other hand, the contract returns 5 units of potential to the client using |{q}>. �is mirrors gas

usage in smart contracts, where the sender initiates a transaction with some initial gas, and

the le�over gas at the end of the transaction is returned to the sender. All the above potential

annotations have been automatically inferred by the Nomos type checker that internally relies

on an LP solver to compute gas bounds.

Process Implementations As a �nal set of illustrations, we describe the main parts of the

auction contract program. Since the auction operates in two phases, we have two main pro-

cesses: running_auction for the running phase, and ended_auction for the ended phase.

�e type and de�nition of running_auction process is presented below.

contract running_auction :

($bm : Map <address , money >), ($l : lot) |- (#a : auction) =

$la <- accept #a ; % accept acquire request

get $la {20} ; % get 20 potential units
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$la.running ; % send ‘running ’ label

$m <- recv $la ; % receive money from bidder

pay $la {3} ; % pay leftover potential

#a <- detach $la ; % detach from bidder

let addr = Nomos.GetTxnSender () ; % get bidder ’s address

$bm.insert(addr , $m) ; % insert bid into bidmap

#a <- run_or_end $bm $l % call ‘run_or_end ’ process

�e process uses two linear channels: $bm represents the mapping from address to money,

and $l represents the lot. On the other hand, it o�ers the shared channel #a that connects

the auction contract to the bidder process. To syntactically distinguish session-typed channels

from functional variables, Nomos pre�xes linear channels with $ (e.g. $bm) and shared chan-

nels with # (e.g. #a). �e process closely follows the session-typed protocol described by the

auction. It �rst accepts the acquire request from the bidder followed by receiving 20 potential

units. Since this process represents the running phase of auction, it sends the running label,

receives the money from the bidder in $m, pays the le�over 3 potential units, and detaches

from the bidder. Internally, the process then computes the sender’s address using the built-in

GetTxnSender function, and inserts key-value pair (addr, $m) into the $bm map. Maps have

a built-in session type and can be used as such, but we simplify programming by introducing

syntactic sugar construct $bm.insert(addr, $m). Finally, the process calls the run_or_end

process which decides whether to call running_auction or ended_auction (maybe if the

number of bidders reaches a certain threshold).

�e bidder process lies on the other end of the auction channel and is responsible for bidding

in the auction. We outline the process de�nition.

transaction bid_proc : ($m : money), (#a : auction) |- ($d : 1) =

$la <- acquire #a ; % acquire auction contract

pay $la {20} ; % pay 20 potential units

case $la ( % branch on label received

running => send $la $m ; % send money to contract

get $la {3} ; % get leftover potential

#a <- release $la ; % release the auction contract

close $d % terminate the transaction

| ended => abort ) % abort if auction has ended

�e process uses linear channel $m representing the bid, and the shared channel #a that con-

nects to the auction contract. It o�ers on the channel $d of type 1. We mandate all transaction

processes to o�er type 1 for simplicity (more details in Section 7.3). �e process initiates with

acquiring the auction contract, pays 20 potential units, and case analyzes on the response. If

the response is running (indicating that the auction is running), the process sends the money,

gets the le�over potential, releases the contract, and terminates the transaction. If the response

is ended, we simply abort the transaction. Note how the running_auction and bid_proc

processes perform matching dual actions on the auction channel, as governed by the auction

session type.
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7.2 Mode Inference

Combining all these features in a single language is challenging. To achieve this integration

without compromising type safety, Nomos introduces channel modes: R for linear asset chan-

nels; S for shared channels; L for shared channels in linear phase when acquired; and T for

transaction channels. Nomos assigns a mode to every channel. For instance, in the bid_proc

process, $m has mode R and #a has mode S. Once acquired, $la has mode L, and $d has mode

T.

Practically however, annotating every channel with a mode can be a burden for the program-

mer. To address this, Nomos automatically infers the mode of every channel automatically.

Intuitively, we require the programmer to annotate the process with a role. We employ three

roles: asset for linear assets, contract (e.g. running_auction), and transaction (e.g. bid_proc).

Nomos then uses these process roles, wri�en before the process name, to assign modes to all

channels in that process.

First, based on the modem of the channel o�ered by a process, Nomos asserts mode invariants

on the shared and linear channels that the process uses. De�nition 6.1 details those invariants.

De�nition 7.1 (Process Typing). Given judgment Ψ ; ∆ `q P :: (xm : A), and an arbitrary

channel yk ∈ ∆,

1. If m = R, then k = R.

2. If m = S, then k = R ∨ k = S.

3. If m = L, then k = R ∨ k = S ∨ k = L.

4. If m = T, then k = R ∨ k = S ∨ k = L ∨ k = T.

Intuitively, the above invariants impose a modal hierarchy R < S < L < T and enforce that a

process at mode m only uses channels at mode m′ if m′ ≤ m. �is hierarchy prevents cycles

in the process dependency tree at runtime and is crucial to proving type safety [57].

Relevant to the tool implementation, the above invariants are central to inferring the channel

modes automatically. First, Nomos uses the process roles to infer the mode m of the o�ered

channel. We use the following rule:

• For role asset: m = R.

• For role contract: m = S.

• For role contract: m = T.

• (we do not allow de�ning processes at mode L)
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Once we know the o�ered mode, we use the invariants from De�nition 6.1 to generate con-

straints for mode k of each channel used by a process. In addition, we have three additional

constraints.

• �e process expression $lc <- acquire #sc imposes that the mode of linear channel

$lc must be L, and the mode of shared channel #sc must be S.

• Dually, the process expression #sc <- release $lc imposes that mode of $lc must

be L, and the mode of shared channel #sc must be S.

• Finally, if a channel c has a shared type, we conclude that the mode of c must be S.

�e Nomos implementation generates and collects these constraints, and ships them to the LP

solver. �e solver, in turn, solves the constraints, computes the mode of each channel, and

substitutes them back into the program. Section 7.3 provides more details on the LP solver.

7.3 Implementation

We have developed an open-source Nomos implementation [10] in OCaml (8469 lines of code).

�e implementation contains a lexer and parser (594 lines), a type checker (3486 lines), a pre�y

printer (531 lines), a cost inference engine with an LP solver interface (969 lines of code), and

an interpreter (1942 lines). �e program is �rst implemented in the concrete Nomos syntax

and then parsed into an abstract syntax tree. �e program is then instrumented with work

constructs to realize the cost model. Finally, the program is type checked to verify whether

it implements the interface described by its session type. In this type checking phase, we

also generate LP constraints on the potential annotations, and ship these constraints to the LP

solver. �e solver then minimizes the total potential while solving these constraints, computes

a satisfying assignment, which is substituted back into the program, thus computing the gas

cost of the program. Finally, the interpreter runs the program against the current blockchain

state to obtain the new blockchain state. We follow a brief description of each aspect of the

implementation.

Lexing and Parsing �e Nomos lexer and parser have been implemented in Menhir [119],

an LR(1) parser generator for OCaml. A Nomos program is a list of mutually recursive type

and process de�nitions. �e syntax for de�nitions is

type v = A

<role > f : (x1 : T), (#c2 : A2), ... |{q}- ($c : A) = M

�e �rst line describes a type de�nition: A is the type expression that stands for the de�nition

of type name v (e.g. auction type in Section 7.1). Since Nomos treats types equi-recursively,
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Abstract Types Concrete Types Abstract Syntax Concrete Syntax
⊕{l : A, . . .} +{l : A, ...} $x.k $x.k

N{l : A, . . .} &{l : A, ...} case $x (`⇒ P )`∈L case $x (l => P | ...)

A⊗B A * B send $x $w send $x $w

A( B A -o B $y ← recv $x $y <- recv $x

1 1 close $x close $x

wait $x wait $x

↑SL A /\ A $y ← accept x $y <- accept #x

$y ← acquire x $y <- acquire #x

↓SL A \/ A #y ← detach $x #y <- detach $x

#y ← release $x #y <- release $x

t×A t ^ A send $x M send $x M

t→ A t -> A v ← recv $x v = recv $x

.rA |{r}> A pay $x {r} pay $x {r}

/rA <{r}| A get $x {r} get $x {r}

Table 7.1: Abstract and Corresponding Concrete Syntax for Nomos Types and Expressions

we can silently replace type name v with its de�nition A. �e second line describes a process

declaration and de�nition. We write the process role, followed by its name, its context and

o�ered channel and type. �e process role assigns a mode to the o�ered channel: asset, contract
or transaction, assigning respective modes R, S and T to the o�ered channel. �e modes for all

other channels are inferred automatically (explained in Section 7.2). �e context contains both

functional variables and session-typed channel variables: x1 : T de�nes a functional variable

x1 of type T ; #c2 : A2 de�nes a channel #c2with type A2 ; the process o�ers channel $cwith

type A. �e expression M stands for the process de�nition. To visually separate out functional

variables from session-typed channels, we require that shared channels are pre�xed by #,

while linear channels are pre�xed by $. �is avoids confusion between the two, both for the

programmer and the parser. Finally, the potential {q} of a process is marked on the turnstile

in the declaration.

As a reference, Table 7.1 provides the abstract and concrete syntax of the session types and

their corresponding process constructs in Nomos.

Cost Instrumentation Once a program has been parsed and converted into an abstract

syntax tree, we instrument it with work constructs based on the cost model. �e cost model

intuitively de�nes the execution cost of each construct. �e instrumentation engine takes the

program and the cost model as input and produces a program with work constructs inserted at

appropriate places. We use the following rule ([[P ]] denotes the work-instrumented version of

process P ):

[[S ; P ]] ::= work {CS} ; S ; [[P ]]

Here, S is a process construct with P as its continuation. and CS denotes the cost of construct

S according to the given cost model. We use this rule to add work annotations throughout the

program, thus realizing the execution cost of the program. �is instrumentation simpli�es the
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cost analysis which can simply assign a cost of c to work {c} and cost 0 to all other process

expressions.

Type Checking �e Nomos type checker is based on bi-directional type checking [117].

Intuitively, the programmer provides the initial type of each variable and channel in the dec-

laration and the de�nition is checked against it, while reconstructing the intermediate types.

�is helps localize the source of a type error as the point where type reconstruction fails. As

an illustration, recall the implementation of the running phase of the auction.

type auction =

/\ <{20} +{ running : money -o |{3}> \/ auction ,

ended : +{won : lot * |{5}> \/ auction ,

lost : money * |{0}> \/ auction }}

contract running_auction :

($bm : Map <address , money >), ($l : lot) |{0}- (#a : auction) =

% ($bm : Map <address , money >), ($l : lot)

|- (#a : auction)

$la <- accept #a ;

% ($bm : Map <address , money >), ($l : lot)

|- ($la : <{20}| +{ running : ..., ended : ...})

get $la {20} ;

% ($bm : Map <address , money >), ($l : lot)

|- ($la : +{ running : ..., ended : ...})

$la.running ;

% ($bm : Map <address , money >), ($l : lot)

|- ($la : money -o |{3}> \/ auction)

$m <- recv $la ;

% ($bm : Map <address , money >), ($l : lot), ($m : money)

|- ($la : |{3}> \/ auction)

pay $la {3} ;

% ($bm : Map <address , money >), ($l : lot), ($m : money)

|- ($la : \/ auction)

#a <- detach $la ;

% ($bm : Map <address , money >), ($l : lot), ($m : money)

|- (#a : auction)

let addr = Nomos.GetTxnSender () ;

% (addr : address), ($bm : Map <address , money >), ($l : lot)

($m : money) |- (#a : auction)

$bm.insert(addr , $m) ;

% (addr : address), ($bm : Map <address , money >), ($l : lot)

|- (#a : auction)

#a <- run_or_end $bm $l

If the programmer forgets to write $bm.insert(addr, $m), reconstruction would fail. �ere

would be an extra ($m : money) le� in the process context, and since Nomos employs a
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linear type system, the type checker would report an error. In e�ect, the type checker forces
the programmer to consume the channel $m to ensure linearity.

Type equality is restricted to re�exivity (constant time), although we have also implemented

the standard co-inductive algorithm [66] which is quadratic in the size of type de�nitions. For

all our examples, the re�exive notion of equality was su�cient. If type equality is restricted

to constant-time re�exive notion, type checking is linear time in the size of the program. �is

property is quite relevant in the blockchain se�ing, since type checking can be part of the

a�ack surface. If type checking is too slow, malicious users can issue transaction programs

that take too long to type check, e�ectively forcing a denial-of-service a�ack.

LP Solver for Potential and Mode Inference �e potential and mode annotations are the

most interesting aspects of the Nomos type system. Since modes are associated with each

channel, they are tedious to write. Similarly, the exact potential annotations depend on the

cost assigned to each operation and is di�cult to predict statically. �us, we implemented

an automatic inference algorithm for both these annotations by relying on an o�-the-shelf LP

solver.

Using ideas from existing techniques for type inference for AARA [83, 84], we reduce the re-

construction of potential annotations to linear optimization. To this end, Nomos’ inference

engine uses the Coin-Or LP solver. In a Nomos program, the programmer can indicate un-

known potential using ∗. �us, resource-aware session types can be marked with .∗ and /∗,

list types can be marked as L∗(τ) and process de�nitions can be marked with |{∗}− on the

turnstile. �e mode of all the channels is marked as ‘unknown’ while parsing.

As an example, consider the auction session type. �e programmer writes the following type:

type auction =

/\ <{*} +{ running : money -o |{*}> \/ auction ,

ended : +{won : lot * |{*}> \/ auction ,

lost : money * |{*}> \/ auction }}

Using ∗ annotations minimizes the programmer burden who does not need to compute exact

potential annotations and execution cost.

�e inference engine then iterates over the program and substitutes the star annotations with

potential variables and ‘unknown’ with mode variables. For the auction type, this reduces to

type auction =

/\ <{v0} +{ running : money -o |{v1}> \/ auction ,

ended : +{won : lot * |{v2}> \/ auction ,

lost : money * |{v3}> \/ auction }}

In the �rst phase of type checking, we ignore the potential and mode annotations and approx-

imately type check the remaining program. �is phase rules out type errors resulting from
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structural session types, i.e., protocol or linearity violation. In the second phase, we apply

the rules for potential constructors (see Figures 6.3, 6.4) to generate linear constraints on the

potential variables. For the above example, we generate the constraints

v0 − v1 ≥ 17 v0 − v2 ≥ 15 v0 − v3 ≥ 20

v0 ≥ 0 v1 ≥ 0 v2 ≥ 0 v3 ≥ 0

min(v0 + v1 + v2 + v3)

Finally, these constraints are shipped to the LP solver, which minimizes the value of the poten-

tial annotations to achieve tight bounds. �e LP solver either returns that the constraints are

infeasible, or returns a satisfying assignment, which is then substituted into the program. For

the above example, we obtain the solution: v0 = 20, v1 = 3, v2 = 5, v3 = 0. �e �nal program

is pre�y printed for the programmer to view and verify the potential and mode annotations.

7.4 Blockchain Integration

To integrate Nomos with a blockchain, we need a mechanism to (i) represent contracts and

their addresses in the current blockchain state, (ii) create and execute transactions, and (iii)
construct the global distributed ledger. �is section addresses these challenges and also high-

lights the main limitation of the language: deadlocks in the transaction programs.

Nomos on a Blockchain We assume working in a blockchain se�ing similar to Ethereum

with a standard account model. At any given time, the blockchain contains a set of Nomos

contracts: C1, . . . , Cn with their type information: · ; Γi ; ∆i
R `

qi Ci :: (xiS : AiS). �e

shared context Γi types the shared contracts that Ci refers to, and the linear context ∆i
R types

the contract’s linear assets. �e channel name xiS of a contract is its address and has to be

globally unique. Our implementation contains a deterministic mechanism to generate unique

fresh names. We allow contracts to carry potential given by the annotation qi, which can be

used to share and amortize gas cost across transactions. It is also straightforward to modify

the blockchain setup to suppress the potential stored in the contracts.

�ese contracts together form a stuck con�guration (a valid virtual blockchain state) typed as

Γ
E
� proc(x1

S, w1, C1) . . . proc(xnS , wn, Cn) :: (Γ ; ·)

where Γ = (x1
S : A1

S), . . . , (xnS : AnS) and E = Σn
i=1qi + wi is the total energy of the con-

�guration, that is, the sum of the stored potential and previously performed work. �e actual

implementation stores some additional metadata such as mapping from linear channels to their

shared counterpart, linear channels to their continuation, and a mapping from shared chan-

nels to their types. �e mapping from linear channels to their counterpart is necessary for the
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↓SL C rule where a linear channel is released. To release a linear channel aL to its corresponding

shared channel aS, we utilize this mapping that stores aL 7→ aS. But since fresh channels are

created with every communication, if a shared channel aS is acquired to create aL, then the

linear channel to be released to aS might be di�erent from aL, particularly if some communi-

cation occurred on aL. �e need for mapping shared channels to their types is explained in the

paragraph on the Nomos interpreter.

To perform a transaction with a contract, a user submits a transaction scriptQ (a process) that

is well-typed with respect to the existing contracts:

· ; Γ ; · `q Q :: (xT : 1)

We mandate that the transaction o�ers along a channel of type 1 and terminates by sending

a close message on its o�ered channel. Intuitively, this enforces that the transaction, at termi-

nation, leaves the blockchain in a well-formed state. �is transaction process is added to the

set of contracts and the new (closed) con�guration is typed as

Γ
E+q

� proc(x1
S, w1, C1) . . . proc(xnS , wn, Cn) proc(xT, 0, Q) :: (Γ ; (xT : 1))

�is con�guration then steps according to the Nomos semantics. A transaction can either

create new contracts, or update the state of existing contracts. In the former case, new contracts

are added to the blockchain state, making them visible in the type of the con�guration for

subsequent transactions to access. �e type safety of Nomos ensures that transaction execution

will be successful terminating in the following con�guration

Γ
E′

� proc(x1
S, w

′
1, C

′
1) . . . proc(xmS , w

′
m, C

′
m) msg(xT, 0, close xT) :: (Γ ; ·)

where m may be greater than n since the transaction can create additional contracts. At this

point, we remove the close message from the con�guration, resulting in the stuck con�guration

Γ
E′

� proc(x1
S, w

′
1, C

′
1) . . . proc(xmS , w

′
m, C

′
m) :: (Γ ; ·)

�is stuck con�guration represents a valid blockchain state guaranteeing that the transaction

execution has successfully terminated, and we may initiate a new transaction on this new

blockchain state.

Gas Accounts With this blockchain setup, one may reasonably wonder about the origin of

potential. In our integration, we allow users to create gas accounts that store potential. To

simplify ma�ers, users can only store gas in these accounts; to store other private data and

assets, they must create contracts where this additional information is collected. Gas accounts

only contain a username and gas balance. We allow users to create new accounts and deposit

gas into their accounts. When a user submits a transaction, the gas cost of the transaction is

inferred by the LP solver, and this gas is automatically deducted from the account balance of
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that user. If the account balance is insu�cient to pay for the transaction cost, the transaction

is simply aborted.

Subsynchronizing Session Types A transaction program usually proceeds by acquiring
existing contracts, exchanges data and assets with them, and subsequently releasing them. In

Nomos, we require session types to be equi-synchronizing [25], i.e., contracts must be released

at the same type that they are acquired. �is requirement is crucial to type safety due to the

shared nature of contracts. Since multiple users interact with a shared contract, it is critical

that they observe a common shared type for the contract. If one client alters this type a�er

interaction, other clients are not noti�ed of this change, which will break type safety.

�is equi-synchronizing constraint imposes a strong restriction: contracts must maintain a

common type despite the phase they operate in. For instance, the auction contract operates

over two phases: an open phase where bidders bid into the auction; and a closed phase when

bidders withdraw their bids from the auction. However, these phases are not re�ected in the

type. Recall the auction type.

type auction =

/\ <{20} +{ running : money -o |{3}> \/ auction ,

ended : +{won : lot * |{5}> \/ auction ,

lost : money * |{0}> \/ auction }}

As we observe, the auction is acquired and released at the common type: auction.

In Nomos, we can relax this restriction by allowing sub-synchronizing types. Here, a contract

can be released at a subtype of the type it was acquired at. For instance, we can introduce two

mutually recursive auction types.

type open_auction =

/\ <{20} +{ running : money -o |{3}> \/ open_auction ,

ended : +{won : lot * |{5}> \/ closed_auction ,

lost : money * |{0}> \/ closed_auction }}

type closed_auction =

/\ <{20} +{ ended : +{won : lot * |{5}> \/ closed_auction ,

lost : money * |{0}> \/ closed_auction }}

�e open auction type describes the open auction phase: it can either stay open (if it sends the

running message), or transition to closed (if it sends the ended) message. As exempli�ed by the

type, the phase of the auction is now visible in its type.

�is relaxation, however, comes at a cost. Type checking in this relaxed se�ing needs to reason

about subtyping, instead of type equality. Subtyping, unlike type equality, is more general than

re�exivity, hence cannot be decided in constant time. �us, in the worst case, type checking

would no longer be linear in this relaxed environment.
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Deterministic Execution Since blockchains rely on consensus among the miners, it is im-

portant to ensure deterministic execution of transactions. However, Nomos semantics has one

source of non-determinism: the acquire-accept rule where an accepting contract latches on to

any acquiring transaction. �e Nomos implementation resolves this non-determinism by man-

dating that the contract must interact with the transaction with the lowest channel number.

�is simple heuristic, although not the cleanest, is easy to implement and su�cient for our

purposes. Another promising approach is record-and-replay [99, 128]. �e miner who mines

the transaction records the order in which they resolved the acquire-accept non-determinism.

All other miners validating the blockchain state must replay the same order, thus obtaining

the same blockchain state a�er execution.

Interpreter �e Nomos implementation provides two key functionalities: inference and ex-
ecution. �e inference engine takes a transaction program as input, infers the potential and

mode annotations and outputs a well-typed program which is veri�ed by the type checker.

Next, the execution engine takes the well-typed transaction program and a valid blockchain

state as input, executes the transaction against the state and outputs a valid blockchain state.

�e Nomos interpreter uses OCaml S-expressions to represent blockchain states. �e inter-

preter has read/write functionality which converts blockchain state to S-expression and vice-

versa. �is helps persist the blockchain state across transactions. �e interpreter takes an

input �le, reads the S-expression from it, converts it to a blockchain state, executes the trans-

action against the state, and writes the output blockchain state to an output �le. Internally, the

interpreter is based on the semantics rules presented in Chapter 6.

Deadlocks �e only language speci�c reason a transaction can fail is a deadlock in the trans-

action code. Our progress theorem accounts for this possibility of deadlocks. We currently

employ dynamic deadlock detection techniques internally in the implementation. Intuitively,

since a valid blockchain state represents a stuck con�guration of a particular form (only shared

contracts in the con�guration), we verify that the execution terminates with the con�guration

in this form. If not, we conclude that a deadlock occurred during the execution, and we simply

abort the whole transaction. We maintain snapshots of the con�guration a�er every trans-

action execution, so we simply revert to the previous valid blockchain state. It is the user’s

responsibility to issue a new transaction that does not deadlock. In the future, we plan to

employ deadlock prevention techniques [27] to statically rule out deadlocks.

7.4.1 Blockchain-speci�c Features

To further simplify programming, we enhance Nomos with blockchain-speci�c features. �is

section provides a brief overview of these features.
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Map Data Structure �e most widely used data structure in smart contracts is maps. It is

o�en used in contracts to store a mapping from users to their balance. �e auction example

uses it to map users to their bids. We provide surface syntax to make it easier for programmers

to interact with maps.

�e �rst step is to dinstinguish between linear and non-linear maps. Although the two maps

di�er in their statics and semantics, we want to provide a uni�ed syntax for ease of program-

ming. We �rst describe the session type for a non-linear map with key type kt and value type

vt.

type Map <kt , vt > = &{ insert : kt -> vt -> Map <kt , vt >,

delete : kt -> vt option ^ Map <kt , vt >,

size : int ^ Map <kt , vt >,

close : 1}

�e map is implemented with a recursive session type initiating with an external choice. It

accepts one of three messages: insert, delete, size or close. In the case of insert, the

map receives a key and value and inserts the pair in the dictionary. If the key already exists,

the existing value is overwri�en. In the case of delete, the map receives a key and returns an

optional value depending on whether the key exists in the map or not. In the case of size, the

map returns an integer corresponding to its size. In each of these three cases, the type then

recurses back to Map<kt, vt>. Finally, in the case of close, the map simply terminates with

a close message.

�e case of a linear map is only slightly di�erent. �e type is as follows:

type Map <kt , vt > = &{ insert : kt -> vt -o Map <kt , vt >,

delete : kt -> vt option * Map <kt , vt >,

size : int ^ Map <kt , vt >,

close : +{empty : 1,

nonempty: Map <kt, vt >}}

�e type di�ers from a non-linear map in a few key ways. First, vt is a linear type, hence we

use -o and * constructors to exchange them. Second, closing a linear map is only allowed when

it is empty. Hence, on receiving a close message, a linear map will respond with either the

emptymessage followed by termination. Or with the nonemptymessage followed by recursing

back to its original type.

Finally, we provide surface syntax to ease programming with maps.

• $m <- new Map<kt, vt>: for creating a new map $m of key type kt and value type vt

• $m.insert(k, v): for inserting key k and value ’v’ into map $m. If the map is linear,

the value is replaced by a channel $v.

• v = $m.delete(k): for deleting key k from map $m. If the map is linear, the expression

changes to $v <- $m.delete(k).
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• n = $m.size: for obtaining the size of map $m and storing it in variable n.

• $m.close: for closing the map.

Blockchain-speci�c Expressions To keep track of blockchain users, we introduce a built-

in type called address. We use the expression Nomos.GetTxnSender() as an introduction

form that returns a value of type address. �ere are no elimination forms for this type.

We also introduce the expression Nomos.GetTxnNum() to track the current transaction num-

ber. Our implementation uses a sequential mode of execution: every new transaction is auto-

matically assigned the number n + 1 where n is the number of the previous transaction. �e

�rst transaction is assigned the number 0.

Exact Gas Computation So far, we have only discussed upper bound gas computation by

the Nomos inference engine. However, a central limitation of upper gas bounds is that we still

need to monitor gas cost at runtime [53] to return the le�over gas back to the user at the end of

execution. And this dynamic gas monitoring can create signi�cant runtime overheads, which

can increase transaction fees and reduce the total throughput of the system.

Forunately, a minor tweak to the language can lead to completely eliminating dynamic gas

monitoring. Upper gas bounds are primarily caused by di�erent gas costs along di�erent pro-

gram branches. To mitigate this issue, we introduce a novel expression Nomos.deposit {r}

which deposits r units of gas in the sender’s account. �e less costly branch is automatically

augmented with the expression Nomos.deposit {*}. �e program is then shipped to the LP

solver which computes the value of all such ∗ annotations. And at runtime, these expressions

safely return the le�over gas in the sender’s account. �ere is no need to dynamically monitor

gas cost at runtime!

CustomCoins Finally, Nomos provides a built-in abstract coin type. �ere are no introduc-

tion or elimination forms of this type. �us, there are no ways to delete or duplicate a channel

of this type; they can only be transferred across di�erent contracts. �is type can be used to

truly enforce linearity of assets on the blockchain.

�ese coins can further be used to encode fancier tokens. For example, we can create a type

coin2 to represent 2 coins.

type coin2 = coin * coin

We can even store more information inside the coin, e.g. the owner’s address or the history of

all owners in the past. For instance, consider the UTxO coin.

type utxo = &{ history : address list ^ utxo ,

delete : coin}
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�is type, when queried, can return the address list of all its owners. But we can also delete its

history, and turn it into a simple coin. �e Nomos language is thus, very general, and we are

not tied to a particular system-speci�c coin.

7.5 Evaluation

We evaluate the design of Nomos by implementing several smart contract applications and

discussing the typical issues that arise. All the contracts are implemented and type checked in

the prototype implementation and the potential and mode annotations are derived automat-

ically by the inference engine. �e cost model used for these examples assigns 1 unit of cost

to every atomic internal computation and sending of a message. We show the contract types

from the implementation with the following ASCII format: i) /\ for ↑SL, ii) \/ for ↓SL, iii) <{q}|

for /q , iv) |{q}> for .q , v) ^ for ×, vi) *[m] for ⊗m, vii) -o[m] for(m.

ERC-20 Token Standard ERC-20 [4] is a technical standard for smart contracts on the

Ethereum blockchain that de�nes a common list of standard functions that a token contract

has to implement. �e majority of tokens on the Ethereum blockchain are ERC-20 compliant.

�e ERC-20 token contract implements the following session type in Nomos:

stype erc20token = /\ <{11}| &{

totalSupply : int ^ |{9}> \/ erc20token ,

balanceOf : id -> int ^ |{8}> \/ erc20token ,

transfer : id -> id -> int -> |{0}> \/ erc20token ,

approve : id -> id -> int -> |{6}> \/ erc20token ,

allowance : id -> id -> int ^ |{6}> \/ erc20token }

�e type ensures that the token implements the protocol underlying the ERC-20 standard. To

query the total number of tokens in supply, a client sends the totalSupply label, and the contract

sends back an integer. If the contract receives the balanceOf label followed by the owner’s

identi�er, it sends back an integer corresponding to the owner’s balance. A balance transfer

can be initiated by sending the transfer label to the contract followed by sender’s and receiver’s

identi�er, and the amount to be transferred. If the contract receives approve, it receives the

two identi�ers and the value, and updates the allowance internally. Finally, this allowance can

be checked by issuing the allowance label, and sending the owner’s and spender’s identi�er.

�e design of Nomos is orthogonal to the concrete representation of money or currency in

the language. �e Nomos implementation provides a simple built-in abstract coin type of a

unit value. Our implementation of the erc20token session type relies on these abstract coins

used exclusively for exchanges among the private accounts. Coins are treated linearly as no

operations are allowed on primitive types. As a result, coins cannot be created or discarded.
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It is straightforward to add features by using more sophisticated abstract coin types or by pro-

viding built-in operations that are executed by the runtime system. For example, we can add

coins with unique identi�ers or coins of di�erent denominations by changing the underlying

session type of coins. Similarly, we can add operations for minting (creating) or burning (dis-

carding) coins if users have the respective privileges. Such operations could be, for instance,

implemented in an abstract contract that is an interface to the runtime system. Finally, there

can be operations for exchanging coins and gas at rates that are �xed when type-checking

transactions.

It is also possible to allow programmers to de�ne their own abstract types with their individual

introduction and elimination forms to use them in an implementation of a session type like

erc20token.

Hacker Gold (HKG) Token �e HKG token is one particular implementation of the ERC-20

token speci�cation. Recently, a vulnerability was discovered in the HKG token smart contract

based on a typographical error leading to a re-issuance of the entire token [2]. When updating

the receiver’s balance during a transfer, instead of writing balance+=value, the programmer

mistakenly wrote balance=+value (semantically meaning balance=value). Nomos’ type sys-

tem would have caught the linearity violation in the la�er statement that drops the existing

balance in the recipient’s account.

Puzzle Contract �is contract, taken from prior work [104] rewards users who solve a com-

putational puzzle and submit the solution. �e contract allows two functions, one that allows

the owner to update the reward, and the other that allows a user to submit their solution and

collect the reward.

In Nomos, this contract is implemented to o�er the type

stype puzzle = /\ <{14}| &{

update : id -> money -o[R] |{0}> \/ puzzle ,

submit : int ^ &{

success : int -> money *[R] |{5}> \/ puzzle ,

failure : |{9}> \/ puzzle } }

�e contract still supports the two transactions. To update the reward, it receives the update

label and an identi�er, veri�es that the sender is the owner, receives money from the sender,

and acts like a puzzle again. �e transaction to submit a solution has a guard associated with it.

First, the contract sends an integer corresponding to the reward amount, the user then veri�es

that the reward matches the expected reward (the guard condition). If this check succeeds, the

user sends the success label, followed by the solution, receives the winnings, and the session

terminates. If the guard fails, the user issues the failure label and immediately terminates the

session. �us, the contract implementation guarantees that the user submi�ing the solution

receives their expected winnings.
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Voting �e voting contract provides a ballot type.

stype ballot = /\ <{16}| +{

open : id -> +{ vote : id -> |{0}> \/ ballot ,

novote : |{9}> \/ ballot },

closed : id ^ |{13}> \/ ballot }

�is contract allows voting when the election is open by sending the candidate’s id, and pre-

vents double voting by checking if the voter has already voted (the novote label). Once the

election closes, the contract can be acquired to check the winner. We use two implementations

for the contract: the �rst stores a counter for each candidate that is updated a�er each vote

is cast (voting in Table 7.2); the second does not use a counter but stores potential inside the

vote list that is consumed for counting the votes at the end (voting-aa in Table 7.2). �is stored

potential is provided by the voter to amortize the cost of counting. �e type above shows the

potential annotations corresponding to the la�er.

Insurance Nomos has been carefully designed to allow inter-contract communication with-

out compromising type safety. We illustrate this feature using an insurance contract that pro-

cesses �ight delay insurance claims a�er verifying them with a trusted third party. �e insurer

and third party veri�er are implemented as separate contracts providing the following session

types.

stype insurer = /\ <{6}| &{

submit : claim -> +{

success : money *[R] |{0}> \/ insurer ,

failure : |{1}> \/ insurer } }

stype verifier = /\ <{3}| &{

verify : claim -> +{

valid : |{0}> \/ verifier ,

invalid : |{0}> \/ verifier } }

�e insurer type provides the option to submit a claim by receiving it and responds with

success or failure depending upon veri�cation of the claim. If the claim is successful, the

insurer sends over the reimbursement in the form of money. �e verifier type provides the

option to verify a claim by receiving it and responding with valid or invalid depending on

the validity of the claim.

�e insurer, upon receiving a claim, acquires the veri�er and sends it the claim details. If the

claim is valid, then it responds with success, sends the money and detaches from its client. If

the claim is invalid, it responds with failure and immediately detaches from its client.
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Contract LOC T (ms) Vars Cons I (ms) Gap

auction 176 0.558 229 730 5.225 3

ERC 20 136 0.579 161 561 4.317 6

puzzle 108 0.410 126 389 8.994 8

voting 101 0.324 109 351 3.664 0

voting-aa 101 0.346 140 457 3.926 0

escrow 85 0.404 95 321 3.816 3

insurance 56 0.299 76 224 8.289 0

bank 147 0.663 173 561 4.549 0

wallet 30 0.231 32 102 3.224 0

Table 7.2: Evaluation of Nomos with Case Studies. LOC = lines of code; T (ms) = the type

checking time in ms; Vars = #variables generated during type inference; Cons = #constraints

generated during type inference; I (ms) = type inference time in ms; Gap = maximal gas bound

gap.

Experimental Evaluation We describe the 8 case studies we implemented in Nomos. We

have already discussed auction (Section 7.1), ERC 20, puzzle, voting, and insurance. �e other

case studies are:

• A bank account that allows users to register, make deposits and withdrawals and check

the balance.

• An escrow to exchange bonds between two parties.

• A wallet allowing users to store money on the blockchain.

Table 7.2 contains a compilation of our experiments with the case studies and the prototype

implementation. �e experiments were run on an Intel Core i5 2.7 GHz processor with 16

GB 1867 MHz DDR3 memory. It presents the contract name, its lines of code (LOC), the type

checking time (T (ms)), number of potential and mode variables introduced (Vars), number of

potential and mode constraints that were generated while type checking (Cons) and the time

the LP solver took to infer their values (I (ms)). �e last column describes the maximal gap

between the static gas bound inferred and the actual runtime gas cost. It accounts for the

di�erence in the gas cost in di�erent program paths. However, this waste is clearly marked

in the program by explicit tick instructions so the programmer is aware of this runtime gap,

based on the program path executed.

�e evaluation shows that the type-checking overhead is less than a millisecond for case stud-

ies. �is indicates that Nomos is applicable to se�ings like distributed blockchains in which

type checking could add signi�cant overhead and could be part of the a�ack surface. Type in-

ference is also e�cient but an order of magnitude slower than type checking. �is is acceptable

since inference is only performed once during deployment and can be carried out o�-chain.

Gas bounds are tight in most cases. Loose gas bounds are caused by conditional branches with

di�erent gas cost. In practice, this is not a major concern since the Nomos semantics tracks
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the exact gas cost, and a user will not be overcharged for their transaction. However, Nomos’

type system can be easily modi�ed to only allow contracts with tight bounds.

Our implementation experience revealed that describing the session type of a contract crystal-

lizes the important aspects of its protocol. O�en, subtle aspects of a contract are revealed while

de�ning the protocol as a session type. Once the type is de�ned, the implementation simply

follows the type protocol. �e error messages from the type checker were helpful in ensur-

ing linearity of assets and adherence to the protocol. Using ∗ for potential annotations meant

we could remain unaware of the exact gas cost of operations. �e syntactic sugar constructs

reduced the programming overhead and the size of the contract implementations.



Chapter 8

Conclusion

�is chapter concludes my thesis with a summary of contributions, a brief look at possible

future directions, and some �nal thoughts.

8.1 Summary of Contributions

�is thesis makes two major contributions: design and type-thoeretic foundation of resource-

aware session types, and application of resource-aware session types for a safe smart contract

programming language called Nomos.

Chapter 3 begins with introducing novel arithmetically re�ned session types. �e key inno-

vation here was to index types with natural numbers that represent data structure sizes and

values. We also allow session-typed processes to exchange linear arithmetic constraints on

these indices to constrain process behavior. Our �rst, rather surprising, theoretical result was

that type equality, and therefore, type checking is undecidable for re�nement session types,

even though Presburger arithmetic itself is decidable. But as a recourse, we devised an al-

gorithm for approximating type equality which, despite its incompleteness, works very well

in practice. Since re�nement constructs introduce verbosity overhead to programs, we also

devised a novel forcing algorithm to insert re�nement constructs automatically. �is assists

with code reuse by greatly reducing programmer burden. Finally, the language including all

the above algorithms are implemented in a type-safe system called Rast which is evaluated on

standard session-typed benchmarks.

Chapter 4 crucially employs re�nements to express work bounds for session-typed processes.

To compute work, our key innovation was to introduce an abstract notion of potential. �is

potential can be stored inside processes and exchanged using special messages but, most im-

portantly, it must be consumed to take an execution step. Intuitively, potential gets converted

into work at runtime. �is implies that the initial potential stands as an upper bound on the

work bound of a concurrent computation. �is is exactly what is formalized by the soundness

125
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theorem. As an application, we compare the e�ciency of standard stack and queue implemen-

tations.

Chapter 5 employs re�nements to express time bounds for programs. �e key innovation here

was to augment the timing information of message exchanges in the session type. In particular,

we introduce the©r operator that stands for a delay of r units of time. For instance, a channel

of type ©rA behaves as A a�er exactly r time units. To capture unknown timings, we also

introduce � and ♦ operators which describe an eventual message exchange. We combine

these three operators to �exibly express time bounds on standard concurrent data structures.

Session types, together with work and span extensions, are dubbed as resource-aware session
types.

Chapter 6 is dedicated to the type-theoretic foundation of the Nomos language that provides

3 domain-speci�c features. First, the communication protocols that are statically prescribed

by session types are instrumental in expressing and enforcing transaction behavior. Second,

the linear characteristic of session types enables programmers to track assets preventing their

accidental duplication or deletion. Finally, resource-aware session types automatically infer

the execution cost of transactions relieving programmers of this burden too. In addition, the

chapter also describes how session types are integrated into a functional language via a linear

contextual monad. �e chapter concludes with the usual progress and preservation theorems.

Chapter 7 complements the previous chapter by describing the implementation of the Nomos

language. �e aim of this chapter is to demonstrate the practicality and wide applicability of

Nomos. More concretely, the chapter describes our e�orts in reducing programmer burden.

First, verbose channel modes are automatically inferred using an LP solver. Second, the im-

plementation provides several blockchain-speci�c features such as easy use of map data struc-

tures, transaction-related expressions, and gas accounts to send transactions. �ird, the chap-

ter also describes how Nomos integrates into an account model blockchain. Finally, Nomos is

evaluated on a variety of standard smart contracts with a detailed description of the guarantees

it can provide.

8.2 Future Directions

I conclude my thesis with a few broad future directions that closely align with resource-aware

session types and the Nomos language. I have classi�ed these directions in 3 broad projects.

(i) design of optimal scheduling policies based on execution cost

(ii) automatic synthesis of distributed programs from their speci�cation

(iii) implementation and analysis of cryptographic systems
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Cost Analysis for Optimal Scheduling Cost analysis can assist developers in designing

optimal scheduling policies for their applications. �e sequential complexity bounds from Rast

can be used to determine whether a new computation needs to be executed in the current or

a freshly spawned thread. �e parallel complexity bounds from Rast implicitly determine data

dependency between threads and can be used to decide the order of thread execution. We

can implement complexity-driven scheduling policies in Rast and evaluate their impact on

performance.

Synthesis of Distributed Programs One e�ective way of assisting developers is by writ-

ing programs for them! Re�nement session types can naturally express program speci�cations.

Programs can then be synthesized from their speci�cations by applying data-driven deep learn-

ing techniques. Re�nements can also be utilized for semi-automatic synthesis of smart con-

tracts. I believe re�nement session types can propel program synthesis to distributed systems.

Rast for Cryptographic Protocols In a recent collaboration, I observed that re�nement

session types can neatly represent security protocols. With the recent growth in the com-

plexity of such protocols, developers can greatly bene�t from language support while building

secure systems. We can also employ type-based techniques to model ill-behaved adversaries

and formally verify cryptographic protocols. Furthermore, resource-aware types can provide

computational security by modeling adversaries who are capable of only polynomial-time com-

putation. We can also use programming language techniques to demonstrate universal com-
posability, which entails that security properties of cryptographic protocols are preserved even

when arbitrarily composed with other protocols.

More broadly, session types carry the safety guarantees that type systems can provide to the

distributed domain. Resource-aware session types augment session types with cost informa-

tion to provide computational guarantees along with safety. Together, they can inspire the de-

sign of next-generation concurrent programming languages. On the practical side, blockchains

hold the potential of providing �nancial infrastructure access to underprivileged communities.

Safe smart contract languages are the �rst step towards increase our trust in �nancial systems

and improving their broader applicability. Nomos can inspire the design of future smart con-

tract languages. In conclusion, programming language tools and techniques hold the power of

improving so�ware design and development and making technologies safer, faster, and more

reliable!
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[125] Ivan Radiček, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger.

Monadic Re�nements for Relational Cost Analysis. Proc. ACM Program. Lang., 2(POPL),

2017.

[126] Jason Reed. A judgmental deconstruction of modal logic. Unpublished manuscript,

January 2009. URL http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf.

[127] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’08, page 159–169, New York, NY, USA, 2008. Association for Comput-

ing Machinery. ISBN 9781595938602. doi: 10.1145/1375581.1375602. URL https:

//doi.org/10.1145/1375581.1375602.

[128] Michiel Ronsse and Koen De Bosschere. Recplay: A fully integrated practical record/re-

play system. ACM Trans. Comput. Syst., 17(2):133–152, May 1999. ISSN 0734-2071. doi:

10.1145/312203.312214. URL http://doi.acm.org/10.1145/312203.312214.

[129] Neda Saeedloei and Gopal Gupta. Timed π-calculus. In 8th International Symposium
on Trustworthy Global Computing - Volume 8358, TGC 2013, pages 119–135, New York,

NY, USA, 2014. Springer-Verlag New York, Inc. ISBN 978-3-319-05118-5. doi: 10.1007/

978-3-319-05119-2 8. URL https://doi.org/10.1007/978-3-319-05119-2_8.

[130] Alceste Scalas and Nobuko Yoshida. Lightweight session programming in Scala. In

Proceedings of the 30th European Conference on Object-Oriented Programming (ECOOP
2016), pages 21:1–21:28, Rome, Italy, July 2016. LICIcs 56.

[131] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Scilla: a smart contract intermediate-level

language. CoRR, abs/1801.00687, 2018. URL http://arxiv.org/abs/1801.00687.

[132] Miguel Silva, Mário Florido, and Frank Pfenning. Non-blocking concurrent imperative

programming with session types. In Fourth International Workshop on Linearity, June

2016.

[133] Hugo R. Simões, Pedro B. Vasconcelos, Mário Florido, Ste�en Jost, and Kevin Hammond.

Automatic Amortised Analysis of Dynamic Memory Allocation for Lazy Functional Pro-

grams. In 17th Int. Conf. on Funct. Prog. (ICFP’12), 2012.

[134] Moritz Sinn, Florian Zuleger, and Helmut Veith. A Simple and Scalable Approach to

Bound Analysis and Amortized Complexity Analysis. In Computer Aided Veri�cation -
26th Int. Conf. (CAV’14), 2014.

http://arxiv.org/abs/2002.04607
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
http://doi.acm.org/10.1145/312203.312214
https://doi.org/10.1007/978-3-319-05119-2_8
http://arxiv.org/abs/1801.00687


Bibliography 139

[135] Robert Endre Tarjan. Amortized computational complexity. SIAM Journal on Algebraic
Discrete Methods, 6(2):306–318, 1985.

[136] Tachio Terauchi and Adam Megacz. Inferring channel bu�er bounds via linear program-

ming. In ESOP’08, 2008.

[137] Peter �iemann and Vasco T. Vasconcelos. Context-free session types. In Proceedings of
the 21st International Conference on Functional Programming (ICFP 2016), pages 462–475,

Nara, Japan, September 2016. ACM.

[138] Bernardo Toninho, Luı́s Caires, and Frank Pfenning. Higher-order processes, functions,

and sessions: a monadic integration. In 22nd European Symposium on Programming
(ESOP), pages 350–369. Springer, 2013.

[139] Bernardo Toninho, Luı́s Caires, and Frank Pfenning. Corecursion and non-divergence

in session-typed processes. In M. Ma�ei and E. Tuosto, editors, Proceedings of the 9th
International Symposium on Trustworthy Global Computing (TGC 2014), pages 159–175,

Rome, Italy, September 2014. Springer LNCS 8902.

[140] Pedro Vasconcelos. Space Cost Analysis Using Sized Types. PhD thesis, School of Com-

puter Science, University of St Andrews, 2008.

[141] Vasco T. Vasconcelos. Session, from types to programming languages. Bulletin of the
EATCS, 103:53–73, 2011.

[142] Philip Wadler. Linear types can change the world! In IFIP TC 2 Working Conference on
Programming Concepts and Methods, pages 546–566. North, 1990.

[143] Philip Wadler. Propositions as sessions. In 17th ACM SIGPLAN International Conference
on Functional Programming (ICFP), pages 273–286. ACM, 2012.

[144] Max Willsey, Rokhini Prabhu, and Frank Pfenning. Design and implementation of Con-

current C0. In Fourth International Workshop on Linearity, June 2016.

[145] Gavin Wood. Ethereum: A secure decentralized transaction ledger, 2014.

[146] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceed-
ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’99, pages 214–227, New York, NY, USA, 1999. ACM. ISBN 1-58113-095-3.

doi: 10.1145/292540.292560. URL http://doi.acm.org/10.1145/292540.292560.

[147] Hongwei Xi, Zhiqiang Ren, Hanwen Wu, and William Blair. Session types in a lin-

early typed multi-threaded lambda-calculus. CoRR, abs/1603.03727, 2016. URL http:

//arxiv.org/abs/1603.03727.

[148] Christoph Zenger. Indexed types. �eor. Comput. Sci., 187(1–2):147–165, November

1997. ISSN 0304-3975. doi: 10.1016/S0304-3975(97)00062-5. URL https://doi.org/

10.1016/S0304-3975(97)00062-5.

http://doi.acm.org/10.1145/292540.292560
http://arxiv.org/abs/1603.03727
http://arxiv.org/abs/1603.03727
https://doi.org/10.1016/S0304-3975(97)00062-5
https://doi.org/10.1016/S0304-3975(97)00062-5


Bibliography 140

[149] Fangyi Zhou, Francisco Ferreira, Rumyana Neykova, and Nobuko Yoshida. Fluid Types:

Statically Veri�ed Distributed Protocols with Re�nements. In 11th Workshop on Pro-
gramming Language Approaches to Concurrency and Communication-Centric So�ware,
2019.

[150] Florian Zuleger, Moritz Sinn, Sumit Gulwani, and Helmut Veith. Bound Analysis of

Imperative Programs with the Size-change Abstraction. In 18th Int. Static Analysis Symp.
(SAS’11), 2011.


	Abstract
	1 Introduction
	1.1 Programming Digital Contracts using Resource-Aware Session Types
	1.2 Overview

	2 Background
	2.1 Session Types
	2.1.1 Examples
	2.1.2 Preservation and Progress

	2.2 Resource Analysis
	2.2.1 Manual Amortized Analysis
	2.2.2 Automatic Amortized Analysis


	3 Refinement Session Types
	3.1 Introduction
	3.2 Arithmetic Refinements
	3.3 Undecidability of Type Equality
	3.4 A Practical Algorithm for Type Equality
	3.4.1 Soundness of the Type Equality Algorithm
	3.4.2 Type Equality Declarations

	3.5 Formal Description of the Rast Language
	3.5.1 The Refinement Layer

	3.6 Type Safety
	3.7 Constraint Reconstruction
	3.8 Implementation
	3.9 Further Examples
	3.10 Related Work
	3.11 Conclusion

	4 Work Analysis
	4.1 Overview
	4.2 Operational Cost Semantics
	4.3 Type System
	4.4 Soundness
	4.5 Case Study: Stacks and Queues
	4.6 Related Work
	4.7 Future Directions

	5 Time Analysis
	5.1 The Temporal Modality Next (A)
	5.2 The Temporal Modalities Always (A) and Eventually (A)
	5.3 Preservation and Progress
	5.4 Further Examples
	5.5 Related Work
	5.6 Future Directions

	6 Session Types for Digital Contracts
	6.1 Nomos by Example
	6.2 Sharing Contracts
	6.3 Adding a Functional Layer
	6.4 Tracking Resource Usage
	6.5 Type Soundness
	6.6 Related Work
	6.7 Future Directions

	7 Implementation of Nomos
	7.1 Overview of Nomos with an Auction Implementation
	7.2 Mode Inference
	7.3 Implementation
	7.4 Blockchain Integration
	7.4.1 Blockchain-specific Features

	7.5 Evaluation

	8 Conclusion
	8.1 Summary of Contributions
	8.2 Future Directions

	Bibliography

