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Session types provide a formal type system to define and verify communication protocols between message-

passing processes. In order to analyze randomized systems, recent works have extended session types with

probabilistic type constructors. Unfortunately, all the proposed extensions only support constant probabilities

which limits their applicability to real-world systems. Our work addresses this limitation by introducing

probabilistic refinement session types which enable symbolic reasoning for concurrent probabilistic systems in

a core calculus we call PReST. The type system is carefully designed to be a conservative extension of refinement

session types and supports both probabilistic and regular choice type operators. We also implement PReST in

a prototype which we use for validating probabilistic concurrent programs. The added expressive power leads

to significant challenges, in both the meta theory and implementation of PReST, particularly with type check-

ing: it requires reconstructing intermediate types for channels when type checking probabilistic branching

expressions. The theory handles this by semantically quantifying refinement variables in probabilistic typing

rules, a deviation from standard refinement type systems. The implementation relies on a bi-directional type

checker that uses an SMT solver to reconstruct the intermediate types minimizing annotation overhead and

increasing usability. To guarantee that probabilistic processes are almost-surely terminating, we integrate

cost analysis into our type system to obtain expected upper bounds on recursion depth. We evaluate PReST

on a wide variety of benchmarks from 4 categories: (i) randomized distributed protocols such as Itai and

Rodeh’s leader election, bounded retransmission, etc., (ii) parametric Markov chains such as random walks,

(iii) probabilistic analysis of concurrent data structures such as queues, and (iv) distributions obtained by

composing uniform distributions using operators like max and sum. Our experiments show that the PReST

type checker scales to large programs with sophisticated probabilistic distributions.
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Type theory; Operational semantics.
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1 Introduction
Session types [14, 43–45] provide a formal discipline for message-passing systems where types spec-

ify communication protocols that processes must adhere to. Type checking then ensures error-free

communication and also guarantees deadlock freedom. Recent works [2, 27, 46] have introduced

probabilistic session types which enhance session types with annotations that capture probabil-

ity distributions over interactions in communication protocols. For example, in the NomosPro
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system [27], the following type bools

bools ≜ ⊕P{true0.6 : bools, false0.4 : bools}

describes a protocol where the provider sends (indicated by type constructor ⊕P) an infinite stream

of biased booleans to its client with the probability of true being 0.6 and false being 0.4.

Probabilistic session types can help analyze simple randomized protocols and Markov chains

but are severely limited in their applicability to model real-world systems because they can only

express constant probability distributions. For instance, consider a queue running on a resource

constrained system. The probability of insertion failure dynamically increases as the queue grows.

To model this with constants, one would need to define a new queue type for each length of interest.

The following types model queues with an exponentially decreasing rate of insertion success.

queue
0
≜ &{ins : 𝐴 ⊸ ⊕P{ok0.8

: queue
1
, fail0.2 : queue

0
}, ...}

queue
1
≜ &{ins : 𝐴 ⊸ ⊕P{ok0.4

: queue
2
, fail0.6 : queue

1
}, ...}

queue
2
≜ &{ins : 𝐴 ⊸ ⊕P{ok0.2

: queue
3
, fail0.8 : queue

2
}, ...} . . . . . .

The queue
0
type represents queues of size 0. After a queue

0
provider receives an insertion message

(indicated by & constructor) and data of type𝐴 (using⊸), it may report success (ok) with probability
0.8 and continue as queue

1
(a queue of size 1) or it may report failure (fail) with probability 0.2 and

remain as queue
0
. Now from the definition of queue

1
, we can observe that it behaves the exact same

way, except the success rate is halved. And the same holds for queue
2
which, in turn, requires type

queue
3
. Clearly, this encoding scheme requires an infinite series of queue types where queue𝑖+1 has

half the success rate of queue𝑖 . This means, in practice, that it is impossible to type and implement

queues of arbitrary length. In general, lack of symbolic probabilities prohibits the specification of

many 𝑘-way protocols such as leader election [48] and crowd forwarding [64] where probability

distributions are dependent on the number of participants.

This paper introduces PReST, a novel probabilistic refinement session-typed language that pa-
rameterizes probabilities using refinement variables. The introduction of refinements allows pro-

grammers to specify parameterized probabilistic protocols and verify lightweight properties about

probabilistic concurrent message-passing programs. Although prior works [24–26, 37, 71, 72] have

used refinements to express sizes and values of data structures (e.g., nat[𝑛] for natural numbers

of value 𝑛), such refinements were never applied to probabilistic reasoning. Using PReST, we can

replace all the queue types above with a single indexed queue[𝑛, 𝑝, 𝑐] type as follows

queue[𝑛, 𝑝, 𝑐 | 0 ≤ 𝑛 ∧ 0 ≤ 𝑝 ≤ 1 ∧ 0 < 𝑐 < 1] ≜
&{ins : 𝐴 ⊸ ⊕P{ok𝑝 : queue[𝑛 + 1, 𝑝 · 𝑐, 𝑐], fail1−𝑝 : queue[𝑛, 𝑝, 𝑐]}, ...}

Our new queue[𝑛, 𝑝, 𝑐] type is indexed by refinement variables𝑛, 𝑝 and 𝑐 which intuitively represent

the length of the queue, the current probability of success and the coefficient of success rate change

respectively. From the body of the type we can see that the probability 𝑝 of success and the

probability 1 − 𝑝 of failure are dependent on the variable 𝑝 . In the success case, the continuation

has type queue[𝑛 + 1, 𝑝 · 𝑐, 𝑐] with updated size and probability indices. The logical constraint

0 ≤ 𝑛 ∧ 0 ≤ 𝑝 ≤ 1 ∧ 0 < 𝑐 < 1 on the type definition tells us that the new probability of success

𝑝 · 𝑐 is indeed a valid probability (in the interval [0,1]). Furthermore, as the queue grows longer, the

probability of insertion success decreases exponentially.

Mixing probabilities and refinements leads to significant technical challenges that we need to

overcome, in both theory and implementation. This is especially apparent when probabilities and

refinements interact. For instance, our type system allows defining a type unat[𝑛] that produces a
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natural number between 0 and 𝑛 uniformly at random.

unat[𝑛 | 0 ≤ 𝑛] ≜ ⊕P{succ
𝑛

𝑛+1 : ?{1 ≤ 𝑛}. unat[𝑛 − 1], zero 1

𝑛+1 : 1}
Here, 𝑛 is used both to describe the support of the distribution as well as to describe the actual

probabilities. Checking the validity of types and processes that mix probabilities and constraints

turns out to be subtle and requires care. We show that a naïve generalization of probabilistic

typing rules can lead to paradoxical situations that result in invalid negative probabilities. Our first

major contribution is developing the theory of probabilistic refinement session types. To avoid

paradoxes encountered by the naïve approach, we develop a novel semantic quantifier formulation

of typing rules for probabilistic branch expressions. This is crucial for providing the type system

with the flexibility to support distribution-encoding types like unat[𝑛] and 𝑘-way protocols that

rely on them. Additionally, we develop a novel probing process technique that utilizes PReST itself

to automatically verify that types like unat[𝑛] indeed encode the correct distribution.

Our next contribution is the type safety proof of PReST. As is standard for session-typed lan-

guages, type safety is realized by session fidelity (i.e., preservation) and deadlock freedom (i.e.,

progress). We prove them by generalizing the nested multiverse semantics from prior work [27]

to refinement types. Session fidelity implies a probability consistency property: the distribution of

messages sent on a probabilistic channel at runtime will exactly match the distribution expressed

by the type of that channel. A caveat to probability consistency is that trivially looping processes

will not output anything on a probabilistic channel. To address this limitation, PReST features a

potential-based [23] type system that allows one to reason about the almost-sure termination of

programs and, by extension, ensure probability consistency.

Our final contribution is a practical implementation for PReST that comes equipped with an

efficient type checking algorithm. Probabilistic behavior in PReST manifests at the process level via

two process expressions: (i) a flip expression that flips a coin and (ii) a pcase expression that receives
messages on a probabilistically typed channel. As Section 4 will explain, the type of each channel

can potentially be different in each branch of these expressions. Since we allow arbitrary nesting
of such expressions, requiring user-provided type annotations on every channel in each branch

would add a significant burden on programmers. Recognizing these challenges, our implementation

relies on an SMT solver (we support cvc5 [7] and z3 [28]) to reconstruct the intermediate types

of channels using constraints collected during type checking. Surprisingly, even though these

constraints are complicated and non-linear, the z3 solver is able to succeed for all of our examples.

We evaluate PReST extensively on a wide variety of benchmarks. Our benchmarks come from 4

main categories: (i) randomized distributed protocols, (ii) parametric Markov chains, (iii) probabilis-
tic analysis of concurrent data structures, and (iv) distributions obtained by composing uniform

distributions using operators like max and sum. A unique feature of PReST is that for many bench-

marks, the overall structure of probabilistic process definitions is no different from deterministic

ones, thus reducing programming overhead even further.

To summarize, our contributions include:

• Theory of PReST that introduces probabilistic refinements, including the development of

semantically quantified typing rules and probing processes that facilitate the definition and

reasoning about types that encode probability distributions.

• Type soundness proof ensuring that the probability distributions and cost bounds specified

by our type system are respected at runtime.

• An efficient implementation that relies on SMT solvers to minimize programmer burden and

user-provided annotations.

• An evaluation on a challenging set of benchmarks that include non-trivial interactions

between probabilities and refinements.
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2 Overview
Session types are in a Curry-Howard isomorphism [13] with intuitionistic linear logic [35] providing

an operational interpretation to all linear logic connectives. This interpretation establishes a provider-
client relationship between processes on either end of a channel. In this section, we will mainly

focus on the internal choice ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 (generalization of𝐴 ⊕ 𝐵) and external choice &{ℓ : 𝐴ℓ }ℓ∈𝐿
(generalization of 𝐴&𝐵) connectives that are ubiquitous in describing communication protocols

that involve branching. Intuitively, the provider of a channel of type ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 sends a label ℓ in

set 𝐿 and continues communication as a channel of type 𝐴ℓ . On the other hand, a provider of type

&{ℓ : 𝐴ℓ }ℓ∈𝐿 receives a label ℓ and continues to provide type 𝐴ℓ .

For instance, one can define a simple protocol encoding a stream of boolean choices.

bools ≜ ⊕{true : bools, false : bools}

A process providing a channel of this type must send the label true or send the label false. After
sending the label, the process recurses back to the same type, thus repeating the protocol. Dually, a

process consuming a bools channel will receive a label (either true or false) on it and wait for the

next label to arrive. While these standard choice connectives are sufficient for expressing many

non-deterministic protocols, they are ill-suited for expressing probabilistic protocols. They offer

no information regarding the probability that a particular label will be transmitted so one cannot

specify or enforce the distribution of labels that get communicated at runtime.

Probabilistic Session Types. To express probabilistic protocols, prior work [27] introduced

two connectives: probabilistic internal choice ⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿 and probabilistic external choice

&P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿 that generalize the non-deterministic variants. Each label ℓ is annotated with

a probability 𝑝ℓ (a real number) which describes the likelihood that ℓ gets transmitted. With

probabilistic choice, one can define types such as the following

coins ≜ ⊕P{true0.6 : coins, false0.4 : coins}

representing a stream of coins that lands on true with 0.6 probability or false with 0.4 probability.

However, constant probability annotations are only effective at specifying protocols with fixed

probabilities; they do not allow for protocols that are parametric over probabilities. This limitation

leads to large amounts of code duplication as programmers must manually write variations of the

same protocol at the probabilities they would need. More importantly, the lack of parameterized

probabilities precludes constructing processes that operate universally for all probabilities (e.g.,

debias) or where probabilities evolve during execution (e.g., center-biased random walk). This

hampers code reuse, modularity and compositionality.

To address these limitations, we integrate probabilistic session types with refinements [31, 70]

which allows types to be indexed by arithmetic expressions. Logical constraints on indices can then

be used to refine types to better characterize their inhabiting objects. The ability to index types with
varying parameters is what allows us to generalize probabilistic session types. In particular, we

allow the probabilistic choice connectives ⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿 and &P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿 to take arithmetic

expressions for 𝑝ℓ instead of just constants. These expressions may contain quantified variables

representing real numbers (thus, generalizing refinements from naturals). We refer to these new

types as probabilistic refinement session types (PReST). The following example illustrates how the

coins protocol can be generalized using probabilistic refinement session types.

pcoins[𝑝 | 0 ≤ 𝑝 ≤ 1] ≜ ⊕P{true𝑝 : pcoins[𝑝], false1−𝑝 : pcoins[𝑝]}

Here, the pcoins[𝑝] protocol is indexed by variable 𝑝 ranging over real numbers between 0 and

1. For a process providing a channel of type pcoin[𝑝], it sends true with probability 𝑝 and false
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with probability 1 − 𝑝 . With pcoins[𝑝], one can easily define coins at specific probabilities by

instantiating 𝑝 . For instance, pcoins[0.6] is equivalent to our original coins protocol.

Probabilistic Processes. Suppose we wish to define a debias process that takes a stream of

arbitrarily biased coins and produces a stream of fair coins. To accomplish this, debias receives

labels from x twice. If the labels received are true and false, then true is output on channel y.

If the labels received are false and true, then false is output instead. In all other cases, debias

recurses to obtain fresh labels from x. Notice the probability of receiving true followed by false is

𝑝 · (1 − 𝑝) and the probability of receiving false followed by true is (1 − 𝑝) · 𝑝 . So the probability

of debias sending true or false is exactly the same. Note the usage of constraint 0 < 𝑝 < 1 in the

definition of debias. If we allow 𝑝 = 0 or 𝑝 = 1, then only false or only true can be received from

x. In both cases, debias will loop forever without outputting any labels on y as the true-false and

false-true branches never get executed.

proc debias[𝑝 | 0 < 𝑝 < 1] (x : pcoins[𝑝]) ⊢ (y : pcoins[0.5]) =

match x { true ⇒ match x { true ⇒ y ← debias[𝑝] x,

false ⇒ y.true; y ← debias[𝑝] x },

false ⇒ match x { true ⇒ y.false; y ← debias[𝑝] x,

false ⇒ y ← debias[𝑝] x } }

The expressive power of probabilistic refinement session types goes beyond just facilitating

parametric probabilities. For instance, one can refine probabilities using logical constraints. The

following type presents an encoded probabilistic approximation type.

approx[𝑥,𝑦 | 0 ≤ 𝑥 < 𝑦 ≤ 1] ≜ ∃𝑝. ?{𝑥 < 𝑝 < 𝑦}. ⊕P{true𝑝 : 1, false1−𝑝 : 1}
Intuitively, approx[𝑥,𝑦] describes a coin whose probability of outputting true lies between 𝑥 and

𝑦. The precise probability 𝑝 of outputting true, however, is statically unknown. The uncertainty

in 𝑝’s value is encoded through existential quantification (∃𝑝). The provider of approx[𝑥,𝑦] may

choose any arbitrary value for 𝑝 at runtime so long as the provider can statically prove that 𝑝

satisfies 𝑥 < 𝑝 < 𝑦. Existential quantification and constraining parameters have been used in prior

work [26] but never used in the context of probabilities.

Expected Cost Analysis. A unique feature of PReST is to allow one to reason about the expected

cost of programs using resource-aware session types [22, 23]. Due to the fact that processes

are probabilistic, resource bounds in PReST may depend on probability variables. Consider the

following debias1 program. It is a variation of the previous debias example that makes requests

to an arbitrarily biased stream of coins in order to produce a single fair coin.

type coin1[𝑝 | 0 ≤ 𝑝 ≤ 1] =

&{ req : ⊕P{ true𝑝 : coin1[𝑝]

, false(1−𝑝 ) : coin1[𝑝] }

, done : 1 }

proc debias1[𝑝 | 0 < 𝑝 < 1] (x : coin1[𝑝])

⊢(2·𝑝2−2·𝑝+1)/(2·𝑝 · (1−𝑝 ) )

(y : ⊕P{ true0.5 : 1, false0.5 : 1 }) =

. . .

// recurse if true-true or false-false

work 1; y ←debias1[p] x

. . .

0.2 0.4 0.6 0.8
p

2

4

6

8

co
st

Fig. 1. Relationship between 𝑝 and cost
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The operational principle of debias1 is virtually the same as debias. The only difference is that

debias1 terminates once a single fair coin has been provided. Let us assume a cost model where

spawning a new process costs 1 unit of potential. This is accomplished by inserting the construct

work 1 before each spawn in debias1. PReST is able to automatically check that the potential

bound
2·𝑝2−2·𝑝+1
2·𝑝 · (1−𝑝 ) of debias1 (annotated on the turnstile) is valid. As shown in Figure 1, this bound

is well-defined, finite and positive only for 𝑝 in the open interval (0, 1). The expected cost bound

theorem (Theorem 5.6) tells us that the expected number of iterations required of debias1 to

terminate is finite. So our original debias program is able to productively generate fair coins given

0 < 𝑝 < 1 because the debiasing of each individual output coin is almost surely terminating.

Indistinguishability. Labels communicated probabilistically respect the distributions specified

on probabilistic session types as shown in Theorem 5.4. In other words, if two channels have equal

probabilistic session types, then the distributions of labels communicated over these channels at

runtime (assuming productivity) are indistinguishable. To illustrate this, consider the following

program which XORs together bit b1 with arbitrary bias 𝑝 and a fair bit b2.

type bit[𝑝 | 0 ≤ 𝑝 ≤ 1] = ⊕P{ x0𝑝 : 1, x11−𝑝 : 1 }

proc xor[𝑝 | 0 ≤ 𝑝 ≤ 1] (b1 : bit[𝑝]) (b2 : bit[0.5]) ⊢ (b3 : bit[0.5]) =

match b1 {

x0 ⇒ match b2 { x0 ⇒ { b3.x0; . . . } x1 ⇒ { b3.x1; . . . } },

x1 ⇒ match b2 { x0 ⇒ { b3.x1; . . . } x1 ⇒ { b3.x0; . . . } } }

PReST correctly recognizes that the output channel b3 must be a fair bit regardless of b1’s bias.

Any information that one gains from b3 is indistinguishable from a fresh coin toss.

3 Mixing Probabilities and Refinements
UniformDistribution. Themost interesting probabilistic behavior exhibited by our type system

arises when size and probability annotations interact in a non-trivial fashion. For instance, consider

the unat[𝑛] type defined as follows

unat[𝑛 | 0 ≤ 𝑛] ≜ ⊕P{succ
𝑛

𝑛+1 : ?{1 ≤ 𝑛}. unat[𝑛 − 1], zero 1

𝑛+1 : 1}
In contrast to the usual nat[𝑛] type, a channel of type unat[𝑛] does not send exactly 𝑛 succ
labels. Instead, the number of succ labels that it sends forms a discrete uniform distribution over

the (𝑛 + 1)-sized set {0, . . . , 𝑛}. To see this in action, let the random variable 𝑋 denote the total

number of succ labels sent by a provider of this type. First, we immediately have Pr[𝑋 = 0] =
1

𝑛+1 from the annotation on the zero label. To determine Pr[𝑋 = 𝑘], we need to compute the

probability of sending exactly 𝑘 succ labels followed by a zero label. The first succ label is sent
with probability

𝑛
𝑛+1 (as indicated by the annotation on succ) after which the type transforms

to unat[𝑛 − 1]. Thus, the next succ label is sent with probability
𝑛−1
𝑛
. Applying this intuitive

argument inductively and conjoining the probabilities, we deduce that the 𝑘 succ labels are sent
with probability

𝑛
𝑛+1 ·

𝑛−1
𝑛
· 𝑛−2
𝑛−1 . . .

𝑛−𝑘+1
𝑛−𝑘 = 𝑛−𝑘+1

𝑛+1 and the new type of the channel would be

unat[𝑛 − 𝑘]. With this type, the zero label is sent with probability
1

𝑛−𝑘+1 . Taking the product

with the earlier probability, we get that Pr[𝑋 = 𝑘] = 𝑛−𝑘+1
𝑛+1 ·

1

𝑛−𝑘+1 = 1

𝑛+1 . Note also that if 𝑘 > 𝑛,

then Pr[𝑋 = 𝑘] = 0 since type unat[0] constrains the provider to only send the zero label with

probability 1 (label succ has 0 probability for 𝑛 = 0). We can hence conclude that the value of 𝑋 is

uniformly distributed over {0, . . . , 𝑛}.
To generate such a unat, we define the following gen_unat[𝑛] process (again omitting code

for waiting and closing channels). Given an arbitrary natural number channel nat[𝑛] as input,

gen_unat generates a uniform distribution over {0, . . . , 𝑛}.
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proc gen_unat[𝑛 | 0 ≤ 𝑛] (x : nat[𝑛]) ⊢𝑛2 (y : unat[𝑛]) =

match x {

zero ⇒ y.zero; . . .,

succ ⇒ flip 𝑛
𝑛+1 {

H ⇒ work 1; y.succ; y ←gen_unat[𝑛 − 1] x,

T ⇒ y.zero; . . . } }

Basically, gen_unat[𝑛] invokes the coin flip primitive at the 𝑛-th recursive call with probability

𝑛
𝑛+1 . If the coin lands on heads, then gen_unat outputs succ on y and recurses with index 𝑛 − 1. If
the coin lands on tails, then gen_unat outputs zero on y and terminates. On each call to gen_unat,

the probability that the type outputs succ keeps decreasing until 𝑛 = 0 is reached when the only

possible outcome of the type is zero.

We now describe how automated expected cost analysis works for gen_unat. Let us begin by

assuming a cost model where sending a succ label requires 1 unit of potential. Next, we write

annotation
𝑛
2
on the turnstile as the assumed potential required (i.e. cost) to execute this process

with some argument of type nat[𝑛]. Our analysis will essentially justify this assumption through

induction. The gen_unat process begins with a non-deterministic match expression. For non-

deterministic match expressions, it suffices to consider the branch with the largest cost (succ in

this case) as its execution imposes an upper bound on the cost of the entire expression. Now for the

flip expression, in the heads branch we use work 1 to perform 1 unit of work immediately before

sending a succ label. Now by induction, the recursively spawned gen_unat process will require
𝑛−1
2

units of potential to execute. The tails branch costs 0 units of potential as it does not send succ.

Since the heads branch is executed with
𝑛

𝑛+1 probability, we can compute the expected cost of the

overall flip as 𝑛
𝑛+1 · (1 +

𝑛−1
2
) + (1 − 𝑛

𝑛+1 ) · 0 =
𝑛
2
. This proves that our original assumption that

𝑛
2

is the expected cost of running gen_unat. Moreover,
𝑛
2
neatly coincides with the expected value of

a number uniformly drawn from the set {0,. . . , 𝑛}.

Probing Processes. A unique feature of PReST is that the meta-level inductive reasoning to prove

that unat[𝑛] is uniform can be carried out automatically by the type checker. We can construct

a probing process to automatically check that unat[𝑛] has the correct probability mass function

(PMF). Consider the process that checks if 𝑥 : unat[𝑛] = 𝑦 : nat[𝑘] and outputs true or false based

on this comparison (we omit expressions for waiting and closing channels).

proc probe_unat [𝑛, 𝑘 | 0 ≤ 𝑘 ≤ 𝑛] (x : unat[𝑛]) (y : nat[𝑘])

⊢𝑛2 (z : ⊕P{ true
1

𝑛+1 : 1, false
𝑛

𝑛+1 : 1 }) =

match y {

zero ⇒ match x { zero ⇒ z.true; . . . // x = 0, y = 0

succ ⇒ z.false; . . . }, // x > 0, y = 0

succ ⇒ match x { zero ⇒ z.false; . . ., // x = 0, y > 0

succ ⇒ work 1; z ←probe_unat[𝑛 − 1, 𝑘 − 1] x y } }

The probe_unat process is implemented exactly as a standard comparison process for two

natural numbers. It is indexed by variables 𝑛 and 𝑘 representing the upper bound of the uniform

distribution and an arbitrary natural number between 0 and 𝑛. In the definition, if both x and

y send label zero, we output true on z. Otherwise if one sends succ and the other sends zero,
we output false on z. If both send succ labels, we simply recurse with indices 𝑛 − 1 and 𝑘 − 1.
Crucially, probe_unat allows us to learn about the unat[𝑛] type even without executing it. The

well-typedness of probe_unat establishes that Pr[𝑋 = 𝑘] = 1

𝑛+1 and Pr[𝑋 ≠ 𝑘] = 𝑛
𝑛+1 . Essentially,

probe_unat becomes a constructive proof of unat[n]’s correctness. Probing processes of this kind
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are impossible to construct in prior state-of-the-art languages [27] as they lack the ability to reason

about probabilities symbolically. The expected cost
𝑛
2
of probe_unat again coincides with the

expected value of unat[𝑛].

Non-Uniform Distributions. This technique of probing processes also works for automatic

verification of protocols that encode non-uniform distributions. Consider the following umax[𝑛]

type. Its purpose is to encode the distribution of numbers that one would obtain after taking the

maximum of two samples drawn from the uniform distribution over {0, .., 𝑛}. This distribution is

well-known: Pr[max(𝑋,𝑌 ) ≤ 𝑘] = Pr[𝑋 ≤ 𝑘] · Pr[𝑌 ≤ 𝑘] = 𝑘+1
𝑛+1 ·

𝑘+1
𝑛+1 =

(𝑘+1)2
(𝑛+1)2 .

However, we provide a different encoding of this distribution, which we claim is a constructive
representation of this maximum and more intuitive from a programmatic perspective. To see why,

we present the type umax[𝑛] and the corresponding process for providing this type.

umax[𝑛 | 0 ≤ 𝑛] ≜ ⊕P{next
𝑛2

(𝑛+1)2 : ⊕{succ : ?{1 ≤ 𝑛}. umax[𝑛 − 1]},

unif
2𝑛

(𝑛+1)2 : ⊕{succ : ?{1 ≤ 𝑛}. unat[𝑛 − 1]}, zero
1

(𝑛+1)2 : 1}
The unat_max process takes two inputs x and y both of type unat[𝑛]. To provide channel z of

type umax[𝑛], this process will receive labels from x and y and compare them. If zero is received

on both x and y, then the maximum of these two samples is equal to zero. So zero is sent on z and

the process terminates successfully. Since unat[𝑛] sends zero with probability
1

𝑛+1 , the probability

of receiving zero on both input channels is
1

(𝑛+1)2 . This is confirmed in the umax type as the

probability of zero branch is
1

(𝑛+1)2 .

proc unat_max[𝑛 | 0 ≤ 𝑛] (x : unat[𝑛]) (y : unat[𝑛]) ⊢ (z : umax[𝑛]) =

match x { zero ⇒ match y { zero ⇒ wait x; wait y; z.zero; close z,

succ ⇒ wait x; z.unif; z.succ; z ↔ y },

succ ⇒ match y { zero ⇒ wait y; z.unif; z.succ; z ↔ x,

succ ⇒ z.next; z.succ; z ← unat_max[𝑛 − 1] x y}}

The interesting cases are when one input sends succ and the other one sends zero (second

and third sub-branches). In these cases, the maximum behaves exactly as a uniform distribution,

i.e., type unat. For instance, in the second sub-branch where x sends zero and y sends succ, z is
completely determined by y. We need to send succ on z and just output y on z, indicated by 𝑧 ↔ 𝑦

that provides the remaining succ labels. This intuition is precisely captured in the unif branch in

the umax type. The third sub-branch is analogous; z is completely determined by x. The probability

of entering each of these two sub-branches is the product of the probabilities that one unat channel

sends succ, i.e., 𝑛
𝑛+1 and the other channel sends zero, i.e., 1

𝑛+1 . Hence, the probability of the unif
branch in umax type combines these two, i.e.,

2𝑛
(𝑛+1)2 , and since the max behaves like unat in these

cases, the continuation type is unat[𝑛 − 1]. Finally, the probability of receiving succ from both

channels is
𝑛2

(𝑛+1)2 , which is captured in the next branch of type umaxwhere we send the succ label
on z followed by a recursive call to unat_max at index 𝑛 − 1. In this branch, the continuation type is

the same as the output type of unat_max, i.e., umax[𝑛−1]. The types of x and y after receiving succ
both become unat[𝑛 − 1]which correctly matches the signature of unat_max[𝑛 − 1]. Looking back
at the umax[𝑛] type, this constructive representation captures the essence of taking the maximum

and facilitates a natural definition of the unat_max process that does not even need to mention

probabilities explicitly.

Can we still recover the standard declarative description of umax from this constructive represen-

tation? Yes, we can use the same probing mechanism to prove that umax[𝑛] correctly characterizes
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its intended distribution! Below is the signature of a probe_umax process which encodes the cumu-

lative distribution function (CDF).

proc probe_umax[𝑛, 𝑘 | 0 ≤ 𝑘 ≤ 𝑛] (x : umax[𝑛]) (y : nat[𝑘])

⊢
𝑛 · (4·𝑛+5)
6· (𝑛+1) (z : ⊕P{ true

(𝑘+1)2
(𝑛+1)2 : 1, false

1− (𝑘+1)
2

(𝑛+1)2 : 1 })

Given x of type umax[𝑛] and 𝑦 of type nat[𝑘] where 𝑘 is an arbitrary value between 0 and 𝑛,

probe_umax intuitively checks if the value of x is less than or equal to 𝑘 . The successful type

checking of the process verifies that the event max ≤ 𝑘 occurs (when true is sent on z) with

probability (𝑘 + 1)2/(𝑛 + 1)2. Furthermore, the expected cost
𝑛 · (4·𝑛+5)
6· (𝑛+1) is exactly the expected value

of the maximum of two numbers uniformly drawn from {0, . . . , 𝑛}. Attempting to modify any of

the constants in the cost expression will result in rejection by the constraint solver backend. This

indicates that our bound is close to being tight.

Arbitrary Distributions. PReST also provides an encoding of arbitrary discrete distributions.

Suppose, for a random variable 𝑋 whose domain is {0, . . . , 𝑛}, the probability Pr[𝑋 = 𝑘] = 𝑝𝑘 . We

encode this distribution with the following type

dist[𝑛 | 0 ≤ 𝑛] ≜ ⊕P{succ𝑞 (𝑛) : ?{1 ≤ 𝑛}. dist[𝑛 − 1], zero1−𝑞 (𝑛) : 1}
where 𝑞 is a function 𝑞 : {0, . . . , 𝑛} → [0, 1]. With this distribution, Pr[𝑋 = 𝑘] is the probability
of sending 𝑘 succ messages followed by a zero message. Following the dist[𝑛] type recursively,
we get 𝑝𝑘 = Pr[𝑋 = 𝑘] = 𝑞(𝑛) · 𝑞(𝑛 − 1) · · ·𝑞(𝑛 − 𝑘 + 1) · (1 − 𝑞(𝑛 − 𝑘)). Thus, we provide a recipe
for encoding an arbitrary distribution which reduces to solving the recurrence relation above. It is

easy to see that 𝑞(𝑛) = 𝑛
𝑛+1 leads to a uniform distribution. In fact, if 𝑞(𝑛) is a constant function,

this leads to an exponential distribution.

4 Formal Type System
With all features of the language introduced, we turn our attention to the formal aspects of PReST.

This section presents the type system of PReST and the following section connects it to the semantics

and proves type safety. The typing rules are all mutually inductively defined together.

4.1 Type Grammar and Validity

Types 𝐴, 𝐵 ::= ⊕ {ℓ : 𝐴ℓ }ℓ∈𝐿 | &{ℓ : 𝐴ℓ }ℓ∈𝐿 | 𝐴 ⊗ 𝐵 | 𝐴 ⊸ 𝐵 | 1 | 𝑋 [𝑒] | ⊲𝑤𝐴 | ⊳𝑤𝐴
| ⊕P {ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿 | &P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿 | ∃𝑟 .𝐴 | ∀𝑟 .𝐴 | ?{𝜙}.𝐴 | !{𝜙}.𝐴

Exprs 𝑒, 𝑝,𝑤 ::= 𝑣 | 𝑒 + 𝑒 | 𝑒 − 𝑒 | 𝑒 × 𝑒 | 𝑒 ÷ 𝑒 | 𝑟
Props 𝜙 ::= 𝑒 = 𝑒 | 𝑒 < 𝑒 | ⊤ | ⊥ | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ¬𝜙 | ∃𝑟 .𝜙 | ∀𝑟 .𝜙

Fig. 2. Type Grammar for PReST

The types in PReST follow the grammar in Figure 2 where 𝑣 is a real valued constant, and 𝑟 is a

refinement variable. We use 𝑝 and𝑤 to range over expressions that are used as probabilities and

cost/work respectively. The interpretation of each type comes from the behavior of the provider
(process that has this type on the right of ⊢ in its declaration) and client (process that has this
type on the left of ⊢) of the type. We have already described the standard and probabilistic choice

types. In addition, type 𝐴 ⊗ 𝐵 represents the multiplicative conjunction where the provider sends

a channel of type 𝐴 and continues with type 𝐵. Its dual is the linear implication 𝐴 ⊸ 𝐵 which

possesses the opposite operational interpretation: the provider receives a channel of type 𝐴 and

continues with type 𝐵. The 1 type is the linear unit and denotes the end of protocol. The type 𝑋 [𝑒]
is used to represent user-defined type names (e.g., nat[𝑛]). Refinement variables can be introduced
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into a session type using ∃𝑟 .𝐴 and ∀𝑟 .𝐴. The former requires the provider to send a real value

whereas the latter ensures the provider receives a value from the client. The type ?{𝜙}.𝐴 asserts

and !{𝜙}.𝐴 assumes logical proposition 𝜙 to constrain refinement variables. Finally ergometric

session types ⊲𝑤𝐴 and ⊳𝑤𝐴 facilitate the exchange of𝑤 units of potential between processes.

Type Definitions. These type definitions (like the ones introduced in Section 2 and 3) provided by
the user are collected in a global signature denoted by Σ. Type definitions have the form𝑋 [𝑟 | 𝜙] ≜ 𝐴

where 𝑋 is a type name indexed by variables 𝑟 that satisfy constraint 𝜙 and 𝐴 is a type expression

that serves as the definition of 𝑋 [𝑟 ]. All types in PReST are implicitly equi-recursive: a type name

is equal to its definition; there are no explicit folds and unfolds for recursive types.

In PReST, validity of a type 𝐴 is expressed as the judgment V ; C ⊢Σ 𝐴 valid (Figure 3 presents

an excerpt of these rules). The V here is a context of refinement variables that may occur in 𝐴.

Constraint context C is a proposition that is assumed to be true for all instantiations of V. This is

central for exchanging proofs, e.g., checking that nat[𝑒] is indeed a valid type requires proving

C ⊨ 𝑒 ≥ 0. Intuitively, the judgment V ; C ⊢Σ 𝐴 valid means that for all substitutions 𝜎 : V → R
such that C[𝜎] is satisfied, 𝐴[𝜎] is a valid type.

V ; C ⊢Σ 𝐴 valid V ; C ⊨ 0 ≤ 𝑤

V ; C ⊢Σ ⊲𝑤𝐴 valid
⊲𝑉

(∀ℓ ∈ 𝐿) V ; C ⊢Σ 𝐴ℓ valid V ; C ⊨ 0 ≤ 𝑝ℓ ≤ 1

V ; C ⊨ Σℓ∈𝐿𝑝ℓ = 1

V ; C ⊢Σ ⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿 valid
⊕P𝑉

Fig. 3. Selected Rules for Checking Validity of Types in PReST

As explained in Section 2, PReST allows each label ℓ in probabilistic choice types to be annotated

with a probability expression 𝑝ℓ . To ensure that types represent valid probability distributions, we

generalize the validity check performed for refinement types. The validity rule ⊕P𝑉 for probabilistic

internal choice requires two constraints to be satisfied: V ; C ⊨ 0 ≤ 𝑝ℓ ≤ 1 and V ; C ⊨ Σℓ∈𝐿𝑝ℓ = 1.

This statically guarantees that 𝑝ℓ ’s represent a valid distribution.

We would like to point out that standard choices can in fact be represented using refinements

and probabilistic choices. The type ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 can be encoded as

∃𝑝ℓ . ?{0 ≤ 𝑝ℓ ≤ 1 ∧ Σℓ∈𝐿𝑝ℓ = 1}.⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿
and we can do a similar encoding for external choice type. However we choose to include the

standard choice types as primitives for numerous reasons. First, the above type adds significant

annotation burden on the programmer who needs to determine the probability of sending each

label in a process definition. Second, this adds significant complexity to the type checker that has

numerous additional refinement variables to reason about while establishing type validity. Keeping

both choice types provides a much needed flexibility to programmers who need only annotate

choice types they wish to reason about with no additional burden.

4.2 Typing Rules

Processes 𝑃,𝑄 ::= 𝑥 .𝑘 ; 𝑃 | case 𝑥 (ℓ ⇒ 𝑄ℓ )ℓ∈𝐿 | 𝑥 ..𝑘 ; 𝑃 | pcase 𝑥 (ℓ ⇒ 𝑄ℓ )ℓ∈𝐿 | 𝑥 ← 𝑓 [𝑒] 𝑦 ; 𝑃

| send 𝑥 𝑡 ; 𝑃 | 𝑦 ← recv 𝑥 ; 𝑄 | close 𝑥 | wait 𝑥 ; 𝑄 | flip 𝑝 (H⇒ 𝑃𝐻 | T⇒ 𝑃𝑇 )
| work𝑤 ; 𝑃 | pay 𝑐 𝑤 ; 𝑃 | get 𝑐 𝑤 ; 𝑃 | send 𝑥 [𝑒] ; 𝑃 | [𝑟 ] ← recv 𝑥 ; 𝑄

| assert 𝑥 {𝜙} ; 𝑃 | assume 𝑥 {𝜙} ; 𝑄 | 𝑥 ↔ 𝑦

Fig. 4. Process Grammar for PReST

Session types have a strong logical foundation in linear logic [14, 34]. An intuitionistic linear sequent

𝐴1, 𝐴2, . . . , 𝐴𝑛 ⊢ 𝐴 can be interpreted as the offer of a session 𝐴 by a process 𝑃 using the sessions
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𝐴1, 𝐴2, . . . , 𝐴𝑛 . In our notation, we write this as (𝑥1 : 𝐴1), (𝑥2 : 𝐴2), . . . , (𝑥𝑛 : 𝐴𝑛) ⊢ 𝑃 :: (𝑥 : 𝐴). The
𝑥𝑖 ’s correspond to channels used by 𝑃 , and 𝑥 is the channel provided by 𝑃 . As is standard, we use

the linear context Δ to combine multiple assumptions. To account for refinements and resource

analysis, we extend the typing judgment for PReST and write it as V ; C ; Δ ⊢𝑤 𝑃 :: (𝑥 : 𝐴). Figure 4
presents the syntax of process 𝑃 . Context V represents the free refinement variables that can occur

in C,Δ,𝑤, 𝑃 and 𝐴. Constraint context C is a proposition that all instantiations of V are assumed to

satisfy. The𝑤 expression here is the expected cost bound of evaluating 𝑃 . Similarly to validity, this

judgment states that for any valid substitution 𝜎 : V→ R, C[𝜎] implies that 𝑃 [𝜎] is expected to

consume no more than𝑤 [𝜎] units of potential, uses the channels in Δ[𝜎] and offers channel 𝑥 of

type 𝐴[𝜎]. The typing rules of PReST can be organized into four categories: basic rules, refinement

rules, resource rules and probabilistic rules. We omit detailed presentation of some dual types in

the descriptions below and present them in our companion report [33].

4.3 Basic Rules
The basic rules of PReST correspond to the standard rules of intuitionistic session types [13].

Figure 5 presents an excerpt of the basic rules.

(𝑘 ∈ 𝐿) V ; C ; Δ ⊢𝑤 𝑃 :: (𝑥 : 𝐴𝑘 )
V ; C ; Δ ⊢𝑤 (𝑥 .𝑘 ; 𝑃) :: (𝑥 : ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿)

⊕𝑅
(∀ℓ ∈ 𝐿) V ; C ; Δ ⊢𝑤 𝑃ℓ :: (𝑥 : 𝐴ℓ )

V ; C ; Δ ⊢𝑤 case 𝑥 (ℓ ⇒ 𝑃ℓ )ℓ∈𝐿 :: (𝑥 : &{ℓ : 𝐴ℓ }ℓ∈𝐿)
&𝑅

Fig. 5. Selected Basic Typing Rules

The rules above govern the sending and receiving of labels on provided channels. In rule ⊕𝑅, the
construct 𝑥 .𝑘 ; 𝑃 sends label 𝑘 on channel 𝑥 and continues as process 𝑃 . On the other hand, the case

expression in rule &𝑅 receives a label from 𝑥 and executes its associated branch. Note that the dot

notation x.k and match syntax of our implementation are overloaded. Depending on the whether

the type of x is a standard choice or a probabilistic choice, x.k resolves to either 𝑥 .𝑘 (standard) or

𝑥 ..𝑘 (probabilistic). Similarly, match resolves to either case (standard) or pcase (probabilistic). The

probabilistic rules for 𝑥 ..𝑘 and pcase are formally described in Section 4.6.

4.4 Refinement Rules
Figure 6 presents an excerpt of the refinement typing rules. The ∃𝑅 rule governs the sending of

refinement expressions. A provider of 𝑥 : ∃𝑟 .𝐴 must send (the value of) a refinement expression

𝑒 to a client using the syntax send 𝑥 [𝑒] ; 𝑃 and continue executing 𝑃 . The continuation 𝑃 will

provide 𝑥 of type 𝐴[𝑒/𝑟 ]. The dual of ∃𝑟 .𝐴 is ∀𝑟 .𝐴 which just reverses the roles of the provider and

client; the provider receives a refinement expression that is sent by the client.

V ; C ; Δ ⊢𝑤 𝑃 :: (𝑥 : 𝐴[𝑒/𝑟 ])
V ; C ; Δ ⊢𝑤 send 𝑥 [𝑒] ; 𝑃 :: (𝑥 : ∃𝑟 .𝐴)

∃𝑅
V ; C ⊨ 𝜙 V ; C ; Δ ⊢𝑤 𝑃 :: (𝑥 : 𝐴)

V ; C ; Δ ⊢𝑤 assert 𝑥 {𝜙} ; 𝑃 :: (𝑥 : ?{𝜙}.𝐴)
?𝑅

Fig. 6. Selected Refinement Typing Rules

In rule ?𝑅, the construct assert 𝑥 {𝜙} is interpreted as sending a proof of 𝜙 from the provider to

the client. To send this proof, the provider needs to establish the semantic entailment V ; C ⊨ 𝜙 . This
proof obligation is what constrains the possible messages that can be sent over channel 𝑥 . Dually,

the type !{𝜙}.𝐴 utilizes assume 𝑥 {𝜙} to receive a proof of 𝜙 and strengthen its local constraint

context C into C ∧ 𝜙 . In the concrete syntax of our implementation, {𝜙} is often elided in uses of

assert 𝑥 and assume 𝑥 as 𝜙 can be inferred from the type of 𝑥 (either ?{𝜙}.𝐴 or !{𝜙}.𝐴).
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4.5 Resource Rules
Resource-aware session types [22, 23] facilitate amortized cost reasoning using the potential method.

For some process 𝑃 satisfying judgment V ; C ; Δ ⊢𝑤 𝑃 :: (𝑥 : 𝐵), it has access to 𝑤 units of

potential. As shown in rule ⊳𝑅, if 𝐵 is an ergometric session type of the form ⊳𝑤
′
𝐴, then 𝑃 receives

𝑤 ′ units of potential from another process through channel 𝑥 . Dually, the type ⊲𝑤
′
𝐴 requires a

process to send𝑤 ′ units of potential using the pay construct.

V ; C ; Δ ⊢𝑤+𝑤
′
𝑃 :: (𝑥 : 𝐴)

V ; C ; Δ ⊢𝑤 get 𝑥 𝑤 ′ ; 𝑃 :: (𝑥 : ⊳𝑤
′
𝐴)

⊳𝑅
V ; C ; Δ ⊢𝑤−𝑤

′
𝑃 :: (𝑥 : 𝐴) V ; C ⊨ 0 ≤ 𝑤 ′ ≤ 𝑤

V ; C ; Δ ⊢𝑤 work𝑤 ′ ; 𝑃 :: (𝑥 : 𝐴)
Work

Fig. 7. Selected Resource Typing Rules

The get and pay constructs do not alter the total amount of potential in a closed system of

processes as they simply redistribute potential. Ultimately, potential is consumed by the work

construct which corresponds to the cost model that one wishes to check. Potential in PReST is

affine as we allow extraneous potential to be discarded.

4.6 Probabilistic Rules
Weighted Sum. Consider the expression flip 𝑝 (H⇒ 𝑐.true; ... | T⇒ 𝑐.false; ...) where we send

true on 𝑐 in theH and false on 𝑐 in the T branches. Intuitively, the type of 𝑐 for the overall expression
should be ⊕P{true𝑝 : 1, false1−𝑝 : 1}. We achieve this by giving 𝑐 the type ⊕P{true1 : 1, false0 : 1}
in the H branch since we are only sending true. Similarly, we give the type ⊕P{true0 : 1, false1 : 1}
to 𝑐 in the T branch. The overall type of 𝑐 is obtained by taking a weighted sum of these two types.

This sum relation allows a fairly simple rule for sending messages on a probabilistic channel.

(𝑘 ∈ 𝐿) V ; C ⊨ 𝑝𝑘 = 1 V ; C ⊨ 𝑝 𝑗 = 0 ( 𝑗 ≠ 𝑘) V ; C ; Δ ⊢𝑤 𝑃 :: (𝑥 : 𝐴𝑘 )
V ; C ; Δ ⊢𝑤 𝑥 ..𝑘 ; 𝑃 :: (𝑥 : ⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿)

⊕P𝑅

To send label 𝑘 on channel 𝑥 , 𝑝𝑘 must be 1 and the probability annotations for all other labels of

the type must be 0. The intuition behind this rule is that since we are only sending label 𝑘 , other

labels must have zero probability.

To perform weighted sum for types in the context and provided channel, we have two operators:

+L for the context and +R for the provided channel. These two operators reduce to identity for

probabilistic types that receive. This is crucial for the type safety of the flip construct which is an

internal computation. If a process 𝑃 flips heads, processes that send messages to 𝑃 are not notified

of this internal step; they will still send messages to 𝑃 with the original probability distribution.

If weighted sum alters the type of the receiver end of a channel, the two ends of the channel will

have inconsistent probability distributions, leading to unsoundness in the type system. Hence, the

only non-trivial cases of weighted sum are:

𝑝 · &P{ℓ𝑞ℓ : 𝐴ℓ }ℓ∈𝐿 +L (1 − 𝑝) · &P{ℓ𝑟ℓ : 𝐴ℓ }ℓ∈𝐿 = &P{ℓ𝑝 ·𝑞ℓ+(1−𝑝 ) ·𝑟ℓ : 𝐴ℓ }ℓ∈𝐿
𝑝 · ⊕P{ℓ𝑞ℓ : 𝐴ℓ }ℓ∈𝐿 +R (1 − 𝑝) · ⊕P{ℓ𝑟ℓ : 𝐴ℓ }ℓ∈𝐿 = ⊕P{ℓ𝑝 ·𝑞ℓ+(1−𝑝 ) ·𝑟ℓ : 𝐴ℓ }ℓ∈𝐿

These two cases correspond to probabilistic types in the context (&P) and provided channel (⊕P)
that perform sending. For all other types, the weighted sum relation simply reduces to identity,

i.e., 𝑝 · 𝐴 +R (1 − 𝑝) · 𝐴 = 𝐴 and 𝑝 · 𝐴 +L (1 − 𝑝) · 𝐴 = 𝐴. This relation is generalized to n-ary sums

(

∑𝐿
𝑖∈I 𝑝𝑖 · 𝐴𝑖 and

∑𝑅
𝑖∈I 𝑝𝑖 · 𝐴𝑖 ) and also pointwise to contexts.

Naïve Probabilistic Branching. Due to non-trivial interactions between probabilities and

refinements, the probabilistic typing rules significantly depart from existing probabilistic session

type systems [3, 27] and other refinement type systems in general [25, 70]. Suppose we wish

to type check a probabilistic case expression: pcase 𝑥 (ℓ ⇒ 𝑄ℓ )ℓ∈𝐿 . To understand why a naïve
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generalization of existing type systems is not sufficient, we first present what such a generalized

typing rule would look like.

(∀ℓ ∈ 𝐿) V ; C ; Δℓ , (𝑥 : 𝐴ℓ ) ⊢𝑤ℓ 𝑄ℓ :: (𝑧 : 𝐵ℓ )
V ; C ⊨ Δ = ΣLℓ∈𝐿𝑝ℓ · Δℓ V ; C ⊨ 𝐵 = ΣRℓ∈𝐿𝑝ℓ · 𝐵ℓ V ; C ⊨ 𝑤 = Σℓ∈𝐿𝑝ℓ ·𝑤ℓ

V ; C ; Δ, (𝑥 : ⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿) ⊢𝑤 pcase 𝑥 (ℓ ⇒ 𝑄ℓ )ℓ∈𝐿 :: (𝑧 : 𝐵)
naïve-⊕P𝐿

We type check the branches with possibly different contexts Δℓ , offered types 𝐵ℓ and cost bounds

𝑤ℓ . Then we perform a weighted sums for all types in Δℓ and 𝐵ℓ to recover context Δ, offered type

𝐵 and cost bound𝑤 .

Why is the pcase rule above naïve? The naïve version of the ⊕P𝐿 rule above would require fixed

probabilistic expressions to be chosen forΔℓ , 𝐵ℓ ,𝑤ℓ . While these expressions can range over different

values as they may contain universally quantified variables from V, the fundamental structure of

these expressions will remain fixed. This can lead to paradoxical situations where certain premises

can only be satisfied by negative probabilities. Consider the program for comparing two unat[𝑛]’s,

i.e. two samples of a uniform distribution.

proc compare[𝑛 | 0 ≤ 𝑛] (x : unat[𝑛]) (y : unat[𝑛])

⊢ (c : ⊕P{ gt
𝑛

2(𝑛+1) : 1, lt
𝑛

2(𝑛+1) : 1, eq
1

𝑛+1 : 1 }) = match x {

zero1 ⇒ . . .,

succ2 ⇒ match y { zero3 ⇒ c.gt; . . ., succ4 ⇒ c ←compare[𝑛 − 1] x y } }

Given channels x and y both of type unat[𝑛], the process compares the number of succ labels

received from x and y. A label of the form gt (greater-than), lt (less-than) or eq (equal), representing

the comparison result, is output on c.
It is easy to derive, using basic probability theory, that the probabilities of outputting gt and

lt are both 𝑛
2(𝑛+1) and the probability of outputting eq is 1

𝑛+1 . In the body of compare, we assign

superscripts to the match branches. We will refer to these branches by their superscripts. In branch

3, since we are sending label gt, the type of c is ⊕P{ gt1:1, lt0:1, eq0:1 } as determined by rule

⊕P𝑅 for sending probabilistic labels. In branch 4, we are making a recursive call to compare[𝑛 − 1],
the type of c is ⊕P{ gt(𝑛−1)/2𝑛:1, lt(𝑛−1)/2𝑛:1, eq1/𝑛:1 }. Now to obtain the type of 𝑐 in branch

2, we perform the following weighted sum computation.

1

𝑛 + 1 · ⊕P{gt
1
: 1, lt0 : 1, eq0 : 1} +R 𝑛

𝑛 + 1 · ⊕P{gt
(𝑛−1)/2𝑛

: 1, lt(𝑛−1)/2𝑛 : 1, eq1/𝑛 : 1}

= ⊕P{gt1/2 : 1, lt(𝑛−1)/2(𝑛+1) : 1, eq1/(𝑛+1) : 1}

Let us focus on the types of c manifesting in branches 3 and 4 when using the naïve typing rules.

Since they do not allow choosing different types for different values of 𝑛, the only possible type that
would allow branches 3 and 4 to type check for all values of𝑛 is ⊕P{ gt

1

2 :1, lt
𝑛−1

2(𝑛+1) :1, eq
1

𝑛+1 :1 }.

This completely fixes the structure of the probabilistic expressions inside the type. However, prior to

entering branch 2 and learning of 1 ≤ 𝑛, the probability annotation 𝑛−1
2(𝑛+1) of lt does not strictly fall

into the interval [0, 1]. So the only type that satisfies naïve typing is actually invalid without prior

knowledge of 𝑛’s value. This demonstrates that this typing rule imposes too strong a requirement

and will reject reasonable programs due to purely technical reasons.

Semantic Probabilistic Branching. To solve the issues posed by naïve probabilistic branching,

recall the meaning of our typing judgment V ; C ; Δ ⊢𝑤 𝑃 :: (𝑥 : 𝐴): for all substitutions 𝜎 : V→ R,
𝑃 [𝜎] is well-typed. This meaning provides our language with an additional layer of flexibility to the

type system by allowing Δℓ , 𝐵ℓ and𝑤ℓ to be reconstructed with fundamentally different probability
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expressions depending on the values instantiating V. This is expressed as a more relaxed ⊕P𝐿 rule:

∀V . ∃{Δℓ , 𝐵ℓ ,𝑤ℓ }ℓ∈𝐿 .
(∀ℓ ∈ 𝐿) · ; C ; Δℓ , (𝑥 : 𝐴ℓ ) ⊢𝑤ℓ 𝑄ℓ :: (𝑧 : 𝐵ℓ )

· ; C ⊨ Δ = ΣLℓ∈𝐿𝑝ℓ · Δℓ · ; C ⊨ 𝐵 = ΣRℓ∈𝐿𝑝ℓ · 𝐵ℓ · ; C ⊨ 𝑤 = Σℓ∈𝐿𝑝ℓ ·𝑤ℓ

V ; C ; Δ, (𝑥 : ⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿) ⊢𝑤 pcase 𝑥 (ℓ ⇒ 𝑄ℓ )ℓ∈𝐿 :: (𝑧 : 𝐵)
⊕P𝐿

Note that the quantifiers ∀V . ∃{Δℓ , 𝐵ℓ ,𝑤ℓ }ℓ∈𝐿 here are semantic: the choice of probability expres-

sions may take into account semantic assumptions regarding the values that will instantiate V. The

only requirement is that these semantic assumptions cover the entire range of possible values for V

and that all the premises of the probabilistic rule are satisfied. For example, suppose there is some

𝑟 ∈ V and we must reconstruct probability expression 𝑝 . We can semantically assume that 𝑟 ≤ 0

and verify that 𝑝 = 𝑥 + 𝑦 satisfies all premises. Now assuming 0 < 𝑟 we can choose 𝑝 = 2 × 𝑧 to
satisfy all premises. Since we have verified all premises under assumptions that cover the entire

range of 𝑟 , type checking succeeds. Observe the different structures of 𝑝 in these two cases. In

contrast, the structure of 𝑝 is fixed in the naïve-flip rule and cannot vary depending on 𝑟 .

In our semantically quantified formulation of typing rules, programs like compare no longer

pose an issue as the type checker can choose a valid set of contexts and types for weighted sum

after making semantic assumptions about V. To type check compare, we proceed by making two

semantic assumptions by case analysis on the instantiating value for 𝑛. If we have 1 ≤ 𝑛, then we

can choose c’s type in branch 2 to be ⊕P{ gt
1

2 :1, lt
𝑛−1

2(𝑛+1) :1, eq
1

𝑛+1 :1 } as it is now a valid type.

In the case of 𝑛 < 1, we can choose c’s type in branch 2 to be ⊕P{ gt1:1, lt0:1, eq0:1}. At first
this type does not appear to allow branches 3 and 4 to type check. However, our assumption 𝑛 < 1

by case analysis contradicts the proposition 1 ≤ 𝑛 learned after entering branch 2. So the entirety

of branch 2 is well-typed vacuously as it is deemed impossible.

From type checking compare, we can see that the actual rules are more semantic in nature than the

naïve ones. To implement type checking for probabilistic branching, we first introduce existential

variables as stand-ins for probability annotations in Δℓ , 𝐵ℓ ,𝑤ℓ . We then gather all logical constraints

synthesized during the type checking of the branches. A single large semantic entailment judgment

is formed by taking the conjunction of all these constraints and putting them under forall-exists

quantification. Finally, this semantic entailment is handed to our SMT backend for proving.

Due to the fact that the flip construct also introduces probabilistic branching, its corresponding

flip rule utilizes semantic quantifiers to type check the H and T branches.

∀V . ∃Δ𝐻 ,Δ𝑇 , 𝐴𝐻 , 𝐴𝑇 ,𝑤𝐻 ,𝑤𝑇 .

· ; C ; Δ𝐻 ⊢𝑤𝐻 𝑃𝐻 :: (𝑥 : 𝐴𝐻 ) · ; C ; Δ𝑇 ⊢𝑤𝑇 𝑃𝑇 :: (𝑥 : 𝐴𝑇 ) · ; C ⊨ 0 ≤ 𝑝 ≤ 1

· ; C ⊨ Δ = 𝑝 · Δ𝐻 +L (1 − 𝑝) · Δ𝑇
· ; C ⊨ 𝐴 = 𝑝 · 𝐴𝐻 +R (1 − 𝑝) · 𝐴𝑇 · ; C ⊨ 𝑤 = 𝑝 ·𝑤𝐻 +R (1 − 𝑝) ·𝑤𝑇

V ; C ; Δ ⊢𝑤 flip 𝑝 (H⇒ 𝑃𝐻 | T⇒ 𝑃𝑇 ) :: (𝑥 : 𝐴)
flip

5 Formal Semantics and Meta-Theory
At runtime, the state of a session-typed programmanifests as a configuration of concurrent processes
organized as a tree where each process offers the channel connecting to its parent and uses the

channels offered by its children. To prove type preservation (Theorem 5.2) for PReST, we adopt the

nested-multiverse semantics of Das el al. [27] which localizes the effects of probabilistic branching.
We connect this nested-multiverse semantics to a distribution based semantics through a flattening

procedure and simulation theorem (Theorem 5.5).

Nested-multiverse Semantics. In the nested-multiverse semantics, a configuration C is a

sequence of semantic objects O in parallel composition O1 ∥ ... ∥ O𝑛 . Each semantic object takes

on two forms: (i) a singleton process proc(𝑐,𝑤, 𝑃) where 𝑃 is a process and𝑤 is its (non-negative)
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work counter, or (ii) a nested distribution of configurations proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I) where C𝑖 appears
with probability 𝑝𝑖 in the distribution. The 𝑐 in both cases represents the provided channel. The

nested-multiverse semantics is defined as a multiset rewriting [15] system featuring two kinds of

transition relations C ↦→ C′ and C 𝑑,𝜅
Z===⇒ C′. Our companion report [33] presents their formal rules

in detail. For C ↦→ C′, configuration C transitions to C′ in a single step without communication

between any of C’s objects. The flip primitive induces this kind of transition when it evaluates:

proc(𝑐,𝑤, flip 𝑝 (H⇒ 𝑃𝐻 | T⇒ 𝑃𝑇 )) ↦→ proc(𝑐, {proc(𝑐,𝑤, 𝑃𝐻 ) : 𝑝, proc(𝑐,𝑤, 𝑃𝑇 ) : 1 − 𝑝})

Other operations that induce C ↦→ C′ transitions include process spawning and the work primitive.

Conversely, C 𝑑,𝜅
Z===⇒ C′ describes a step where two objects in C (synchronously) exchange a message

on channel 𝑑 and transitions to C′. The sort 𝜅 ∈ {det, ⊕P,&P} categorizes the communication taking

place on 𝑑 . Sorts ⊕P and &P categorize communication originating from probabilistic internal choice

and external choice respectively, and det is the category for all other sources of communication.

Distribution-based Semantics. In the distribution-based semantics, a configuration is a se-

quence of processes in parallel composition proc(𝑐1,𝑤1, 𝑃1) ∥ · · · ∥ proc(𝑐𝑛,𝑤𝑛, 𝑃𝑛) where 𝑃𝑖 is a
process and𝑤𝑖 is its work counter. Note that the configurations here are non-nested. To differentiate

the configurations of the two semantics, we will refer to configurations in the distribution-based

semantics using variable D and (non-nested) distributions of these configurations using variable 𝜇.

The distribution-based semantics is defined in terms of transition relations D det↦−−→ D′, D
prob

↦−−−→ 𝜇

and 𝜇 Z⇒ 𝜇′. We present a detailed account of their formal rules in our companion report. Relations

of the form D det↦−−→ D′ are deterministic configuration-to-configuration transitions. Examples in-

clude sending and receiving messages, paying and getting potential, etc. Next,D
prob

↦−−−→ 𝜇 represents

configuration-to-distribution transitions. A

det↦−−→ relation can be viewed as a degenerative case of

prob

↦−−−→ where the resulting distribution has unique support. A non-degenerative example, as shown

below, is again due to the evaluation of the flip.

proc(𝑐,𝑤, flip 𝑝 (H⇒ 𝑃𝐻 | T⇒ 𝑃𝑇 ))
prob

↦−−−−→ {proc(𝑐,𝑤, 𝑃𝐻 ) : 𝑝, proc(𝑐,𝑤, 𝑃𝑇 ) : 1 − 𝑝}

Finally,

prob

↦−−−→ is lifted to the Z⇒ relation between distributions in a standard way.

Configuration Typing. A nested-multiverse configuration C is typed using the judgment

Δ ⊩𝑤 C :: Γ which states that C uses channels in context Δ and provides a context of channels Γ.
The cost of running C is expected to be upper bounded by𝑤 .

· ; ⊤ ; Δ ⊢𝑤
′
𝑃 :: (𝑐 : 𝐴)

Δ ⊩𝑤+𝑤
′
proc(𝑐,𝑤, 𝑃) :: (𝑐 : 𝐴)

T:Proc

Δ1,Δ
′ ⊩𝑤1 O :: (𝑐 : 𝐴) Δ2 ⊩𝑤2 C :: (Δ,Δ′)
Δ1,Δ2 ⊩𝑤1+𝑤2 (O ∥ C) :: (Δ, (𝑐 : 𝐴))

T:Compose

(∀𝑖 ∈ I) Δ𝑖 ⊩𝑤𝑖 C𝑖 :: (𝑐 : 𝐴𝑖 ) 1 = Σ𝑖∈I𝑝𝑖 Δ = ΣL
𝑖∈I𝑝𝑖 · Δ𝑖 𝐴 = ΣR

𝑖∈I𝑝𝑖 · 𝐴𝑖 𝑤 = Σ𝑖∈I𝑤𝑖

Δ ⊩𝑤 proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I ) :: (𝑐 : 𝐴)
T:Dist

The rule T:Proc lifts a well-typed process 𝑃 to a well-typed semantic object. At runtime, all

refinement variables V of a process need to be fully instantiated with values that satisfy the

refinement constraint C. So 𝑃 here must be closed over refinement variables and have a trivial

constraint ⊤. The T:Compose rule allows a semantic object O to connect to a configuration C
by consuming some non-empty context Δ′ of channels provided by C. Finally, T:Dist types

distributions based on the weighted sum of their underlying configurations’ types. Note that

configuration typing is not an explicitly checked judgment. It functions as meta-level invariant

for reasoning about the runtime behavior of programs. Through type preservation we show that
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starting from some well-typed process (accepted by the type checker), all configurations it can

transition to must be well-typed according to configuration typing.

Type Safety. To prove type safety for PReST, we must account for the exchanging of proofs

by assert and assume. The following lemma allows constraint context C to be strengthened to C
′

using a proof of entailment V ; C
′ ⊨ C. So if a process receives a proof (via assume), it can use this

proof to strengthen its local constraint context and make stronger assertions.

Lemma 5.1. If V ; C ; Δ ⊢𝑤 𝑃 :: (𝑥 : 𝐴), then for all C′ such that V ; C′ ⊨ C holds, the judgment
V ; C′ ; Δ ⊢𝑤 𝑃 :: (𝑥 : 𝐴) holds.

We can prove the type preservation theorem by induction and appealing to Lemma 5.1 to resolve

assume-assert communication cases.

Theorem 5.2 (Preservation). If Δ ⊩𝑤 C :: Γ, and C ↦→ C′ or C 𝑑,𝜅
Z===⇒ C′, then Δ ⊩𝑤 C′ :: Γ.

Notice that the configuration typing judgment Δ ⊩𝑤 C :: Γ in the preservation theorem requires

all processes in C to be refinement-closed. This implies that the semantic quantifiers of probabilis-

tic branching expressions are always fully instantiated prior to their evaluation. Crucially, the

refinement-closed property is invariant under both ↦→ and

𝑑,𝜅
Z===⇒ transition relations, which in turn

makes our semantically quantified typing rules compatible with preservation.

Global Progress. To prove global progress for well-type configurations, the following judgments

describing the status of semantic objects are defined. The full derivation rules for these judgments

are given in our companion report [33].

• C poised : all processes in C are ready to communicate on the channel they provide

• C live : there exists some process in C that can step without communication

• C (𝑑, 𝜅)-comm : a pair of processes in C are ready to 𝜅-communicate over channel 𝑑

For some well-typed configuration · ⊩𝑤 C :: Γ, it must be in either poised, live or (𝑑, 𝜅)-comm

states. One can show that if there is C live, then there exists C′ such that C ↦→ C′ holds. Similarly,

if there is C (𝑑, 𝜅)-comm, then there exists C′ such that C 𝑑,𝜅
Z===⇒ C′ holds. Note that C poisedmeans,

by definition, C is in normal form. Combining these facts, we obtain the global progress theorem.

Theorem 5.3 (Progress). If · ⊩𝑤 C :: Γ, then either C ↦→ C′, C 𝑑,𝜅
Z===⇒ C′ or C poised.

Probability Consistency. Now we show that the distribution of communicated messages at

runtime indeed respects the probabilities specified by session types. For some configuration C that

provides a probabilistic channel, we compose it with a monitor process with the following syntax:

𝑀 ::= record 𝑥 | wait 𝑥 with 𝑘 | stop 𝑘

The record 𝑥 construct receives a label 𝑘 ∈ 𝐿 over channel 𝑥 : ⊕𝑃 {ℓ𝑝ℓ : 1}ℓ∈𝐿 and transitions to

wait 𝑥 with 𝑘 where communication with C is synchronized for closing. Once channel 𝑥 is closed,

wait 𝑥 with 𝑘 transitions to stop 𝑘 . It is straightforward to extend the proofs of type soundness to

encompass monitor processes. One can then show that after evaluation of the overall configuration

(C + monitor) has terminated, the distribution of labels recorded in stop 𝑘 across all possible ending

configurations is {ℓ : 𝑝ℓ }ℓ∈𝐿 . This proves that the distributions of labels communicated across a

channel is consistent with the probability annotations in its type.

Theorem 5.4 (Consistency). If · ⊩𝑤 C :: (𝑐 : ⊕P{ℓ𝑝ℓ : 1}ℓ∈𝐿) and C evaluates to a poised config-
uration, the distribution of messages communicated over 𝑐 is exactly {ℓ : 𝑝ℓ }ℓ∈𝐿 .
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Flattening and Simulation. Configurations C in nested-multiverse semantics can be flattened

into distributions 𝜇 of configurations in the distribution-based semantics. The flattening relation

C ≈ 𝜇 is inductively defined as follows:

proc(𝑐,𝑤, 𝑃) ≈ {proc(𝑐,𝑤, 𝑃) : 1}
∀𝑖 ∈ I : C𝑖 ≈ 𝜇𝑖

proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I ) ≈ Σ𝑖∈I𝑝𝑖 · 𝜇𝑖

O ≈ 𝜇1 C ≈ 𝜇2

(O ∥ C) ≈ {(D1 ∥ D2) : 𝜇1 (D1) · 𝜇2 (D2)}D1∈dom(𝜇1 ),D2∈dom(𝜇2 )

The nested-multiverse semantics and distribution-based semantics can now be connected through

the simulation theorem. Essentially, every possible transition in the nested-multiverse semantics

has a corresponding transition in the distribution-based semantics.

Theorem 5.5 (Simulation). If C ≈ 𝜇, C′ ≈ 𝜇′ and C ↦→ C′ or C 𝑑,𝜅
Z===⇒ C′, then 𝜇 Z⇒ 𝜇′.

ExpectedCost Bounds. Having established flattening and simulation, wewill use the distribution-

based semantics to reason about the expected work of programs. Given a non-nested configuration

D = proc(𝑐𝑖 ,𝑤𝑖 , 𝑃𝑖 ), we define the total work it has done as work(D) := Σ𝑖𝑤𝑖 . For some well-typed

configuration D0, its expected total work is defined as etw(D0) = lim𝑛→∞ E[work(D𝑛)] where
{D𝑛}𝑛∈N is a Markov chain constructed from D0 as the initial state and

prob

↦−−−→ as the kernel. The

following theorem shows that the expected total work of D0 never exceeds its stated cost.

Theorem 5.6 (Expected Cost Bound). Given some well-typed configuration · ⊩𝑤 D0 :: Γ, there
is upper bound etw(D0) ≤ 𝑤 on the expected total work performed by D0.

Undecidability of Type Checking. Das [25] shows that structural session type equality is

undecidable in the presence of integer type indices via a simple reduction to 2-counter machines.

This result remains valid for real indices as the operations performed by the simulated 2-counter

machine maintain the invariant that indices are always in the integer subset.

Theorem 5.7 (Undecidability of Type Eqality). Type equality in PReST is undecidable.

6 Implementation and Evaluation
We have implemented a prototype of PReST in OCaml containing a lexer, parser and type checker

in OCaml. The implementation consists of 2590 lines of OCaml code and 422 lines of Menhir parser

specification. When implementing the PReST type checker, the primary challenge lies in the type

checking of probabilistic constructs. As explained in Section 4.6, probabilistic rules such as flip

and ⊕P𝐿 have existential and universal quantifiers over judgments in their premise. Suppose we

wish to type check the following basic usage of flip.

𝑝 ; (0 ≤ 𝑝 ≤ 1) ; · ⊢0 flip 𝑝 (H⇒ 𝑥 ..true ; close 𝑥 | T⇒ 𝑥 ..false ; close 𝑥) :: (𝑥 : ⊕P{true𝑝 : 1, false1−𝑝 : 1})
The flip rule requires us to show that for all 𝑝 , there exists Δ𝐻 ,Δ𝑇 , 𝐴𝐻 , 𝐴𝑇 such that the premises

below all hold true (trivially satisfied premises are omitted).

· ; (0 ≤ 𝑝 ≤ 1) ; Δ𝐻 ⊢0 𝑥 ..true ; close 𝑥 :: (𝑥 : 𝐴𝐻 ) (1)

· ; (0 ≤ 𝑝 ≤ 1) ; Δ𝑇 ⊢0 𝑥 ..false ; close 𝑥 :: (𝑥 : 𝐴𝑇 ) (2)

· ; (0 ≤ 𝑝 ≤ 1) ⊨ ⊕P{true𝑝 : 1, false1−𝑝 : 1} = 𝑝 · 𝐴𝐻 +R (1 − 𝑝) · 𝐴𝑇 (3)

Our type checking algorithm exploits the fact that the weighted sum relations only change the

probability annotations of types and do not alter their overall structure. To check the remaining

premises, we introduce fresh existential variables 𝑝H
true

, 𝑝H
false

, 𝑝T
true

, 𝑝T
false

and define

𝐴𝐻 ≜ ⊕P{true𝑝
H

true : 1, false𝑝
H

false : 1} 𝐴𝑇 ≜ ⊕P{true𝑝
T

true : 1, false𝑝
T

false : 1}
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The following constraints are generated from the type validity requirement of 𝐴𝐻 , 𝐴𝑇 and the

weighted sum condition of premise (3).

0 ≤ 𝑝H
true
≤ 1 0 ≤ 𝑝T

true
≤ 1 𝑝H

true
+ 𝑝H

false
= 1 𝑝 · 𝑝H

true
+ (1 − 𝑝) · 𝑝T

true
= 𝑝

0 ≤ 𝑝H
false
≤ 1 0 ≤ 𝑝T

false
≤ 1 𝑝T

true
+ 𝑝T

false
= 1 𝑝 · 𝑝H

false
+ (1 − 𝑝) · 𝑝T

false
= 1 − 𝑝

Futhermore, type checking the individual branches produces constraints 𝑝H
true

= 1, 𝑝H
false

= 0, 𝑝T
true

=

0, 𝑝T
false

= 1. If some nonemptyΔ context is used for type checking, wewill introduce fresh existential

variables for all of its probabilistic external choice types and generate similar constraints.

At this point, all constraints regarding the existential variables have been generated. A logical

conjunction C comprised of these constraints is formed. The formula

∀𝑝. (0 ≤ 𝑝 ≤ 1) ⊃ ∃𝑝H
true

, 𝑝H
false

, 𝑝T
true

, 𝑝T
false

.C

is given to the backend for verification. Recall that the weighted sum relation can generate non-

linear constraints as is evident from the rightmost constraints above. This necessitates the need

for an SMT backend. We support 2 SMT solvers, z3 [28] and cvc5 [7] through the SMTLib2 [19]

specification language. Following standard practice, we ask the solvers to prove unsat for the

negation of these formulas to achieve better performance. For all of our examples, z3 is able to

solve all constraints automatically and does not need any manual intervention.

6.1 Evaluation
To thoroughly evaluate our PReST implementation, we construct an assortment of benchmarks

that utilizes refinements and probabilities. We now present more examples of probing processes

and randomized distributed protocols. Our implementation scales to large examples generating

thousands of SMT constraints. The full definitions of all examples are included with the source

code of our implementation. Table 1 compiles the results of type checking all benchmarks.

Sum of Uniform Distributions. A well known fact from probability theory is that the proba-

bility distribution of the sum of two uniform random variables is not uniform. For two discrete

random variables uniformly drawn from the set {0, . . . , 𝑛}, the probability mass function (PMF) of

their sum takes the form depicted in Figure 8. We claim that the following usum[𝑛] type encodes

the distribution obtained by adding two unat[𝑛] values.

type usum[𝑛 | 0 ≤ 𝑛] =

⊕P{ next
𝑛2

(𝑛+1)2 :

⊕{ succ : ⊕{ succ : ?{1 ≤ 𝑛}. usum[𝑛 − 1] } }

, unat
2𝑛

(𝑛+1)2 :

⊕{ succ : ?{1 ≤ 𝑛}. unat[𝑛 − 1] }

, zero
1

(𝑛+1)2 : 1 }

0 nn 2n
1

(n+1)2

n+1
(n+1)2

Fig. 8. Sum of 2 uniform values

Due to the kink in the PMF of the distribution of sum, verifying usum[𝑛] with a single probing

process will be challenging. Instead, we verify usum[𝑛] piecewise using two probing processes.

The following probe_usum1 process checks if value x : usum[𝑛] is equal to that of y : unat[𝑖]

where 0 ≤ 𝑖 ≤ 𝑛. Essentially, probe_usum1 measures the PMF of sum in the range between 0 and 𝑛.

proc probe_usum1[𝑛, 𝑖 | 0 ≤ 𝑖 ≤ 𝑛] (x : usum[𝑛]) (y : nat[𝑖])

⊢𝑛 (z : ⊕P{ true
𝑖+1
(𝑛+1)2 : 1, false

𝑛2+2𝑛−𝑖
(𝑛+1)2 : 1 })
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Next, the probing process probe_usum2 is defined to measure the PMF between 𝑛 and 2𝑛. It proceeds

by subtracting y : nat[𝑖] from x : usum[𝑛] and comparing the remaining value to n : nat[𝑛].

proc probe_usum2[𝑛, 𝑖 | 0 ≤ 𝑖 ≤ 𝑛] (x : usum[𝑛]) (n : nat[𝑛]) (y : nat[𝑖])

⊢𝑛 (z : ⊕P{ true
𝑛−𝑖+1
(𝑛+1)2 : 1, false

𝑛2+𝑛+𝑖
(𝑛+1)2 : 1 })

From the output types of these probing processes we can see that the probability first scales linearly

(w.r.t. 𝑖) and reaches a maximum value when 𝑖 = 𝑛. The probability then begins to drop off linearly.

Bounded Retransmission. The bounded retransmission protocol [41] is a commonly used

protocol for sending chunks of data over a lossy channel. For 𝑐 chunks of data and communication

success rate 𝑝 , the protocol will make 𝑏 attempts at sending each chunk across the lossy channel.

We define this protocol as the following sender[𝑐, 𝑏, 𝑖, 𝑝] type. The extra 𝑖 index here indicates that

the sender is currently on its 𝑖th attempt for chunk 𝑐 .

type sender[𝑐, 𝑏, 𝑖, 𝑝 | 0 ≤ 𝑐 ∧ 0 ≤ 𝑖 ≤ 𝑏 ∧ 0 ≤ 𝑝 ≤ 1] =

⊕{ try : ?{1 ≤ 𝑖}.

⊕{ chunk : ?{1 ≤ 𝑐}. data_t ⊗
&P{ ack𝑝 : sender[𝑐 − 1, 𝑏, 𝑏, 𝑝], drop1−𝑝 : data_t ⊸ sender[𝑐, 𝑏, 𝑖 − 1, 𝑝] }

, done : ?{𝑐 = 0}. 1 }

, fail : ?{0 = 𝑖}. 1 }

Compared to NomosPro which requires over 700 lines of code to encode a retransmission protocol

with 5 chunks, a bound of 9 and a fixed success rate of 0.8, our implementation in PReST uses only

107 lines of code and operates universally of any number of chunks, bounds and success rates.

Randomized Dining Philosophers. A solution to the famous dining philosophers problem

proposed by Lehmann and Rabin [56] utilizes randomness to break symmetry in the acquisition of

forks. Initially, each philosopher attempts to acquire a left fork or a right fork based on the outcome

of a fair coin flip. Once a fork has been acquired, each philosopher will attempt to acquire their

missing fork. If the fork is available, the philosopher may eat. Otherwise, the philosopher will put

back their fork and reset to the initial state. We model philosophers as the type ph[𝑖].

type ph[𝑖 | 𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2 ∨ 𝑖 = 3] =

⊕{ has_none : ?{𝑖 = 0}.

⊕P{ request_left0.5 : &{ acquire : fork ⊸ ph[1], none : ph[0] }

, request_right0.5 : &{ acquire : fork ⊸ ph[2], none : ph[0] } }

, has_left : ?{𝑖 = 1}. &{ done : fork ⊗ ph[3], reset : fork ⊗ ph[0] }

, has_right : ?{𝑖 = 2}. &{ done : fork ⊗ ph[3], reset : fork ⊗ ph[0] }

, done : ?{𝑖 = 3}. ph[3] }

The 𝑖 variable in ph[𝑖] indicates the state of the philosopher: 0 has no forks, 1 has left fork, 2

has right fork, 3 has eaten. The dining table of philosophers is modeled as a ring of interleaved

ph[𝑖] and fork_opt[ 𝑗] processes where fork_opt[ 𝑗] is an option type encoding fork availability.

Using refinements, we enforce the states of adjacent philosophers and adjacent forks to always be

consistent: philosopher can always put back their fork(s) into empty slots. The progress theorem

(Theorem 5.3) ensures that no deadlocks occur during fork acquisition.

Randomized Consensus Shared Coin. The randomized consensus shared coin protocol of

Aspnes and Herlihy [4] assigns preferences (1 or 2) to 𝑛 processes using a global shared counter 𝑐 .

To begin the protocol, each process flips a fair coin and increments or decrements 𝑐 based on the

coin flip. After updating the shared counter, if 𝑐 ≥ 𝑘 · 𝑛, where 𝑘 is a constant parameter greater
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than 1, the process selects 1 as its preference. If 𝑐 ≤ −𝑘 · 𝑛, the process selects 2 as its preference.
Otherwise, the process coin flips again until 𝑐 passes one of the barriers (−𝑘 · 𝑛 or 𝑘 · 𝑛).
type node[𝑘, 𝑛, 𝑥 | 0 ≤ 𝑘 ∧ 0 ≤ 𝑛 ∧ (𝑥 = 0 ∨ 𝑥 = 1 ∨ 𝑥 = 2)] =

⊕{ try_flip : ?{𝑥 = 0}. ∀[𝑐]. int[𝑐] ⊸
⊕P{ H0.5 : node_aux[𝑘, 𝑛, (𝑐 + 1)], T0.5 : node_aux[𝑘, 𝑛, (𝑐 − 1)] }

, done : ?{𝑥 = 1 ∨ 𝑥 = 2}. nat[𝑥] ⊗ node[𝑘, 𝑛, 𝑥] }

type node_aux[𝑘, 𝑛, 𝑐 | 0 ≤ 𝑘 ∧ 0 ≤ 𝑛] =

⊕{ prefer1 : ?{𝑘 · 𝑛 ≤ 𝑐}. int[𝑐] ⊗ node[𝑘, 𝑛, 1]

, prefer2 : ?{𝑐 ≤ −𝑘 · 𝑛}. int[𝑐] ⊗ node[𝑘, 𝑛, 2]

, otherwise : ?{−𝑘 · 𝑛 < 𝑐 < 𝑘 · 𝑛}. int[𝑐] ⊗ node[𝑘, 𝑛, 0] }

We give processes in the consensus shared coin protocol the node[𝑘, 𝑛, 𝑥] type as presented

above. The indices 𝑘 and 𝑛 are the protocol parameter and total number of processes respectively.

The index 𝑥 constrains the process to 3 modes: no preference (𝑥 = 0), prefers 1 (𝑥 = 1) and prefers

2 (𝑥 = 2). If a process is in modes 𝑥 = 1 or 𝑥 = 2, it will send the label done followed by a natural

number corresponding to its preference. The process then repeats in the samemode. If a process is in

mode 𝑥 = 0, then it will receive the global counter 𝑐 and transition to states node_aux[𝑘, 𝑛, (𝑐 + 1)]
or node_aux[𝑘, 𝑛, (𝑐 − 1)] based on a fair coin flip. These two states correspond to incrementing or

decrementing the counter respectively. In the node_aux[𝑘, 𝑛, 𝑐] state, based on the value of 𝑐 in

relation to 𝑘 · 𝑛 and −𝑘 · 𝑛, the process may prefer 1 and transition to state node[𝑘, 𝑛, 1], or prefer 2

and transition to state node[𝑘, 𝑛, 2], or reset back to the initial state node[𝑘, 𝑛, 0].

Evaluation Results. Table 1 presents additional benchmarks including (i) a center biased

random walk, (ii) conjuction of approximate events, (iii) leader election of Itai and Rodeh [48], (iv)

crowd forwarding of Reiter and Rubin [64], and (v) zeroconf IP selection [18].

Table 1. Evaluation of PReST. LOC = lines of code; Defs = #type and process definitions; z3(ms) = time to

solve using z3; cvc5(ms) = time to solve using cvc5; TVars = total #quantified variables; PVars = #existential

variables for probabilistic constructs; Cons = #constraints that need solving; Cost = resource upper bound.

Program LOC Defs z3(ms) cvc5(ms) TVars PVars Cons Cost
unat generator 52 5 14 31 8 4 145 𝑛/2
unat (PMF) 63 5 20 timeout 14 8 219 𝑛/2
unat (CDF) 64 5 22 timeout 14 8 219 𝑛/2
umax (CDF) 192 9 278 timeout 59 38 664

𝑛 · (4·𝑛+5)
6· (𝑛+1)

usum (PMF) 277 10 184 timeout 101 54 1120 𝑛

unat compare 48 3 30 timeout 26 18 244 𝑛/2
coin debias1 15 2 9 timeout 18 12 194

2·𝑝2−2·𝑝+1
2·𝑝 · (1−𝑝 )

one time pad 93 12 32 26 27 12 478 𝑛

approx conj 21 2 11 31 21 12 261 1

random walk 16 2 10 13 6 4 85 𝑛

bounded retransmit 107 13 35 36 12 0 796 𝑖 + 𝑐 · 𝑏
leader election 257 22 68 timeout 81 16 1749 unbound

dining philosopher 297 14 51 56 14 4 1359 unbound

consensus coin 498 29 75 64 37 4 1932 unbound

crowd forwarding 260 23 62 65 48 4 1662 unbound

zeroconf 278 16 51 timeout 50 20 1064 unbound

unreliable queue 55 4 19 188 21 12 607 𝑛 + 1
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Our experiments are performed on a laptop with an Apple M4 Pro CPU and 24 GB RAM. We

compare the performance of using z3 (version 4.13.0) as the SMT backend against cvc5 (version

1.2.0). Table 1 presents the results of running our PReST type checker on various examples. We

do not assign cost bounds to some 𝑘-way probabilistic distributed protocols because their bounds

involve exponential constraints which cannot be solved by even state-of-the-art SMT solvers.

From these results, we can see that z3 performs better than cvc5 as it is less prone to timeout and

solves constraints within 0.3 seconds. Our results show that even for simple examples, we generate

hundreds of constraints with multiple quantifiers, and solving them manually would be infeasible.

Thus, a robust SMT backend is a necessity for the usability of PReST.

7 Related Work
Several works have explored combinations of probabilities and session types [11, 27]. As we already

discussed extensively, Das et al. [27] proposed a probabilistic session type system but limited to

constants with no support for symbolic reasoning. Aman and Ciobanu [3] designed a session type

system based on with probabilistic intervals, probabilistic internal choice, and non-deterministic

external choice [2]. Besides the differences in the design of the type system due to the fact that we

use probabilities rather than probabilistic intervals, their type system does not support refinements,

which is one of our main contributions. Dal Lago and Giusti [20] introduce a session typing

discipline based on bounded linear logic aimed at capturing experiments in the computational

model of cryptography and supports a version of refinement which is weaker than the one we

present here: it includes refinements on the types for strings and replication. We consider instead a

more general form of arithmetic refinements. Inverso et al. [47] consider a probabilistic session

type system which can be seen as a simplified version of the one studied in [27]. This system does

not consider refinements and thus is less expressive than the system we presented here.

Probabilistic versions of process calculi have been extensively studied, especially in the context of

process equivalence [12, 49, 55]. Several variants of probabilistic processes have been studied [36, 42],

where the differences often amount to the kind of probabilistic semantics that processes are equipped

with, e.g. [66], which kind of probabilistic choices the calculi support, e.g. [63], and the relations

between probabilistic choice and nondeterminism, e.g. [21]. The work by Bartels et al. [8] compare

several different calculi accordingly to their expressive power and build a hierarchy out of some of

them. Our type system assigns types to a probabilistic process calculus that combines internal and

external probabilistic and non-deterministic choice constructors. The main difference from these

works at the calculus level is that we embrace the nested multiverse semantics approach proposed

by Das et al. [27].

Refinement types have been used extensively to support reasoning about probabilities, particu-

larly in security, privacy and probabilistic programming. rF
★
[9] uses refinement types, à la F

★
[65],

to enrich the expressivity of a relational calculus to reason about cryptographic primitives, which

was subsequently combined with an indexed monad [10] to support reasoning about privacy. Grimm

et al. [38] propose a technique to use F
★
proofs to directly support relational statements about

probabilistic programs. Vasilenko et al. [67] use a similar approach to reason about probabilistic

programs using Liquid Haskell. Their system supports quantitative specifications which abstract

over the properties of the program. None of these works directly manages the exact probabilities

within types in a way similar to what we do here nor do they support any form of concurrency.

Another related thread of research is probabilistic model checking tools such as PRISM [54] and

Storm [29] that support analysis of both discrete- and continuous-time Markov chains [53], Markov

decision processes [30], 𝜋-calculus [61], and randomized distributed algorithms [60]. Instead of

using type systems, those model checkers provide a state-based language and a specification logic

to specify the model and property to be checked. Unlike PRISM or Storm, PReST types serve as
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compositional specifications that enable the analysis of different processes in isolation. Also, PReST

doesn’t just serve as a modeling language; it can be used to implement and generate distributions,

not just analyze them.

Finally, there has been a large body of work on expected cost analysis of (sequential) probabilistic

programs [16, 17, 39, 51, 57, 62], many of which build on foundational work on pre-expectation

calculus by Kozen [52]. Absynth [59] uses the idea of amortized resource analysis for expected cost

analysis of first-order probabilistic programs with loops. Unlike PReST, Absynth does not support

symbolic probabilities, thus can infer bounds using LP solving. Wang et al. [69] develop a notion of

polynomial cost martingales that can handle negative cost with bounded updates to variables. In

contrast to these approaches that perform whole-program analysis, Avanzini et al. [6] generalize

the expected runtime transformer of Kaminski et al. [51] to build a modular framework for expected

cost analysis that allows sampling from dynamic distributions. Similarly to PReST, they generate

non-linear constraints and use an SMT solver to find a satisfying assignment. Unlike PReST though,

they do not support recursive functions. On a different thread, there have been recent innovations

to support higher-order probabilistic programs using affine refinement types [5] and potential

types [68]. Unlike PReST however, none of these works supports any form of concurrency. The

main technical challenge in supporting message-passing concurrency is to decide how to divide

the potential amongst the executing processes. This is precisely where resource-aware types [23]

come in: special messages whose goal is to distribute potential amongst processes to pay for their

execution cost. On the other hand, most of the aforementioned tools support automatic bound

inference, while we only support type checking leaving inference to future work.

Also related are higher-order separation logic frameworks that enable cost analysis of probabilistic

programs with mutable state. ExpIris [58] is a variant of Iris [50] that supports proving bounds on

the expected cost of higher-order programs with mutable state. It enhances the standard weakest

precondition of Iris with the notion of initial and final potential, with the cost being the difference

between the two. However, since potential is not part of the logic, it is impossible to make the

postcondition potential depend on the final state. Tachis [40] addresses this limitation by decoupling

the weakest precondition and costs through the use of a credit resource [1]. With such a powerful

logical framework, the bounds proved by these works are more expressive, but they lack automation.

With a simple refinement system, we can reduce bound analysis to solving non-linear constraints

that can be shipped to an SMT solver.

8 Conclusion
This paper presents PReST, a novel concurrent probabilistic language equipped with an expressive

refinement type system. The main novelty is a combination of probabilities and refinements leading

to an expressive type system that enables symbolic reasoning of randomized systems. We have

also developed a prototype of the language that relies on an SMT solver backend to reconstruct

intermediate types, thereby drastically reducing annotation overhead. The language is proven

sound by generalizing the nested multiverse semantics to refinement types that establishes that

probability distributions of interactions exactly match those prescribed by the type system. PReST

is evaluated on a variety of randomized distributed protocols, Markov chains, and verified standard

properties of discrete distributions (e.g. max, sum, double, etc.).

9 Data-Availability Statement
A self-contained version of the PReST implementation along with the benchmarks presented in

Table 1 are available as an artifact [32].
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