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Abstract. Blockchains support execution of smart contracts: programs
encoding complex transaction protocols between distrusting parties. Due
to their distributed nature, blockchains rely on third-party miners to exe-
cute and validate transactions. Miners are compensated by charging users
with gas based on the execution cost of the transaction. To compute the
exact gas cost, blockchains track gas cost dynamically creating its own
overhead. This paper presents a static exact gas-cost analysis technique
that can be employed to eliminate dynamic gas tracking. This approach
presents further benefits such as providing miners with a trusted gas
bound that can be verified in linear time, and eliminating out-of-gas ex-
ceptions. To handle recursion and unbounded computation, we propose
a novel amortization technique that stores gas inside data structures.
We have implemented our analysis technique in a tool called GasBoX
which is evaluated on 13 standard smart contracts. Our soundness theo-
rem proves that the gas bound verified by GasBoX exactly matches the
gas cost at runtime and no dynamic gas tracking is necessary.
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1 Introduction

Blockchains such as Ethereum [42] and Libra [8] allow execution of complex
protocols between mutually distrusting parties through smart contracts. Smart
contracts are programs typically written in a high-level language such as Solid-
ity [16], Move [11] or Nomos [17] and compiled down to bytecode for execution
on a distributed virtual machine. Smart contracts offer transactions (functions)
that can be issued (called) by users to enforce such protocols, e.g. bidding in an
auction, voting in an election, etc. Due to the distributed nature of blockchains,
transactions are recorded by a large number of third-party entities, or miners
(aka nodes) who are responsible for its execution. To prevent wastage of miner
resources and compensate miners for their effort, users are charged for the exe-
cution cost of their transaction in the form of gas units.

Gas is the fuel of computation on blockchains. A cost model assigns a fixed
gas cost to each operation. Gas cost of a transaction is the sum of the gas
cost of each operation executed during the transaction. Users are responsible for
providing a sufficient gas limit along with the transaction to cover the execution
cost. If a user fails to provide sufficient gas, the transaction fails and all gas is
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lost! The user then has to re-issue the transaction with a higher gas limit. Since
users need to be aware of execution cost prior to issuing a transaction, there is a
wide variety of analysis tools [6, 5, 17, 23] to statically compute an upper bound
on gas cost of transactions.

Unfortunately, upper gas bounds are inadequate. At runtime, if a user pro-
vides excess gas units, the leftover gas needs to be returned to the user. Thus,
in existing blockchains such as Ethereum and Libra, a monitor function known
as dynamic gas meter tracks the gas cost during execution. If the execution
runs out of gas, the meter raises an out-of-gas exception, otherwise it returns
the excess gas back to the user. Thus, despite the benefits of static gas analysis,
blockchains still need to meter gas at runtime. Moreover, dynamic gas metering
has its own limitations. First, it creates an execution overhead, inadvertently
increasing the transaction gas cost. For the Libra blockchain, this overhead is
about 20% of execution time [8]. Second, if the transaction runs out of gas, it
does not provide any feedback to the user for transaction resubmission.

Upper gas bounds can also be unfair to miners. Miners are usually paid
in proportion to the gas cost of a transaction. As a result, they often accept
transactions with a high gas limit, hoping that transactions with a high gas
limit will have a high gas cost. However, a malicious entity can trick this system
by submitting transactions with a high gas limit but a low gas cost. Miners
would accept such transactions only to discover that their compensation would
be low and most of the gas is returned back to the user. Thus, there is a need
to provide miners with a trusted exact gas bound that can be verified efficiently
before accepting transactions.

In response, this article describes a static analysis technique with two goals:
(i) exact gas analysis to eliminate dynamic metering, and (ii) efficient analysis
that can be employed by miners. These goals pose unique challenges, particularly
in the blockchain domain. The gas cost of a transaction can not only depend on
its arguments, but also on global state, i.e., data structures already published
on the blockchain. This global state can also potentially be modified by other
transactions. Since a user has no control over when their transactions are ac-
tually mined, they cannot exactly determine the global state during execution.
Verifying exact bounds can further be challenging in the presence of branching
since the gas cost may vary along different branches.

To this end, blockchains recommend implementing contracts and transactions
in a way that the gas cost does not depend on global state. Realizing this, our
analysis tool only verifies gas bounds that are a constant, i.e., do not depend
on either the arguments or the global state. As a result, our analysis is very
efficient, and is linear-time in the size of the program and thus, can be employed
by miners with minimal overhead. This overhead is further compensated since
the virtual machine no longer needs to meter gas at runtime.

To compute exact bounds in the presence of branching, we need to ensure
that branches have equal gas cost. We establish this by introducing a special
operation Gas.deposit(n) which deposits n gas units in the transaction sender’s
account at runtime. We augment the less costly branch with such an expression
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with n being the difference in the gas cost of both branches. We further illustrate
that this mechanism is sufficient to produce exact gas bounds and eliminates the
need for gas metering, improving the overall hygiene of the virtual machine.

To handle unbounded computation such as recursion and iteration over data
structures like maps, we utilize amortization [39, 29, 27, 12]. We introduce Gas(n)
as a first-class type in the language to represent values with n gas units which
can then be stored inside data structures. During a transaction, this stored gas
can be consumed to pay for the transaction cost. Thus, users pay in advance
while building up such data structures and later, iteration would effectively pay
for itself. Thus, such transactions have a constant static gas bound which are
automatically verified by our analysis. We demonstrate that this amortization
simplifies our gas analysis, prevents out-of-gas exceptions, and leads to more
equitable gas-distribution schemes.

Although we have focused on constant gas bounds in this work, our analysis
framework is general. In particular, the idea of depositing gas in sender’s account
to obtain exact gas bounds would still be applicable. The expressivity of the gas
bounds can be enhanced by utilizing more sophisticated underlying logics, such
as linear arithmetic [20] or SMT solvers [34]. However, such logics have a high
computational complexity which would make the analysis inefficient, hampering
its utility to miners. Although constant gas analysis precludes transactions that
copy unbounded data structures such as lists and maps, we demonstrate that
our tool can still analyze a large class of smart contracts.

We have implemented our analysis technique in a tool called GasBoX (GAS
BOund eXact). The tool takes a function and an initial gas bound as input and
either verifies that the bound is exact, or returns the program location where the
virtual machine would run out of gas. Our analysis framework is compositional,
thereby efficiently analyzing functions in isolation. We have designed a simplistic
programming language modeled on Move [11] to illustrate the analysis technique
and tool. We conducted 13 case studies implementing standard smart contracts
such as auctions, elections, bank accounts, tokens, etc. and verified their gas
bound using GasBoX. To the best of our knowledge, this is the first tool to
compute exact gas bounds for smart contracts.

Overall, we make the following technical contributions:

1. design of a linear-time and exact gas-analysis technique for smart contracts
2. introduction of a novel deposit operation to avoid gas metering
3. gas amortization to handle unbounded computation
4. implementation of an analysis tool and case study on standard contracts

2 Overview of Gas Analysis

The static gas-cost analysis is realized using a Hoare logic style reasoning with
an abstract notion of a static gas tank. This gas tank symbolically represents the
amount of gas available to the execution engine at a program location, and is
denoted using a natural number. For a program expression e, we follow the rule

{tank = φ+ C(e)} e {tank = φ | φ ≥ 0}
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Here, φ+C(e) represents the initial value of the gas tank, and C(e) denotes the gas
cost of expression e. The rule states that if the gas tank value is φ+ C(e) before
execution, then the gas tank value after execution is φ. Our analysis is naturally
compositional since gas cost is additive: the gas cost for e ; e′ is C(e) + C(e′).

{tank = φ+ C(e) + C(e′)} e {tank = φ+ C(e′) | φ+ C(e′) ≥ 0}
{tank = φ+ C(e′)} e′ {tank = φ | φ ≥ 0}

{tank = φ+ C(e) + C(e′)} e ; e′ {tank = φ | φ ≥ 0}

2.1 Exact Bound Analysis and Runtime Overhead

We demonstrate our approach for exact gas analysis using an auction contract.
Consider a function addBid which takes two arguments, bidmap: a reference to
a map storing bids indexed by the address of their bidder, and b: a new bid to
be added to the map represented using a Coin type.

fn addBid(bidmap: &Map<address, Coin>, b: Coin) {

1. let bidder = GetTxnSenderAddress();

2. if (Map.exists(copy(bidmap), copy(bidder))) then

3. tick(CMoveToAddr); MoveToAddr(move(bidder), move(b));

4. else

5. tick(CMapInsert); Map.insert(move(bidmap), move(bidder), move(b));}

First, the bidder’s address is computed and stored in the variable bidder (line
1). If bidder exists in the bidmap dictionary (line 2), then the bid is returned
back to the bidder using the built-in MoveToAddr function (line 3). Otherwise,
the bid is added to bidmap indexed by the bidder’s address (line 5). For brevity,
we allow a bidder to place a bid only once in this auction. Here, move(v) moves
the variable v out of scope by passing it to the callee while copy(v) creates a fresh
deep copy of v. This distinction is necessary from the gas analysis perspective,
since the gas cost of move(v) can be statically determined, while the cost of
copy(v) depends on the size of v (more details at the end of Section 2.2).

Gas cost of a function is defined w.r.t. a cost model. A cost model assigns a
gas cost to each primitive operation. We simplify the analysis here by using the
tick metric, which assigns a cost of n to tick(n), and 0 to all other operations.
Statically, our analysis follows the rule

{tank = φ+ n} tick(n) {tank = φ | φ ≥ 0}

In the addBid function above, we have only instrumented the MoveToAddr and
Map.insert functions with ticks for simplicity of exposition. In practice, our im-
plementation takes a cost model as input, and inserts tick for all operations
automatically (explained in Section 3.1) so its burden does not fall on the pro-
grammer. With this model, the gas cost of addBid is CMoveToAddr in the then

branch and CMapInsert in the else branch. Since we cannot statically determine
which branch would be taken at runtime, the worst-case gas bound of addBid is
max(CMapInsert, CMoveToAddr).

Since the statically derived gas bound is overapproximate, we need to dy-
namically meter the gas at runtime. Therefore, despite the benefits of static
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gas analysis, we incur the overhead of metering the gas at runtime. The gas
meter will be responsible for returning the leftover gas back to the user at
the end of execution. For the addBid function, if the initial provided gas is
max(CMapInsert, CMoveToAddr), the leftover gas at the end of execution would be 0
or max(CMapInsert, CMoveToAddr)− min(CMapInsert, CMoveToAddr), depending upon which
branch is executed.

To avoid dynamic metering, we need to compute an exact gas bound. To
achieve this, we mandate that both branches have equal gas cost. To ensure
this, we introduce an expression Gas.deposit(n). Statically, the gas cost of this
expression is n. Dynamically, executing this deposits n units of gas in the account
of the user who issued the transaction. The corresponding analysis rule is

{tank = φ+ n} Gas.deposit(n) {tank = φ | φ ≥ 0}

Reimplementing the addBid function,

fn [CMapInsert + CMoveToAddr] addBid(bidmap: &Map<address, Coin>, b: Coin) {

1. let bidder = GetTxnSenderAddress();

2. if (Map.exists(copy(bidmap), copy(bidder))) then

{tank = CMapInsert + CMoveToAddr}
3. tick(CMoveToAddr); MoveToAddr(move(bidder), move(b));

{tank = CMapInsert + CMoveToAddr − CMoveToAddr = CMapInsert}
4. Gas.deposit(CMapInsert);

{tank = CMapInsert − CMapInsert = 0}
5. else

{tank = CMapInsert + CMoveToAddr}
6. tick(CMapInsert); Map.insert(move(bidmap), move(bidder), move(b));

{tank = CMapInsert + CMoveToAddr − CMapInsert = CMoveToAddr}
7. Gas.deposit(CMoveToAddr); }

{tank = CMoveToAddr − CMoveToAddr = 0}

We have added the expression Gas.deposit(CMapInsert) in the then branch (line
4) and Gas.deposit(CMoveToAddr) in the else branch (line 7). With this addition,
the gas cost of both branches becomes equal to CMapInsert + CMoveToAddr as verified
by the analysis (in blue). Since the gas tank value at the end of both branches is 0,
we know that the exact gas bound of the addBid function is CMapInsert+CMoveToAddr
(described in blue along with the function declaration at the top).

The analysis takes the initial gas bound and the function definition as input
and either verifies that the gas bound is exact or identifies the location where
the execution will run out of gas. Intuitively, if φ ≥ 0 at each program location
during the analysis, the gas bound is sufficient. Otherwise, the first location
where φ < 0 is the point where the execution runs out of gas. Moreover, the gas
bound is exact if φ = 0 after the return expression(s) in the function body.

Advantages. Our analysis tool verifies the exact gas bound automatically. The
soundness of our analysis proves that if a user supplies this gas bound with a
transaction, there is no need for dynamic metering. The Gas.deposit expression
ensures that the user does not lose any gas units; leftover gas is safely returned
to the user. Our analysis tool automatically instruments the program with the
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Gas.deposit operations, so its burden does not fall on the programmer. Further-
more, if the initial gas bound is not sufficient, the analysis identifies the program
location where gas runs out, providing valuable feedback to the programmer.

One caveat here is that a programmer can still provide a high gas limit for a
transaction and return most of the gas back to them using spurious Gas.deposit
operations. To avoid this, we enforce that Gas.deposit operations are only in-
serted by our tool, and not by the programmer.

2.2 Handling Unbounded Computation

The auction contract also provides functionality for returning bids back to their
respective bidders at the end of the auction. This is implemented with the re-
cursive function below.

fn [CMoveToAddr · sizeof(bidmap)] returnBids(bidmap : &Map<address, Coin>) {

if (Map.size(copy(bidmap)) > 0) then

{tank = CMoveToAddr · sizeof(bidmap)}
let (bidder, bid) = Map.remove_first(copy(bidmap)) ;

{tank = CMoveToAddr · (sizeof(bidmap) + 1)}
tick(CMoveToAddr) ; MoveToAddr(move(bidder), move(bid)) ;

{tank = CMoveToAddr · sizeof(bidmap)}
returnBids(move(bidmap)) ; }

The function removes the first element from the map (remove first), storing
the key in bidder and value in bid. The function then calls MoveToAddr which
transfers the bid into the bidder’s account. Finally, the function recurses. Since
we incur CMoveToAddr cost for each recursive call (due to the tick(CMoveToAddr)), the
total cost of the returnBids function is CMoveToAddr · sizeof(bidmap).

The analysis initiates with a gas tank value of CMoveToAddr · sizeof(bidmap).
The analysis then needs to verify that, in the else branch, sizeof(bidmap) = 0,
thus the tank value is 0. In the then branch, the analysis needs to track that
the size of bidmap decreases by 1 due to the remove first() function, and the
gas tank value decreases by CMoveToAddr due to tick(CMoveToAddr). Thus, at the
recursive call, we arrive at the invariant {tank = CMoveToAddr · sizeof(bidmap)}.
To express and verify such invariants, the analysis would need to track the size
of data structures and their relation to the gas tank value. If the control flow
involves deeper nested loops and recursion, the gas bounds would involve non-
linear expressions and the analysis would require sophisticated techniques to
synthesize such invariants [4, 25, 21]. Furthermore, blockchains discourage non-
constant gas cost transactions since they are vulnerable to out-of-gas exceptions
and denial-of-service attacks [23].

Gas Amortization. We instead propose a mechanism of amortizing the linear
cost of returnBids over a series of bidding operations by storing gas in data
structures. To pay for the gas cost of MoveToAddr, we store CMoveToAddr units of
gas with the bid in bidmap. This is defined using the type GasBid defined below.

resource GasBid {

gas : Gas(CMoveToAddr), // CMoveToAddr gas units stored inside GasBid

bid : Coin } // stores bid to be placed in auction
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Our language allows declaration of two kinds of types: structs and resources.
They are both analogous to classes in object-oriented languages, except that
they differ in their treatment. Objects of struct types represent functional data
structures: they can be moved or copied, whereas objects of resource types rep-
resent assets: they cannot be copied, only moved; they are treated linearly [22].

We introduce a new primitive linear type in the language Gas(n) where n
is a constant natural number. Statically, a variable v : Gas(n) stores n units of
gas. Constructing a variable of type Gas(n) consumes n gas units from the gas
tank, while destructing it produces n gas units that are added to the gas tank.
Formally, the introduction and elimination rules are described as

{tank = φ+ n} Gas.construct(n) {tank = φ | φ ≥ 0}
{tank = φ | v : Gas(n)} Gas.destruct(v) {tank = φ+ n}

Amortized Auction. We reimplement the auction contract storing CMoveToAddr
gas units in the GasBid resource type. In this version, the bidder pays for the
return of bids in advance.

fn [CMapInsert + 2CMoveToAddr] addBid(bidmap: &Map<address, GasBid>, b: Coin) {

let bidder = GetTxnSenderAddress();

if (Map.exists(copy(bidmap), copy(bidder))) then

{tank = CMapInsert + 2CMoveToAddr}
tick(CMoveToAddr); MoveToAddr(move(bidder), move(b));

{tank = CMapInsert + 2CMoveToAddr − CMoveToAddr = CMapInsert + CMoveToAddr}
Gas.deposit(CMapInsert + CMoveToAddr);
{tank = CMapInsert + CMoveToAddr − CMapInsert − CMoveToAddr = 0}

else

{tank = CMapInsert + 2CMoveToAddr}
let g = Gas.construct(CMoveToAddr);
{tank = CMapInsert + 2CMoveToAddr − CMoveToAddr = CMapInsert + CMoveToAddr}
let gb = pack<GasBid> {gas: move(g), bid: move(b)};

tick(CMapInsert); Map.insert(move(bidmap), move(bidder), move(gb));

{tank = CMapInsert + CMoveToAddr − CMapInsert = CMoveToAddr}
Gas.deposit(CMoveToAddr); }

{tank = CMoveToAddr − CMoveToAddr = 0}

fn [0] returnBids(bidmap : &Map<address, GasBid>) {

if (Map.size(copy(bidmap)) > 0) then

let (bidder, gbid) = Map.remove_first(copy(bidmap)) ;

let (g, bid) = unpack<GasBid>(move(gbid));

{tank = 0 | g : Gas(CMoveToAddr)}
Gas.destruct(g);

{tank = CMoveToAddr}
tick(CMoveToAddr) ; MoveToAddr(move(bidder), move(bid)) ;

{tank = CMoveToAddr − CMoveToAddr = 0}
returnBids(move(bidmap)) ; }

The bidmap argument to addBid now has type &Map〈address, GasBid〉. The
else branch of addBid first constructs g : Gas(CMoveToAddr) and then uses pack

to create gb : GasBid. The pack expression takes the value of each field of a
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resource (or struct) and creates an object of that type. The object gb is then
inserted and the remaining gas is deposited. The returnBids function first un-
packs gbid : GasBid, storing the gas and bid in the variables g and bid. The gas
is then destructed to pay for the cost of tick(CMoveToAddr).

The increased gas cost of addBid is CMapInsert + 2CMoveToAddr. Out of this,
CMapInsert + CMoveToAddr gas units are consumed for the cost of function execution,
while CMoveToAddr gas units are stored in bidmap for future use. The gas cost of
returnBids is now 0. It consumes CMoveToAddr gas units in every recursive call,
which is provided by the gas stored inside bidmap.

Advantages. The advantages of amortization by storing gas inside data struc-
tures are manifold. First, it simplifies the analysis that no longer needs to synthe-
size complicated invariants and track data structure sizes. Second, blockchains
such as Libra [8] and Ethereum [42] assign a maximum gas limit to trans-
actions. The gas cost of the unamortized returnBids function is CMoveToAddr ·
sizeof(bidmap). This cost increases as the size of bidmap increases; if the size
of bidmap increases beyond a threshold, the gas cost would exceed the maximum
gas limit allowed for a transaction. The bids would then get stuck in the contract
with no possibility of retrieving them [23]. Finally, this distribution of gas cost
is more equitable. The bidders should be responsible for paying for both the cost
of bidding as well as retrieving their bids from the auction. In the unamortized
version, the user who issues returnBids bears the burden of paying for return
of all the bids back to their respective bidders. The advantage of eliminating gas
metering is also enhanced: the overhead of metering is linear in the execution
time, while the overhead of static analysis is linear in the program size.

Move vs Copy. The distinction between move and copy operations is crucial for
our static gas-cost analysis. Semantically, move(v) corresponds to a shallow copy
of v whose gas cost only depends on the type of v. On the other hand, copy(v)
corresponds to a deep copy of v, whose gas cost depends on the size of v. Since
our analysis technique only handles constants, we disallow copy of unbounded
data structures such as maps. Remarkably, we can analyze a large number of
contracts despite this restriction (see Section 4) since we allow copy on primitive
types and structs (and resources) containing them. Since we are working on
an intermediate-level language, we require the move and copy operations to be
explicit. However, they can be implicit in a source language, and be automatically
inserted by a compiler, e.g. Move [11].

3 Formal Analysis

This section formalizes our source programming language, the static gas analysis
and the formal gas semantics. We conclude with a soundness theorem connecting
the static analysis with the semantics establishing that the gas bound verified
by the static analysis is exactly matched at runtime.

3.1 A Simplistic Programming Language

Our language is modeled on Move [11], and provides an intuitive intermediate-
level surface syntax on top of Move bytecode.
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Types. The language features standard primitive types such as int and bool

representing integers and booleans, respectively. It also provides a built-in map
data type Map〈τ1, τ2〉 where τ1 and τ2 are the key and value types, respectively.
In addition, multiple values (with different types) can be packed together using
struct and resource types. Finally, the language provides basic support for
references, providing type &τ to refer values of type τ . Although Move distin-
guishes mutable and immutable references, we consider all references as mutable
since it is orthogonal to gas analysis. At runtime, references are represented by
constant size addresses and do not pose additional challenges for gas analysis.

We also introduce Gas(n) as a first-class type in our language, where n is a
constant natural number. This is used to store gas in data structures to share
and amortize the gas cost of transactions, as demonstrated in Section 2. Thus,
the type grammar for our language is

τ ::= int | bool | Map〈τ, τ〉 | & τ | V | Gas(n)

V represents type names, denoting struct and resource types (e.g. GasBid). The
syntax for declaring structs and resources is described later (end of Section 3.1).

Expressions. The expression language is expressed using the following gram-
mar. Below, n is a constant integer, while v is a variable name.

e ::= n | true | false | . . . (∗ standard expressions for primitive types ∗)
| pack〈τ〉{f1 : e, . . . , fn : e} | unpack〈τ〉(e) | &v.f | &v
| move(v) | copy(v) | g(e)
| let v = e | v ← e | if e then e else e | e ; e | return e
| tick(n) | Gas.construct(n) | Gas.destruct(v) | Gas.deposit(n)

Our language features standard expressions for integer and boolean operations.
These include binary arithmetic (+,−, ∗, /), comparison (>,≥, <,≤) and rela-
tional (&&, ||) operators. Pack and unpack expressions are used to construct
and destruct objects of struct (and resource) types, respectively. The expres-
sion pack〈τ〉{f1 : e1, . . . , fn : en} packs together expressions (e1, . . . , en) as-
signed to fields f1, . . . , fn respectively, and creates an object of type τ . Dually,
unpack〈τ〉(e) destructs object e : τ and returns the tuple (e1, . . . , en) corre-
sponding to each field. Additionally, we can reference the field f of a variable
v using &v.f. References of a variable v can be taken using &v. A variable v
can be moved or copied using move(v) and copy(v) respectively. Function calls
have the usual syntax g(e1, . . . , en) calling function g with argument expressions
e1, . . . , en. We also provide standard map functions such as insertion, removal
and checking size. Additionally, the function remove first() removes and re-
turns the first key-value pair in a map and is used to iterate over maps. The let

expression evaluates e and assigns its value to a set of fresh variables v. We use
a set of variables because expressions unpack and remove first return multiple
values. The value of variable v is updated to the value of e using v ← e. Branches
are created with if e then e else e, executing e1 or e2 depending upon whether
e evaluates to true or false respectively. Expressions are composed using e1 ; e2
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and returned using return e. Finally, we provide blockchain-specific operations
and functions (similar to Move), e.g., GetTxnSenderAddress and MoveToAddr.
These blockchain-specific expressions have a constant gas cost, and do not pose
additional challenges w.r.t. gas analysis.

Cost Model and Gas Expressions. Our analysis needs to account for the
gas cost assigned to each operation. We simplify the analysis by adding tick

expressions [27, 19] based on a cost model that assigns a constant gas cost to
each primitive operation. Our implementation then automatically instruments
the program by adding ticks for each primitive operation based on the cost
model. We describe the rules of instrumentation with the convention that [[e]]
represents the instrumented version of e (analogous cases skipped for brevity).

[[pack〈τ〉{f1 : e1, . . .}]] := tick(Cpack · size(τ)) ; pack〈τ〉{f1 : [[e1]], . . .}
[[unpack〈τ〉(e)]] := tick(Cunpack · size(τ)) ; unpack〈τ〉([[e]])

[[move(v)]] := tick(Cmove · size(τ)) ; move(v) (v : τ)
[[g(e1, . . . , en)]] := tick(Cg) ; g([[e1]], . . . , [[en]])

[[let v = e]] := tick(Clet) ; let v = [[e]]
[[v ← e]] := tick(Casgn) ; [[v]]← [[e]]

[[if e then e1 else e2]] := tick(Cif) ; if [[e]] then [[e1]] else [[e2]]
[[e1 ; e2]] := [[e1]] ; tick(Cseq) ; [[e2]]

[[return e]] := tick(Cret) ; return e

The costs Ci’s above represent the cost model which we require the programmer
to provide. The gas cost Cg of function g is determined from the declaration of g
(described in the end of Section 3.1). The analysis is then completely parametric
in the cost model, providing full flexibility to the programmer to specify their
own cost model. The gas cost can also depend on size(τ), defined as

size(int) = 4 size(bool) = 2 size(Gas(n)) = 4 size(&τ) = 8
size(Map〈τ1, τ2〉) = size(τ1) + size(τ2) size(V ) = Σn

i=1size(τi)

where V denotes a struct or resource type, and τi’s denote the type of its fields.
We provide special syntax for creating and destroying gas variables. A vari-

able v of type Gas(n) (for a constant number n) can be constructed using
Gas.construct(n), while destructed using Gas.destruct(v). We can further de-
posit gas in the sender’s account with Gas.deposit(n).

Program. A program is a sequence of (possibly mutually) recursive type and
function declarations. Their grammar is

〈decl〉 ::= resource V {f1 : τ, . . . , fn : τ} | struct V {f1 : τ, . . . , fn : τ}
| fn [G] F (v : τ, . . . , v : τ)→ τ {e}

Type declarations are used to define struct and resource types. The syntax
resource V {f1 : τ1, . . . , fn : τn} defines type V with fields f1, . . . , fn (with
corresponding types τ1, . . . , τn respectively). Structs have a similar syntax. Func-
tions are declared using fn [G] F (v1 : τ1, . . . , vn : τn) → τ {e} defines function
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F with n arguments v1 : τ1, . . . , vn : τn, return type τ , function body e and gas
bound G as a constant natural number. We store the definition of each type and
function (with initial gas bound) in a global signature Σ. This signature Σ is
referenced during tick instrumentation to obtain the gas cost of each function
call. Our analysis takes a program as input and verifies that G is an exact gas
bound for each function F in the program.

3.2 Static Gas Analysis

The analysis is formalized as a quantitative Hoare triple {G | Γ} e {G′ | Γ ′}.
Here, e denotes the expression that will be gas-analyzed ; Γ and Γ ′ store the
context (type of variables in scope) before and after the execution of e; G and
G′ track the gas tank value as a natural number before and after the execution
of e, respectively. As a convention, we refer to G and Γ as the pre-gas and pre-
context together called pre-state, and G′ and Γ ′ as the post-gas and post-context
of e together called post-state, respectively. In the above judgment, there is an
implicit invariant that G,G′ ≥ 0.

Expressions. We describe selected rules that update the gas tank.

G = G′ + n

{G | Γ} Gas.construct(n) {G′ | Γ}
Igas

G′ = G + n

{G | Γ, v : Gas(n)} Gas.destruct(v) {G′ | Γ}
Egas

G = G′ + n

{G | Γ} Gas.deposit(n) {G′ | Γ}
Dgas

Constructing a variable of type Gas(n) consumes n units of gas from the tank.
Dually, Gas.destruct(v) looks up the type of v : Gas(n) in the context Γ and
adds n gas units to the gas tank. The variable v is then removed from Γ since it
is no longer in scope. Gas.deposit(n) removes n units of gas from the tank and
deposits it in the user’s account.

G = G′ + n

{G | Γ} tick(n) {G′ | Γ}
tick

Executing tick(n) consumes n gas units.

{G0 | Γ0} e1 {G1 | Γ1} . . . {Gn−1 | Γn−1} en {Gn | Γn}
{G0 | Γ0} pack〈τ〉{f1 : e1, . . . , fn : en} {Gn | Γn}

pack

Packing n expressions e1. . . . , en requires analyzing each expression and com-
posing the gas tanks and contexts together. The post-state of ei becomes the
pre-state for ei+1. Unpacking an expression e corresponds to gas-analyzing it.

{G0 | Γ0} e1 {G1 | Γ1} . . . {Gn−1 | Γn−1} en {Gn | Γn}
{G0 | Γ0} g(e1, . . . , en) {G1 | Γ1}

call
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For function calls, we analyze each argument, composing the gas tanks and
contexts from left to right (similar to pack) since the expressions are evaluated
from left to right at runtime. Note that there is no need to analyze the function
body of g since the cost of calling and evaluating g is already accounted for
by the tick instrumentation that inserts Cg just before the function call. This
observation is crucial to obtain a linear-time gas analysis.

{G | Γ} e {G′ | Γ ′} Γ ` e : τ

{G | Γ} let v = e {G′ | Γ ′, v : τ}
let

For let expressions, we use an auxiliary judgment: Γ ` e : τ to mean that
expression e has type τ under context Γ . The analysis first analyzes e with post
state {G′ | Γ ′}, determines e’s type τ (second premise) and adds v : τ to Γ ′. Our
analysis relies on a type checker to determine the type of each expression.

{G | Γ} e {G′ | Γ ′}
{G | Γ} v ← e {G′ | Γ ′}

asgn

The assignment expression v ← e simply gas-analyzes e.

{G0 | Γ0} e {G1 | Γ1} {G1 | Γ1} e1 {G2 | Γ2} {G1 | Γ1} e2 {G2 | Γ2}
{G0 | Γ0} if e then e1 else e2 {G2 | Γ2}

if

For if expressions, e is analyzed under pre-state {G0 | Γ0} resulting in post-state
{G1 | Γ1}. This state is then copied to both branches e1 and e2, which both result
in post-state {G2 | Γ2}. We mandate that the post-gases G2 after both branches
are equal, thus ensuring that both branches have equal gas cost. This is exactly
where Gas.deposit operation is used to equalize the cost of both branches. Our
tool automatically instruments the cheaper branch with Gas.deposit(n) where
n is the difference in the post-gas of e1 and e2.

{G0 | Γ0} e1 {G1 | Γ1} {G1 | Γ1} e2 {G2 | Γ2}
{G0 | Γ0} e1 ; e2 {G2 | Γ2}

compose

Expression composition is standard; the intermediate state {G1 | Γ1} is the post-
state for e1 and the pre-state for e2.

{G | Γ} e {G′ | Γ ′} G′ = 0

{G | Γ} return e {G′ | Γ ′}
ret

We require that the post-gas of a return expression G′ = 0, thus ensuring the
initial gas tank is completely used up for the function execution and the gas
bound is exact. In case of branches, we require that the post-gas after each
return expression is 0. The analysis rules for all other expressions are analogous
and skipped for brevity.

3.3 Soundness of Analysis

We prove the soundness of the analysis by connecting the static gas analysis with
the gas semantics. We define a program state σ as a mapping from variables to
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their values. We formalize the gas semantics as σ ` e ⇓µµ′ (v, σ′) to define that the
expression e evaluates to value v under program state σ with resulting program
state σ′. The annotations µ and µ′ denote the gas tank value (as a natural
number) before and after the evaluation of e.

We describe selected rules that impact the gas cost.

σ ` tick(n) ⇓µ+nµ ((), σ)
TICK

Executing tick(n) consumes n gas units from the tank. The value of tick is
uninteresting and we use the convention that it evaluates to ().

σ ` Gas.construct(n) ⇓µ+nµ (n, σ)
CONSTRUCT

Semantically, we treat gas values as natural numbers. Thus, a variable of type
Gas(n) evaluates to n. The gas cost of constructing is n, so the difference in the
initial and final gas tanks is n.

{[v 7→ n], σ} ` Gas.destruct(v) ⇓µµ+n ((), σ)
DESTRUCT

Destructing a variable with value n (i.e., of type Gas(n)) adds n to the gas tank.
The value of destructing a gas variable is uninteresting and denoted by (). The
variable is also removed from σ since it is no longer available.

σ ` Gas.deposit(n) ⇓µ+nµ ((), σ)
DEPOSIT

Depositing gas into the user’s account removes the same from the gas tank.

fn [G] g(x1 : τ1, . . . , xn : τn)→ τ {e} ∈ Σ
σ0 ` e1 ⇓µ0

µ1
(v1, σ1) . . . σn−1 ` en ⇓µn−1

µn
(vn, σn)

σn ` e[v1, . . . , vn/x1, . . . , xn] ⇓µn

µ′ (v, σ′)

σ0 ` g(e1, . . . , en) ⇓µ0

µ′ (v, σ′)
CALL

A function call to g evaluates each argument, then evaluates the body e of g
with the value of each argument vi substituted for the argument variable xi.
The body e of g is looked up in the global signature Σ.

σ0 ` e ⇓µ0
µ1

(v, σ1)

σ0 ` let x = e ⇓µ0
µ1

((), {σ1, [x 7→ v]})
LET

The let expression evaluates e to v with resulting state σ1. It then assigns v
to x and continues execution. The return value of the let expression is (). A
similar rule holds for assignments. For if expressions, we consider two cases.

σ0 ` e ⇓µ0
µ1

(true, σ1) σ1 ` e1 ⇓µ1
µ2

(v, σ2)

σ0 ` if e then e1 else e2 ⇓µ0
µ2

(v, σ2)
TT

σ0 ` e ⇓µ0
µ1

(false, σ1) σ1 ` e2 ⇓µ1
µ2

(v, σ2)

σ0 ` if e then e1 else e2 ⇓µ0
µ2

(v, σ2)
FF

If e evaluates to true with final tank µ1, we evaluate e1 with initial tank µ1,
otherwise we evaluate e2 with tank µ1.
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σ0 ` e1 ⇓µ0
µ1

(v1, σ1) σ1 ` e2 ⇓µ1
µ2

(v2, σ2)

σ0 ` e1 ; e2 ⇓µ0
µ2

(v2, σ2)
COMPOSE

Expression composition is standard; σ1 and µ1 are the intermediate program
state and tank value, respectively.

σ ` e ⇓µ0
µ1

(v, σ′)

σ ` return e ⇓µ0
µ1

(v, σ′)
RET

Finally, return e evaluates e. The semantics rules for the remaining expressions
are analogous and skipped for brevity.

Theorem 1 (Soundness). Given a function fn [G] g(x1 : τ1, . . . , xn : τn) and
a program state σ, if σ ` g(v1, . . . , vn) ⇓µµ′ (v, σ′), then µ− µ′ = G.

Intuitively, the gas soundness theorem states that if a function call to g executes
under program state σ with initial tank µ and final tank µ′, the difference µ−µ′
is exactly equal to the gas bound G. Thus, the static gas analysis provides an
exact bound on the gas cost at runtime. The theorem is proved by induction on
the gas semantics judgment.

4 Implementation and Evaluation

We have implemented a prototype for GasBoX in OCaml (1866 lines of code).
The prototype contains a lexer and parser (321 lines), tick instrumentation en-
gine (188 lines), pretty printer (207 lines), an arithmetic solver (309 lines) and
gas analyzer (841 lines). The lexer and parser are implemented in Menhir [35],
an LR(1) parser generator for OCaml.

Tick Instrumentation. Once the program has been parsed and represented
as an abstract syntax tree, we insert the tick expressions following Section 3.1.
Since the tick amounts for pack, unpack and move depend on the size of the
type being operated, we precompute the size of all types in the program. The
instrumentation engine takes the sizes and the cost model (values of Ci’s) as input
and inserts the tick expressions. Programmers are free to specify their own cost
model and the analysis computes the bound w.r.t. specified cost model.

Gas Analysis. The gas analyzer iterates through the function declarations,
taking the initial gas bound and definition as input, and verifying whether the
bound is exact. To enhance usability, we have designed our gas analyzer with
a specific focus towards the quality of error messages. To this end, the parser
stores the extent (source code location) information in the abstract syntax tree.
If the gas tank runs below 0 at any program location, the program is pretty
printed back to the user with the source location highlighted.

4.1 Evaluation

We evaluate GasBoX by implementing standard smart contracts in our language,
and verifying their gas bounds. We highlight some interesting examples, partic-
ularly the ones that involve amortization to handle unbounded computation. All
our experiments use the cost model assigning Ci = 1 for all i.
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Paying Interest on Bank Accounts. We implement a standard bank ac-
count contract, which provides the services of signing up to create an account,
withdrawing and depositing money, and checking balance. The bank provides
an additional facility of paying interest to each account holder periodically. The
bank stores gas inside accounts to pay for the gas cost of paying interest.

resource GasBalance {

balance : Coin,

gas : Gas(65) // utilized to pay interest periodically

}

resource Bank {

nogas_accounts : Map<address, Coin>,

gas_accounts : Map<address, GasBalance>

}

fn [201] recharge(bank : &Bank)

fn [29] payInterest(bank : &Bank)

fn [34] signup(bank : &Bank, amount : Coin)

fn [122] balance(bank : &Bank) -> int

fn [148] deposit(bank : &Bank, amount : Coin)

fn [187] withdraw(bank : &Bank, amount : int) -> Coin

The contract defines the resource type GasBalance for accounts containing gas.
For our cost model, we need 65 gas units in each account for paying interest.
The Bank type contains two maps: gas accounts and nogas accounts for ac-
counts with and without gas respectively indexed by the address of the account
holder. The contract provides a recharge function that replenishes gas in the
sender’s account, effectively removing it from nogas accounts and adding it to
gas accounts. The payInterest function recursively removes an account from
gas accounts, consumes the gas stored in it to pay the interest, and adds it
to nogas accounts. Thus, it is the account holder’s responsibility to periodi-
cally replenish the gas in their account by issuing the recharge function; the
payInterest function only pays interest to accounts stored in gas accounts.
In addition, the contract provides the standard signup, balance, deposit and
withdraw functions to create an account, check balance, deposit and withdraw
money, respectively. The exact gas bound for each function is shown in square
brackets [·] along with the declaration.

The gas amortization provides the following benefits: (i) mitigating denial-
of-service attacks since the gas bound of payInterest no longer depends on
the number of bank accounts, (ii) equitable gas distribution since each account
holder is responsible for covering the gas cost of paying interest on their account.

Voting. We implement a simple voting contract that provides two functions: a
vote function to allow voters to cast their vote and a count function that counts
the votes and computes the winner. The contract amortizes the cost of counting
votes by storing gas inside the votes cast.

resource Votes {

num_votes : int,

gas : Gas(69) } // utilized to count votes when election ends
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fn [114] vote(elec : &Map<address, Votes>, candidate : address)

fn [55] count(elec : &Map<address, Votes>) -> address

The contract defines the resource type Votes used to store the votes for a par-
ticular candidate. The type contains two fields: num votes denotes the number
of votes for the candidate, and gas stores 69 gas units to pay for counting votes
later. The vote function takes two arguments: elec contains the map storing the
votes indexed by the address of the candidate, and candidate is the address of
the candidate the sender wants to vote for. The function increments the number
of votes in candidate’s name by 1. The count function takes elec as argument,
iterates over the map, and consumes the gas stored inside it to compute the
winner of the election. The exact gas bound for both functions is a constant and
described alongside the declaration. This contract also provides the advantages
of mitigating denial-of-service attacks and equitable gas distribution.

Other Contracts. We have implemented a total of 13 contracts in our language,
and verified their gas bound with GasBoX. We briefly describe each contract.

1. auction: unamortized version of auction providing support for users to pull
their bids out of the contract.

2. bank: näıve bank account with no functionality to pay interest.
3. ERC 20: technical standard for token implementation on Ethereum defining

a list of rules Ethereum tokens should follow [1].
4. escrow: contract to exchange bonds between two parties.
5. insurance: contract processing flight delay insurance claims after verifying

them with a trusted third party.
6. voting: election contract described earlier in this section.
7. wallet: standard contract allowing users to store money on the blockchain.
8. ethereumpot: standard lottery contract on Ethereum.
9. puzzle: contract rewarding users who solve a computational puzzle and

submit the solution.
10. amort. auction: amortized auction described in Section 2.
11. amort. bank: amortized bank account paying interest periodically as de-

scribed earlier in this section.
12. tether: stable coin contract allowing exchange of digital tokens pegged to

fiat currencies e.g. dollars, euros, etc. [2].
13. libra system: standard library contract with recursive functions for config-

uration of third-party validators

Contracts 1-7 have been borrowed from the Nomos project [17], ethereumpot
from the Gastap project [6], puzzle from the Oyente project [32], tether from the
Tether ERC 20 token contract [2] and libra system from the Libra blockchain [8]
and reimplemented in our language.

Table 1 compiles the results of evaluating GasBoX on the implemented con-
tracts. For each contract, we present the lines of code (LOC), number of resource
and struct definitions (Defs), number of function definitions (Funcs), whether the
functions are recursive and require amortization, and the gas analysis time in
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No. Contract Name LOC Defs Funcs Rec? Time (µs)

1 auction 52 4 3 No 60.08
2 bank 146 6 9 No 187.15
3 ERC 20 107 4 8 No 159.97
4 escrow 140 3 4 No 152.82
5 insurance 43 3 2 No 32.90
6 voting 82 3 5 Yes 116.10
7 wallet 74 4 4 No 128.03
8 ethereumpot 259 4 9 No 1532.07
9 puzzle 62 2 4 No 61.03

10 amort. auction 70 6 5 Yes 75.10
11 amort. bank 189 9 10 Yes 254.15
12 tether 382 9 20 No 2577.06
13 libra system 123 5 7 Yes 126.12

Total 1729 62 90 5462.58

Table 1. Evaluation of GasBoX. LOC = lines of code; Defs = #type definitions; Funcs
= #function definitions; Rec? = recursive functions in the contract?; Time (µs) = gas
analysis time in microseconds.

microseconds. The experiments were run on an Intel Core i5 1.6 GHz dual-core
processor with 16 GB DDR3L memory.

The evaluation demonstrates that the analysis is highly efficient with an
overhead of less than 1 millisecond for all but two contracts. This indicates that
GasBoX can be effectively utilized by miners to determine the exact gas bound.
Moreover, this overhead is offset by the elimination of dynamic gas metering from
the virtual machine. The error messages were precise and helpful in guiding us
provide the correct initial gas bounds. Since the Gas.deposit operations were
automatically inserted, we could remain oblivious of the exact cost model and
difference in gas costs of different branches.

5 Related Work

Traditionally, resource analysis is grounded in deriving and solving recurrence
relations, an approach introduced to analyze simple Lisp programs [41]. Since
then, it has been applied to both imperative [3, 21, 7] and functional programs [9,
15]. Amortization [39] was first integrated with resource analysis to automatically
analyze heap usage of first-order functional programs [29]. In the context of func-
tional languages, this technique has been applied to derive polynomial [28] and
multivariate bounds [26] for first-order and higher-order programs [27] as well as
programs with lazy evaluation [37]. For imperative programs, amortization has
been utilized to derive bounds based on lexicographic ranking functions [38] and
intervals [13], and has been extended to analyze object-oriented programs [30].
In contrast to the above works that focus on upper bounds, GasBoX verifies
exact bounds for programs and is applicable to smart contracts.

Security analysis and safety verification of smart contracts have been ex-
tensively studied in prior work [24, 40, 31, 10, 32]. MadMax [23] automatically
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detects gas-focused vulnerabilities with high confidence. The analysis is based
on a decompiler that extracts control and data flow information from EVM byte-
code, and a logic-based analysis specification that produces a high-level program
model. GASPER [14] is an analysis tool for EVM bytecode that relies on sym-
bolic execution and the Z3 SMT solver [34] to identify 7 gas-costly programming
patterns such as dead code, expensive and repeated computations in a loop, etc.
GasBoX differs from these works by verifying gas cost, instead of identifying
vulnerabilities related to gas.

Most closely related to GasBoX are languages and analysis tools for estimat-
ing upper gas bounds on contracts. Scilla [36] is an intermediate-level language
which disallows loops and general recursion and infers gas usage of a function
as a polynomial of the size of its parameters and contract fields in linear time.
In contrast, GasBoX allows recursion and bounds are proven sound w.r.t. a
gas semantics. Nomos is a programming language [17] based on resource-aware
session types [19, 18] that utilizes LP (linear programming) solving to automat-
ically derive upper gas bounds on implemented contracts. Gastap [6] infers gas
bounds on contracts implemented in Solidity [16] or EVM bytecode in terms
of size of the input parameters, contract state and gas consumption. The in-
ference procedure requires construction of control-flow graphs, decompilation
to a high-level representation, inferring size relations, generating and solving
gas equations. Gasol [5] is an extension to Gastap which offers a variety of
cost models to measure the cost of, for e.g., only storage opcodes, selected fam-
ily of gas-consumption opcodes, selected program line, etc. It further detects
under-optimized storage patterns and automatic optimization of such patterns.
Marescotti et. al. [33] employ symbolic model checking to modularly enumerate
all gas consumption paths based on unwinding loops to a limit. For each path, it
then computes the environment state to force that path and simulates the trans-
action under the state to obtain an exact worst-case gas bound. GasBoX differs
from these tools in its goal of providing miners with a trusted exact gas bound
which can be verified in linear time and eliminating dynamic gas metering.

6 Conclusion

This paper presented a Hoare-logic style gas-analysis framework for smart con-
tracts. This framework verifies exact gas bounds in linear-time and relies on
amortization to handle unbounded computation. The verified gas bounds are
proven sound w.r.t. a gas semantics. The framework has been implemented as a
tool called GasBoX in the context of a simplistic programming language. Gas-
BoX has been evaluated on several standard smart contracts demonstrating its
efficiency and expressivity.

In the future, we plan to use more sophisticated underlying logics such as
SMT solvers, carefully weighing the balance of expressivity and efficiency of the
gas-analysis framework. We would also like to handle copying of unbounded data
structures such as maps. We also plan to add automatic inference of gas bounds
by generating linear equations and solving them using efficient off-the-shelf LP
solvers. Finally, our approach is largely independent of the target language, and
we would like to extend our analysis tool to languages such as Solidity and Move.
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