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Abstract

Programmers would greatly benefit from a source-language model
of the running time of compiled code that goes beyond asymptotics.
However, it is a difficult problem to accurately model the running
time of compiled code at the source level. In this work, we present
an operational cost semantics to model the running time of OCaml
programs on a specific hardware architecture. Our hypothesis is that
the running time of a program can be modeled as a linear function
of the number of executions of some high level constructs that we
have carefully selected. We learn the coefficients of this linear function
by applying traditional machine learning algorithms to automatically
adapt the cost semantics to match the measured runtime of training
examples on a modern hardware platform. With this learned cost
semantics, we are able to model the running time of simple OCaml
programs within a reasonable margin of error. Our experiments show
that effects of low-level features like memory caches seem to amortize
while modeling garbage collection remains a major challenge.

1 Introduction

Modeling the running time of programs has been a long standing research
problem. Precise modeling of program running times can have several pos-
itive impacts, particularly in scheduling high load tasks in servers [5], ef-
ficient allocation of resources to programs [7], development-time feedback
for programmers [4], etc. This problem is often considered difficult due to
unpredictable cache and other memory effects.

In this work, we present a simple operational cost semantics to model
the running time of sequential programs within a reasonable margin of error.
We have identified several high-level constructs in the OCaml [3] language,
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and keep track of the number of executions of each construct in the seman-
tics using an OCaml interpreter that we developed ourselves. Our semantics
then models the running time of the program as a linear function of these
constructs. We learn the coefficients of this linear function by running a set
of carefully chosen, relatively simple programs. We measure the average run-
ning times of these programs and apply a linear regression algorithm [8] on
the linear function obtained by running the programs with different inputs
in our interpreter.

Once we learn the semantics, we run several test programs with our inter-
preter along with the derived cost semantics to get an approximate measure
of the actual running time. Note that our approach is dynamic, in the sense
that we run the program with our interpreter to get an approximation on
the running time. With this approach, we are able to model the running
time of moderately involved programs which don’t call the garbage collector
with an accuracy of about 80− 96%.

2 Example

Consider the following OCaml program, which computes the factorial.

l et rec f a c t n =
i f (n = 0) then 1 else n ∗ f a c t (n−1) ; ;

( f a c t 1 0 ) ; ;

In the above program, if we count the number of high level constructs, we
get

• Function Application: 11

• Integer Equality: 11

• Integer Subtraction: 10

• Integer Multiplication: 10

• Let Rec: 1

Our model follows the hypothesis that the running time of a program is the
sum of the running time of each construct multiplied by the number of times
that construct is executed. For the above program, the total running time
is

11 ∗ Tapp + 11 ∗ Teq + 10 ∗ Tsub + 10 ∗ Tmult + 1 ∗ Tletrec
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The main challenge of the problem is to define an appropriate set of these
constructs. Defining too few constructs may not be able to cover the gener-
ality of a program, and having too many constructs could cause overfitting
of the model, thus leading to poor results on the test programs. Our main
task in this work is to learn the values of these T ’s to get an approximation
of the program running time.

3 Cost Semantics

We have chosen 32 constructs which we briefly describe below.

• Function Application (normal, tail)

• Boolean Conditionals (=,&&, ||, not)

• Integer and Float Conditionals (=, <,≤, >,≥)

• Integer and Float Arithmetic (+,−, ∗, /,mod)

• Let and Let Rec

• Pattern Match

• Tuple and Tuple Match

During our experimental evaluation, we made the following observations.

• We do not need to model the cache or memory to make reasonably
good predictions. These effects get amortized in the coefficients we
learn for the above constructs.

• Normal function calls are treated differently from tail calls. A tail call
occurs when the return value of a callee is directly returned by the
caller. OCaml 4.02.1 statically detects tail calls, and converts them to
a jump instruction. Hence, we need a special construct to model tail
calls.

• OCaml 4.02.1 also inlines small functions. We currently don’t support
inlining, so we supress it in the compiler.
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4 Training

We used a set of 64 carefully chosen, relatively simple training programs to
learn the cost semantics. We have chosen a simple base file, which is a naive
recursive program as follows.

l et rec f ba s e n =
i f (n = 0) then 0 else f ba s e (n−1) ; ;

We then chose two programs, both specializing in one construct to model
the increase in running time over this base program. This is done in an
attempt to isolate each construct from the rest, helping the machine learner
to converge faster. For instance, the training program for integer addition
looks as follows.

l et rec fadd n =
i f (n = 0) then 0 else 1 + 1 + 1 + fadd (n−1) ; ;

Now, during analysis, the machine learning algorithm understands that the
increase in running time over the base program is caused primarily by integer
addition, hence counting the number of extra additions gives us a precise
estimate of the execution time for a single addition. Following this approach
with each construct, we get a set of 64 simple training programs.

We have developed an OCaml interpreter which counts the number of
executions of each of these constructs. We run each program with about 50
inputs from size 1000 to 50000, once with our interpreter to obtain the linear
function like the one described in the example. We then run the program on
1.6 GHz Intel i5-5250U Dual Core processor with 16 GB RAM to measure its
running time, i.e. the value that the linear function should have. Since the
running times vary depending on OS scheduling, memory available, system
calls, etc. we run each program 1000 times for each input to measure the
average running time. We then run a linear regression algorithm to obtain
the coefficients of this linear function, thus completing the training of the
cost semantics.

5 Results

Once we learn the cost semantics, we use simple but realistic programs for
testing purposes. We run these test programs with our interpreter to obtain
the linear function from our semantics. Now, plugging in the coefficients, we
get an approximation of the program running time. We used about 40 test
programs to measure the accuracy of our model. We ran the programs with
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varying input sizes in intervals of 1000, starting from 1000, but restricting the
maximum size carefully to ensure that the GC is not called. As in training,
we run each program 1000 times for each input to get the average running
time. For each input, we compute the modeled running time and measure
the average running time. The difference gives the error for one input, which
is then averaged out over all input sizes. With the above configurations, we
are able to model the actual running time of these test programs with an
accuracy of about 80 − 96%. For instance, for our factorial example, the
error was averaged out to +5.7%. We list several other examples below.

• append (appends one list to another) - Error = +16.1%

• drop (drops the last element of list) - Error = +4.9%

• echelon (converts matrix to echelon form) - Error = −9.1%

• isort (insertion sort of list) - Error = −23.5%

• compress (compression algorithm on list) - Error = +4.2%

• equal (checks two lists for equality) - Error = +13.5%

• map (maps elements of list by an arbitrary function) - Error = −7.3%

• rotate (rotates the list by a constant) - Error = −11.6%

A positive error means our estimated time is higher than the actual run-
ning time and vice-versa. Hence, we are able to learn a cost semantics which
models the running time of programs within a reasonable margin of error.
One of the interesting contributions is that we are able to make predictions
about complex OCaml programs, with a cost semantics learned from rela-
tively simple training programs. Another interesting aspect is that most of
the memory and cache effects get amortized in the learned coefficients, and
we don’t need additional modeling for these effects.

6 The Garbage Collector

With smaller inputs to the program, there are no calls to the garbage collec-
tor, and hence, the program running time can be effectively modeled using a
linear function. With larger inputs, the garbage collector runs causing sud-
den significant jumps in the running time. Hence, we cannot model these
running times using linear functions. If we just naively extend our model
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with larger inputs, the margin of error increases significantly. We present
some of our evaluation below.

• append - Error = −27.0%

• drop - Error = −26.2%

• isort - Error = +142.4%

• factorial - Error = +22.4%

Note that the functions append and drop are not written in a tail recursive
manner, thus they call the GC several times during their execution. On
the other hand, isort and factorial are tail recursive, and hence, make no
calls to the GC. Hence, for append and drop, the actual running time starts
out to be smaller than the modeled time (since we learned larger values for
coefficients) but eventually goes above the modeled time after several jumps
in running time. For isort and factorial, since there are no GC calls, the
estimated time is always higher than the actual running time.

It is generally a difficult problem, to be able to model the input sizes
where calls to the GC are made. Also, the number of GC calls varies signif-
icantly, in the training and testing programs, thus causing an even higher
margin of error. Intuitively, we believe we can model the number of heap
allocations done by the program using a linear function over these constructs
but modeling the number of live cells requires more work and is currently
subject of our research.

7 Conclusion and Future Work

We have developed an operational cost semantics to predict the running time
of programs. Using existing techniques, we can even statically compute the
symbolic frequency of each construct, hence, computing the actual symbolic
running time of program statically. Obviously, the cost semantics need to
be learned for a specific hardware, and in our experience, memory and cache
effects get amortized in our cost semantics, hence, we don’t have to add these
features to our training model. We also believe that this approach can easily
be extended to other programming languages like SML-NJ, and imperative
languages like C, C++, Java since the connection between the high-level
constructs and assembly code is essentially the same in all languages.

One of the challenges that remains to be addressed is the garbage col-
lector, because it causes significant changes to running times if the program
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is memory intensive. One approach is to observe that most of the memory
cells are live for a very short duration, while only a few cells are live for a
longer period of time [6, 10, 2]. If we consider the distribution of lifetime of
memory cells, it is, in principle, similar to distributions with a decreasing
failure rate (DFR) property [9, 1], where the probability of failure (equiv-
alent of not being live) decreases with increasing lifetime. We believe we
can model the memory behavior of programs by appropriately tuning the
parameters of these DFR distributions. We are currently pursuing this idea
to model the garbage collector.
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