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Abstract. While there exist several successful techniques for support-
ing programmers in deriving static resource bounds for sequential code,
analyzing the resource usage of message-passing concurrent processes
poses additional challenges. To meet these challenges, this article presents
an analysis for statically deriving worst-case bounds on the total work
performed by message-passing processes. To decompose interacting pro-
cesses into components that can be analyzed in isolation, the analysis is
based on novel resource-aware session types, which describe protocols and
resource contracts for inter-process communication. A key innovation is
that both messages and processes carry potential to share and amortize
cost while communicating. To symbolically express resource usage in a set-
ting without static data structures and intrinsic sizes, resource contracts
describe bounds that are functions of interactions between processes.
Resource-aware session types combine standard binary session types and
type-based amortized resource analysis in a linear type system. This type
system is formulated for a core session-type calculus of the language
SILL and proved sound with respect to a multiset-based operational cost
semantics that tracks the total number of messages that are exchanged in
a system. The effectiveness of the analysis is demonstrated by analyzing
standard examples from amortized analysis and the literature on session
types and by a comparative performance analysis of different concurrent
programs implementing the same interface.

1 Introduction

In the past years, there has been increasing interest in supporting developers
to statically reason about the resource usage of their code. There are differ-
ent approaches to the problem that are based on type systems [30,37,18,15,27],
abstract interpretation [25,5,16], recurrence relations [20,4,36], termination anal-
ysis [46,11,8,31], and other techniques [14,19]. Among the applications of this re-
search we find the prevention of side channels that leak secret information [38,6,35],
identification of complexity bugs [39], support of scheduling decisions [1], and
help in profiling [26].

While there has been great progress in analyzing sequential code, relatively
little research has been done on analyzing the resource consumption of concurrent
and distributed programs [22,3,2]. The lack of analysis tools is in sharp contrast
to the need of programming language support in this area: concurrent and
distributed programs programs are both increasingly pervasive and particularly
difficult to analyze. For shared memory concurrency, we need to precisely predict
scheduling to account for synchronization cost. Similarly, the interactive nature
of message-passing systems makes it difficult to decompose the system into
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components that can be analyzed in isolation. After all, the resource usage of
each component crucially depends on its interactions with the world.

In this paper, we study the foundations of worst-case resource analysis for
message-passing processes. A key idea of our approach is to rely on resource-
aware session types to describe structure, protocols, and resource bounds for
inter-process communication that we can use to perform a compositional and
precise amortized analysis. Session types [32,33,12,13,45] prescribe bidirectional
communication protocols for message-passing processes. Binary session types
govern the interaction of two processes along a single channel, prescribing com-
plementary send and receive actions for the processes at the two endpoints of
a channel. We use such protocols as the basis of resource usage contracts that
not only specify the type but also the potential of a message that is sent along a
channel. The potential (in the sense of classic amortized analysis [43]) may be
spent sending other messages as part of the network of interacting processes, or
maintained locally for future interactions. Resource analysis is static, using the
type system, and the runtime behavior of programs is not affected.

We focus on bounds on the total work that is performed by a system, counting
the number of messages that are exchanged. While this alone does not account yet
for the concurrent nature of message-passing programs it constitutes a significant
and necessary first step. The bounds we derive are also useful in their own right.
For example, the information can be used in scheduling decisions, to bound the
number of messages that are sent along a specific channel, or to statically decide
whether we should spawn a new thread of control or execute sequentially when
possible. Additionally, bounds on the work of a process can also serve as input
to a Brent-style theorem [10] that relates the complexity of the execution of a
program on a k-processor machine to the program’s work (the focus of this paper)
and span (the resource usage if we assume an unlimited number of processors).
We are working on a companion paper for deriving bounds on the span, which is
both conceptually and technically quite different.

Our analysis is based on a linear type system that combines standard binary
session types as available in the SILL language [44,40], and type-based amortized
resource analysis [30,27]. Both techniques are based on linear or affine type
systems, making their combination natural. Each session type constructor is
decorated with a natural number that declares a potential that must be trans-
ferred (conceptually!) along with the corresponding message. Since the interface
to a process is characterized entirely by the resource-aware session types of the
channels it can interact with, this design provides for a compositional resource
specification. For closed programs (which evolve into a closed network of inter-
acting processes) the bound then becomes a single constant. In addition to the
natural compositionality of type systems we also preserve the good support for
deriving resource annotations via LP solving which is a key feature of type-based
amortized analysis. While we have not yet implemented a type inference algo-
rithm, we designed the system with support for type inference in mind. Moreover,
resource-aware session types integrate well with type-based amortized analysis
for functional programs because they are based on compatible logical foundations
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(intuitionistic linear logic and intuitionistic logic, respectively), as exemplified in
the design of SILL [44,40] that combines them monadically.

A conceptual challenge of the work is to express symbolic bounds in a setting
without static data structures and intrinsic sizes. Our innovation is that resource-
aware session types describe bounds that are functions of interactions (i.e.,
messages sent) along a channel. A major technical challenge is to account for
the global number of messages sent with local derivation rules: Operationally,
local message counts are forwarded to a parent process when a sub-process
terminates. As a result, local message counts are incremented by sub-processes in
a rather non-local fashion. Our solution is that both messages and processes carry
potential to share and amortize the cost of a terminating sub-process proactively
as a side-effect of the communication.

Our main contributions are as follows. We present the first session type system
for deriving parametric bounds on the resource usage of message-passing processes.
We prove the nontrivial soundness of type system with respect to an operational
cost semantics that tracks the total number of messages exchanged in a network
of communicating process. We demonstrate the effectiveness of the technique by
deriving tight bounds for some standard examples from amortized analysis and
the literature on session types. We also show how resource-aware session types
can be used to specify and compare the performance characteristics of different
implementations of the same protocol. The analysis is currently manual, with
automation left for future work, as is a companion type system for deriving the
span of concurrent computations in the same language.

2 Overview

In this section, we motivate and informally introduce our resource-aware session
types and show how they can be used to analyze the resource usage of message-
passing processes. We start with building some intuition about session types.

Session Types. Session types have been introduced by Honda [32] to describe the
structure of communication just like standard data types describe the structure
of data. We follow the approach and syntax of SILL [44,40] which is based
on a Curry-Howard isomorphism between intuitionistic linear logic and session
types, extended by recursively defined types and processes. In the intuitionistic
approach, every channel has a provider and a client. We view the session type as
describing the communication from the provider’s point of view, with the client
having to perform matching actions.

As a first simple example, we consider natural numbers in binary form. A
process providing a natural number sends a stream of bits starting with the least
significant bit. These bits are represented by messages zero and one, eventually
terminated by $. Because the provider chooses which messages to send, we call
this an internal choice, which is written as

bits = ⊕{zero : bits, one : bits, $ : 1} .
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Here, ⊕{l1 : A1, . . . , ln : An} is an n-ary, labelled generalization of A⊕B of linear
logic, and 1 is the multiplicative unit of linear logic. Operationally, 1 means the
provider has to send an end message, closing the channel and terminating the
communication session. For example, the number 6 = (110)2 would be represented
by the sequence of messages zero, one, one, $, end.

The session type does not prescribe any particular implementation only the
interface to a process. In this example, a client of a channel c : bits has to branch
on whether it receives zero, one, or $. Note that as we proceed in a session, the
type of a channel must change according to the protocol. For example, if a client
receives the message $ along c : bits then c must afterwards have type 1. The
next message along c must be end and we have to wait for that after receiving $
so the session is properly closed.

As a second example we describe the interface to a counter. As a client, we
can repeatedly send inc messages to a counter, until we want to read its value
and send val. At that point the counter will send a stream of bits representing its
value as prescribed by the type bits. From the provider’s point of view, a counter
presents an external choice, since the client chooses between inc or val.

ctr = N{inc : ctr, val : bits}

The type former N{l1 : A1, . . . , ln : An} is an n-ary labelled generalization of ANB
of linear logic. Operationally, the provider must branch based on which of the
labels li it receives. After receiving lk along a channel c : N{l1 : A1, . . . , ln : An},
communication along c proceeds at type Ak.

Such type formers can be arbitrarily nested to allow more complex bidirectional
protocols. Consider for example the store protocol, which is defined by the
following type.

storeA = N{ ins : A( storeA,
del : ⊕{none : 1, some : A⊗ storeA}}

A provider of a channel c of type storeA either accepts an ins or del message. If
it receives the ins message, the type of c is now A ( storeA, the implication
of linear logic. It means the provider now receives a channel of type A along
c and then behaves again like a store. If it receives a del message, it responds
with either the message none or the message some (an internal choice, ⊕). If it
sends none it next must send an end message and terminate. If it sends some, the
type of c is now A⊗ storeA. This corresponds to the multiplicative conjunction
of linear logic and, operationally, requires the provider to now send a channel of
type A and then behave again as storeA. Linearity of the type system guarantees
that the channels retrieved from a store of this type are some permutation of the
channels inserted. It may, for example, behave as a stack or a queue (as explained
in Section 7).

Modeling a binary counter. We will now describe an implementation of a counter
and use our resource-aware session types to analyze its resource usage. Like in
the rest of the paper, the resource we are interested in is the total number of
messages sent along all channels in the system.
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e b1 b0 b1
inc

s1 s2 s3 s4

e b1 b0 b0
s1 s2 s3 s4

e b1 b1 b0
s1 s2 s3 s4

inc

Fig. 1. A binary counter system representing 5 = (101)2 with the messages triggered
when an inc message is received along s4.

A well-known example of amortized analysis counts the number of bits that
must be flipped to increment a counter. It turns out the amortized cost per
increment is 2, so that n increments require at most 2n bits to be flipped. We
can see this by introducing a potential of 1 for every bit that is 1 and using the
potential to pay for the expensive case in which and increment triggers many
flips. When the lowest bit is zero, we flip it to one (costing 1) and also store a
remaining potential of 1 with this bit. When the lowest bit is one we use the
stored potential to flip the bit back to zero (with no stored potential) and use
the remaining potential of 2 for incrementing the higher bits.

We model a binary counter as a chain of processes where each process
represents a single bit (process b0 or b1) with a final process e at the end. Each of
the processes in the chain provides a channel of the ctr type, and each (except the
last) also uses a channel of this type representing the higher bits. For example,
in the first chain in Figure 1, the process b0 offers along channel s3 and uses
channel s2. In our notation, we would write this as

· ` e :: (s1 : ctr)
s1 : ctr ` b1 :: (s2 : ctr)
s2 : ctr ` b0 :: (s3 : ctr)
s3 : ctr ` b1 :: (s4 : ctr)

We see that, logically, parallel composition with a private shared channel corre-
sponds to an application of the cut rule. We do not show here the definitions
of e, b0, and b1, which can be found in Figure 3. The only channel visible to
an outside client (not shown) is s4. Figure 1 shows the messages triggered if an
increment message is received along s4.

Expressing resource bounds. Our basic approach is that messages carry potential
and processes store potential. This means the sender has to pay not just 1 unit
for sending the message, but whatever additional units to amortize future costs.
In the amortized analysis of the counter each bit flip corresponds exactly to an
inc message, because that is what triggers a bit to be flipped. Our cost model
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focuses on messages as prescribed by the session type and does not count other
operations, such as spawning a new process or terminating a process. This choice
is not essential to our approach, but convenient here.

To capture the informal analysis we need to express in the type that we have
to send 1 unit of potential with the label inc. We do this using a superscript
indicating the required potential with the label, postponing for now the discussion
of val.

ctr = N{inc1 : ctr, val? : bits} .

When we assign types to the processes, we now use these more expressive types.
We also indicate the potential stored in a particular process as a superscript on
the turnstile.

t : ctr `0 b0 :: (s : ctr) (1)
t : ctr `1 b1 :: (s : ctr) (2)

· `0 e :: (s : ctr) (3)

With our formal typing rules (see Section 5) we can verify these typing constraints,
using the definitions of b0, b1, and e. Informally, we can reason as follows:

b0: When b0 receives inc it receives 1 unit of potential. It continues as b1 (which
requires no communication) which stores this 1 unit (as prescribed from the
type of b1 in Equation 2).

b1: When b1 receives inc it receives 1 unit of potential which, when combined
with the stored one, makes 2 units. It needs to send an inc messages which
consumes these 2 units (1 to send the message, and 1 to send along a potential
of 1 as prescribed in the type). It has no remaining potential, which is sufficient
because it transitions to b0 which stores no potential (inferred from the type
of b0 in Equation 1).

e: When e receives inc it receives 1 unit of potential. It spawns a new process e
and continues as b1. Spawning a process is free, and e requires no potential,
so it can store the potential it received with b1 as required.

How do we handle the type annotation val? : bits of the label val? Recall that
bits = ⊕{zero : bits, one : bits, $ : 1}. In our implementation, upon receiving a
val message, a b0 or b1 process will first respond with zero or one. It then sends
val along the channel it uses (representing the higher bits of the number) and
terminates by forwarding further communication to the higher bits in the chain.
The e process will just send $ and end, indicating the empty stream of bits.

We know we will have enough potential to carry out the required send
operations if each process (b0, b1, and e) carries an additional 2 units of potential.
We could impart these with the inc and val messages by sending 2 more units
with inc and 2 units with val. That is, the following type is correct:

bits = ⊕{zero0 : bits, one0 : bits, $0 : 10}
ctr = N{inc3 : ctr, val2 : bits}
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e b1 b0 b1
val

s1 s2 s3 s4

e b1 b0 b1
s1 s2 s3 s4

e b1 b0
s1 s2 s3 s4

val

one

=

Fig. 2. A binary counter system representing 5 = (101)2 with the messages triggered
when a val message is received along s4.

Here, the superscript 0 in the type of bits indicates that the corresponding
messages carry no potential.

However, this type is a gross over-approximation. The processes of a counter of
value n, would carry 2n additional units of potential while only 2 dlog(n+ 1)e+ 2
are needed. To obtain this more precise bound, we need families of session types.

A more precise analysis. A more precise session type for this example requires
that in the type we can refer either to the number of bits in the representation
of a number or its value. This form of internal measure is needed only for type-
checking purposes, not at runtime. It is also not intrinsically tied to a property of
a representation, the way the length of a list in a functional language is tied to its
memory requirements. We indicate these measures using square brackets, so that
ctr[n] is a family of types, and ctr[0], for example, is a counter with value 0. Such
type refinements have been considered in the literature on session types (see, for
example, [24]) with respect to type-checking and inference. Here, we treat it as a
meta-level notation to denote families of types. Following the reasoning above,
we obtain the following type:

bits = ⊕{zero0 : bits, one0 : bits, $0 : 10}
ctr[n] = N{inc1 : ctr[n+ 1], val2dlog(n+1)e+2 : bits}

To check the types of our implementation, we need to revisit and refine the typing
of the b0, b1 and e processes.

t : ctr[n] `0 b0 :: (s : ctr[2n])
t : ctr[n] `1 b1 :: (s : ctr[2n+ 1])

`0 e :: (s : ctr[0])

Our type system verifies these types against the implementation of b0, b1, and
e (see Section 3). The typing rules reduce the well-typedness of these processes
to arithmetic inequalities which we can solve by hand, for example, using that
log(2n) = log(n) + 1. The intrinsic measure n and the particular potential
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annotations are not automatically derived but come from our insight about the
nature of the algorithms and programs.

Before introducing the formalism in which the programs are expressed, to-
gether with the typing rules that let us perform rigorous amortized analysis of the
code (as expressed in the soundness theorem in Section 6), we again emphasize
the compositional nature of the way resource bounds are expressed in the types
themselves and in the typing judgments for process expressions. Of course, they
reveal some intensional property of the implementations, namely a bound on
its cost, so different implementations of the same plain session type may have
different resource annotations.

The typing derivation provides a proof certificate on the resource bound for a
process. For closed processes, usually typed as

· `p Q :: (c : 1)

the number p provides a worst case bound for the number of messages sent during
the computation of Q, which always ends with the process sending end along c.

3 Resource-Aware SILL

We briefly introduce the linear, process-only fragment of SILL [44,40], which
integrates functional and concurrent computation. A program in SILL is a
collection of processes exchanging messages through channels. A new process is
spawned by invoking a process definition, which also creates a fresh channel that
is provided by the new process. The process that invokes a process definition
becomes the client of the new process, communicating with it according to the
session types of the channel. The exacting nature of linear typing provides strong
guarantees, including session fidelity (a form of preservation) and absence of
deadlocks (a form of progress).

We present an overview of the session types in SILL with a brief description
of their communication protocol. They follow the type grammar below.

S, T ::= V | ⊕{li : S} | N{li : S} | S ( T | S ⊗ T | 1

V denotes a type variable here. Types may be defined mutually recursively in a
global signature, where type definitions are constrained to be contractive [21].
This allows us to treat them equi-recursively, which means we can silently replace
a type variable by its definition for the purpose of type-checking.

Internal choice S⊕T and external choice SNT have been generalized to n-ary
labeled sums ⊕{li : Si}i∈I and N{li : Si}i∈I (for some index set I) respectively.
As a provider of internal choice ⊕{li : Si}i∈I , a process can send one of the labels
li to its client. As a dual, a provider of external choice N{li : Si}i∈I receives one of
the labels li which is sent by its client. We require external and internal choice to
comprise at least one label, otherwise there would exist a linear channel without
observable communication along it, which is computationally uninteresting and
would complicate our proofs. The connectives ⊗ and( are used to send channels
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Type Contin- Process Term Contin- Description
(current) uation (current) uation
c : ⊕{lqi

i : Si} c : Sk c.lk ; P P provider sends label lk along
c with potential qk

case c (li ⇒ Qi)i∈I Qk client receives label lk along
c with potential qk

c : N{lqi
i : Si} c : Sk case c (li ⇒ Pi)i∈I Pk provider receives label lk

along c with potential qk

c.lk ; Q Q client sends label lk along c
with potential qk

c : S
q

⊗ T c : T send c w ; P P provider sends channel w : S
along c with potential q

y ← recv c ; Qy [w/y]Qy client receives channel w : S
along c with potential q

c : S
q
( T c : T y ← recv c ; Py [w/y]Py provider receives channel w :

S along c with potential q
send c w ; Q Q client sends channel w : S

along c with potential q
c : 1q − close c − provider sends end along c

with potential q
wait c ; Q Q client receives end along c

with potential q
Table 1. Linear resource-aware session types

via other channels. A provider of S ⊗ T sends a channel of type S to its client
and then behaves as a provider of T . A provider of S ( T receives a channel of
type S from its client. The type of the provider and client changes consistently,
and the process terms of a provider and client come in matching pairs.

Formally, the syntax of process expressions of Resource-Aware SILL is same
as in SILL.

P,Q ::= x← X ← y ; Q | x← y | x.lk ; P | case x (li ⇒ P )
| send x w | y ← recv x ; P | close x | wait x ; P

The first term x ← X ← y ; Q invokes a process definition X to spawn a new
process P , which uses the channels in y as a client and provides service along
a fresh channel substituted for x in Q. A forwarding process x ← y (which
provides channel x) identifies channels x and y and terminates. The effect is that
clients of x will afterwards communicate along y. We saw an example of its use in
Figure 2. The rest of the program constructs concern communication between two
processes and are guided by their corresponding session type. Table 1 provides
an overview of session types, associated process terms, and their operational
description (ignore the portions in red). For each connective in Table 1, the
first line provides the perspective of the provider, while the second line provides
that of the client. The first two columns present the type of the channel before
(current) and after (continuation) the interaction. Similarly, the next two
columns present the process terms before and after the interaction. Finally, the
last column presents the operational description.
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1: (t : ctr[n]) `0 b0 :: (s : ctr[2n])
2: s← b0← t =
3: case s (inc⇒ s← b1← t % (t : ctr[n]) `1 s : ctr[2n+ 1]
4: | val⇒ s.zero ; % (t : ctr[n]) `2dlog(2n+1)e+2−1 s : bits
5: t.val ; % (t : bits) `2dlog(2n+1)e+1−2dlog(n+1)e−3 s : bits
6: s← t) % (t : bits) `0 s : bits

7: (t : ctr[n]) `1 b1 :: (s : ctr[2n+ 1])
8: s← b1← t =
9: case s (inc⇒ t.inc ; % (t : ctr[n+ 1]) `0 s : ctr[2n+ 2]
10: s← b0← t %
11: | val⇒ s.one ; % (t : ctr[n]) `2dlog(2n+2)e+2−1 s : bits
12: t.val ; % (t : bits) `2dlog(2n+2)e+1−2dlog(n+1)e−3 s : bits
13: s← t) % (t : bits) `0 s : bits

14: · `0 e :: (s : ctr[0])
15: s← e =
16: case s (inc⇒ t← e ; % (t : ctr[0]) `1 (s : ctr[1])
17: s← b1← t

18: | val⇒ s.e ; % · `2dlog(0+1)e+2−1 s : 10

19: close s)

Fig. 3. Implementations for the b0, b1 and e processes with their type derivations
demonstrating the binary counter.

We conclude by illustrating the syntax, types and semantics of SILL using a
simple example. Recall the counter protocol (ignoring the resource annotations
in red):

bits = ⊕{zero0 : bits, one0 : bits, $0 : 10}
ctr[n] = N{inc1 : ctr[n+ 1], val2dlog(n+1)e+2 : bits}

The type prescribes that a process providing service along a channel of type ctr
will either receive an inc or a val label. If it receives an inc label, the channel will
recurse back to the ctr type. If it receives a val label, it will continue by providing
bits, sending a sequence of labels zero and one closed out with $ and end.

We present implementations of the b0, b1 and e processes respectively that
were analyzed in Section 2 in Figure 3. In the comments we show the types of
the channels after the interaction on each line (again ignoring the annotations
in red). Since the b0 process provides and external choice along s, b0 needs to
branch based on the label received (line 3). If it receives the label inc, the type
of the channel updates to ctr, as indicated on the typing in the comment. At
this point, we can spawn the b1 process since the type on line 3 matches with
the type of the b1 process (line 7). If instead b0 receives the val label along s, it
continues at type bits. It sends zero (since the lowest bit is indeed zero). It then
requests the value of the higher bits by sending val along channel t. Now both s
and t have type bits (indicated in the typing on line 4) and b0 can terminate by
forwarding further communication along s to t.
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The b1 process operates similarly, taking care to handle the carry upon
increment by sending an inc label along t. The e process spawns a new e process
and continues as b1 upon receiving the label inc and closes the channel after
sending $ when receiving val.

4 Cost Semantics

We present an operational cost semantics for Resource-Aware SILL that tracks
the total work performed by a system. Like previous work, our semantics is a
substructural operational semantics [41] based on multiset rewriting [17] and
asynchronous communication [40]. It can be seen as a combination of an asyn-
chronous version of a recently introduced synchronous session-type semantics [9]
with the cost tracking semantics of Concurrent C0 [42]. The technical advantage
of our semantics is that it avoids the complex operational artifacts of Silva et
al. [42] such as message buffers: processes and messages can be typed with exactly
the same typing rules, changing only the cost metric.

We will only count communication costs, ignoring internal. To this end, we
introduce 3 costs, M label, M channel and M close, for labels, channels, and close
messages, respectively. A concrete semantics can be obtained by setting appro-
priate values for each of those metrics. For instance, setting M label = M channel =
M close = 1 will lead to counting the total number of messages exchanged.

Our cost semantics is asynchronous, that is, processes can continue their
evaluation without wait after sending a message. In order to guarantee session
fidelity the semantics must ensure that messages are received in the order they
are sent. Intuitively, we can think of channels as FIFO message buffers, although
we will formally define them differently. Synchronous communication can be
implemented in our language in a type-safe, logically motivated manner exploiting
adjoint shift operators (see [40]).

A collection of communicating process is called a configuration. A configuration
is formally modelled as a multiset of propositions proc(c, w, P ) and msg(c, w,M).
The predicate proc(c, w, P ) describes a process executing process expression P
and providing channel c. The predicate msg(c, w,M) describes the message M
on channel c. In order to guarantee that messages are received in they order
they are sent, only a single message can be on a given channel c. In order for
computation to remain truly asynchronous, every send operation (except for close)
on a channel c creates not only a fresh message, but also a fresh continuation
channel c′ for the next message. This continuation channel is encoded within the
message via a forwarding operation. Remarkably, this simple device allows us
to assign session types to messages just as if they were processes! Since M need
only encode a message, it has a restricted grammar.

M ::= c← c′ | c.lk ; c← c′ | c.lk ; c′ ← c
| send c e ; c← c′ | send c e ; c′ ← c | close c

The work is tracked by the local counter w in the proc(c, w, P ) and msg(c, w,M)
propositions. For a process P , w maintains the total work performed by P so far.
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Σ(X ) = x← X ← y = Px,y proc(d,w, x← X ← e ; Qx) (c fresh)
proc(c, 0, [c/x, e/y]Px,y) proc(d,w, [c/x]Qx)

spawnc

proc(c, w, c← d)
msg(c, w, c← d) fwds

proc(d,w, P ) msg(c, w′, c← d)
proc(c, w + w′, [c/d]P ) fwd+

r

proc(e, w, Pc) msg(c, w′, c← d)
proc(e, w + w′, [d/c]Pc) fwd−r

proc(c, w, c.lk ; P ) (c′ fresh)
proc(c′, w +M label, [c′/c]P ) msg(c, 0, c.lk ; c← c′)

⊕Cs

msg(c, w, c.lk ; c← c′) proc(d,w′, case c (li ⇒ Qi)i∈I)
proc(d,w + w′, [c′/c]Qk)

⊕Cr

proc(c, w, send c e ; P ) (c′ fresh)
proc(c′, w +M channel, [c′/c]P ) msg(c, 0, send c e ; c← c′)

⊗Cs

msg(c, w, send c e ; c← c′) proc(d,w′, x← recv c ; Qx)
proc(d,w + w′, [c′/c]Qe)

⊗Cr

proc(d,w, send c e ; P ) (c′ fresh)
proc(d,w +M channel, [c′/c]P ) msg(c′, 0, send c e ; c′ ← c)

( Cs

msg(c′, w, send c e ; c′ ← c) proc(c, w′, x← recv c ; Qx)
proc(c, w + w′, [c′/c]Qe)

( Cr

proc(c, w, close c)
msg(c, w +M close, close c)

1Cs

msg(c, w, close c) proc(d,w′,wait c ; Q)
proc(d,w + w′, Q)

1Cr

Fig. 4. Cost semantics tracking total work for programs in SILL

When a process sends a message (i.e. creates a new msg predicate), we increment
its counter w by the cost for sending. When a processes terminates we remove
the respective predicate from the configuration but need to preserve the work
done by the process. A process can terminate either by sending a close message,
or by forwarding. In either case, we can conveniently preserve the process’ work
in the msg predicate to pass it on to the client process.

The semantics is defined by a set of rules rewriting the configuration that
consume the proposition in the premise of the rule and produce the proposi-
tions in the conclusion (rules should be read top-down!). A step consists of
non-deterministic application of a rule whose premises matches a part of the
configuration. Consider for instance the rule Cs that describes a client that sends
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label lk along channel c.
proc(d,w, c.lk ; P ) (c′ fresh)

proc(d,w +M label, [c′/c]P ) msg(c′, 0, c.lk ; c′ ← c)
NCs

The rule can be applied to every proposition of the form proc(d,w, c.lk ; P ). When
applying the rule, we generate a fresh channel continuation channel c′ and replace
the premise by propositions proc(d,w+M label, [c′/c]P ) and msg(c′, 0, c.lk ; c′ ← c).
The message predicate contains the process c.lk ; c′ ← c which will eventually
deliver the message to the provider along c and will continue communication
along c′ (which is achieved by c′ ← c). The work of the process is incremented
by M label to account for the sent message, while the work of the message is 0.

Conversely, the rule NCr defines how a provider receives a label lk along c.
msg(c′, w, c.lk ; c′ ← c) proc(c, w′, case c (li ⇒ Qi)i∈I)

proc(c, w + w′, [c′/c]Qk) NCr

The rule replaces the msg and proc propositions in the configuration that match
the premises, with the single proc proposition in the conclusion. Since the provider
receives the label lk, it continues as Qk. However, we replace c with c′ in Qk

since the forwarding c′ ← c in the message process tells us that the next message
will arrive on channel c′. If there is any work w encoded in the message, it is
transferred to the recipient. This is somewhat more general than necessary for
this particular rule, since in the current system the work w in a label-sending
message c.lk will always be 0.

The rest of the rules of cost semantics are given in Figure 4. The rule spawnc

describes the creation of a new channel c along with a spawning new process
X implemented by Pc. This implementation is looked up in a signature for
the semantics Σ (maps process names to the implementation code). The new
process is spawned with 0 work (as it has not sent any messages so far), while Qc

continues with the same amount of work. In the rule fwds a forwarding process
creates a forwarding message and terminates. The work carried by this special
message is the same as the work done by the process, now defunct. A forwarding
message form does not carry any real information (except for the work w!); it
just serves to identify the two channels c and d. In an implementation this could
be as simple as concatenating two message buffers. We therefore do not count
forwarding messages when computing the work. Another reason forward messages
are special is that unlike all other forms of messages, they are neither prescribed
by nor manifest in a channel’s type. In our formal rules, the forwarding message
can be absorbed either into the client (fwd+

r ) or provider (fwd−r ), in both cases
preserving the total amount of work.

The rules of the cost semantics are successively applied to a configuration
until the configuration becomes empty or the configuration is stuck and none
of the rules can be applied. At any point in this local stepping, the total work
performed by the system can be obtained by summing the local counters w for
each predicate in the configuration. We will prove in Section 6 that this total
work can be upper bounded by the initial potential of the configuration that is
typed in our resource-aware type system.
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5 Type System

We now present the resource-aware type system of our language which extends
the linear-only fragment of SILL [44,40] with resource annotations. It is in turn
based on intuitionistic linear logic [23] with sequents of the form

A1, A2, . . . , An ` A

where A1, . . . An are the linear antecedents and A is the succedent. Under the
Curry-Howard isomorphism for intuitionistic linear logic, propositions are related
to session types, proofs to processes, and cut reduction in proofs to communication.
Appealing to this correspondence, we assign a process term P to the above
judgment and label each hypothesis as well as the conclusion with a channel.

(x1 : A1), (x2 : A2), . . . , (xn : An) ` P :: (x : A)

The resulting judgment states that process P provides a service of session type
A along channel x, using the services of session types A1, . . . , An provided along
channels x1, . . . , xn respectively. The assignment of a channel to the conclusion
is convenient because, unlike functions, processes do not evaluate to a value but
continue to communicate along their providing channel once they have been
created. For the judgment to be well-formed, all the channel names have to
be distinct. Whether a session type is used or provided is determined by its
positioning to the left or right, respectively, of the turnstile.

Resource-aware session types are given by the following grammar.

S, T ::= V | ⊕{lqi

i : S} | N{lqi

i : S} | S
q
( T | S

q
⊗ T | 1q

Here, V is a type variable. The meaning of the types and the process terms
associated with it are defined in Table 1 (annotations and descriptions pertaining
to potentials are marked in red).

The typing judgment of Resource-Aware SILL has the form

Σ;Ω `q P :: (x : S) .

Intuitively, the judgment describes a process in state P using the context Ω and
signature Σ and providing service along channel x of type S. In other words,
P is the provider for channel x : S, and a client for all the channels in Ω. The
resource annotation q is a natural number and defines the potential stored in the
process P . Σ defines the signature containing type and process definitions. These
definitions are needed to typecheck processes which refer to a type definition or
spawn a new process.

The signature Σ is defined as a possibly infinite set of type definitions
V = SV and process definitions x : S ← X @ q ← y : W = Px,y. The equation
V = SV is used to define the type variable V as SV . We treat such definitions
equirecursively. For instance, ctr[n] = N{inc1 : ctr[n + 1], val2dlog(n+1)e+2 : bits}
exists in the signature for all n ∈ N for the binary counter system. Type families
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q ≥ p+ rk +M label Σ ; Ω `p P :: (x : Sk) (k ∈ I)
Σ ; Ω `q (x.lk ; P ) :: (x : ⊕{lri

i : Si}i∈I)
⊕Rk

q + ri ≥ qi Σ ; Ω (x : Si) `qi Qi :: (z : U) (∀i ∈ I)
Σ ; Ω (x : ⊕{lri

i : Si}i∈I) `q case x (li ⇒ Qi)i∈I :: (z : U)
⊕L

q + r ≥ p Σ ; Ω (y : S) `p Py :: (x : T )

Σ ; Ω `q (y ← recv x ; Py) :: (x : S
r
( T )

( R

q ≥ p+ r +M channel Σ ; Ω (x : T ) `p Q :: (z : U)

Σ ; Ω (w : S) (x : S
r
( T ) `q (send x w ; Q) :: (z : U)

( L

q ≥ p+ r +M channel Σ ; Ω `p P :: (x : T )

Σ ; (w : S) Ω `q send x w ; P :: (x : S
r
⊗ T )

⊗R

q + r ≥ p Σ ; Ω (y : S) (x : T ) `p Qy :: (z : U)

Σ ; Ω (x : S
r
⊗ T ) `q y ← recv x ; Qy :: (z : U)

⊗L

q ≥ r +M close

Σ ; · `q close x :: (x : 1r) 1R
q + r ≥ p Σ ; Ω `p Q :: (z : U)

Σ ; Ω (x : 1r) `q wait x ; Q :: (z : U) 1L

(V = SV ) ∈ Σ Σ ; Ω `q P :: (x : SV )
Σ ; Ω `q P :: (x : V )

µR

(V = SV ) ∈ Σ Σ ; Ω (x : SV ) `q P :: (z : U)
Σ ; Ω (x : V ) `q P :: (z : U)

µL

Fig. 5. Typing rules for session-typed programs (remaining rules are given in the text)

exist only at the meta-level and ctr[n] is treated as a regular type variable. The
process definition x : S ← X @ q ← y : W = Px,y defines a (possibly recursive)
process named X that is implemented by Px,y provides along channel x : S,
and uses the channels y : W as a client. The process also stores a potential q,
shown as X @ q in the signature. For instance, for the binary counter system,
s : ctr[2n] ← b0 @ 0 ← t : ctr[n] = Ps,t (Ps,t defines the implementation of b0)
exists in the signature for all n ∈ N.

Messages are typed differently from processes as their work counters w
(introduced in the predicate msg(c, w,M)) are not incremented when they actually
deliver the message to the receiver. Hence, to type the messages, we define an
auxiliary cost-free typing judgment, Σ;Ω `q

cf
P :: (x : S), which follows the same

typing rules as Figure 5, but with M label = M channel = M close = 0. This avoids
paying the cost for sending a message twice. A fresh signature Σ is used in the
derivation of the cost-free judgment.
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The idea of the type system is that each message carries potential and the
sending process pays the potential along with the cost of sending a message from
its local potential. The receiving process receives the potential when it receives
the message and adds it to its local potential. For example, consider the rule
NLk for a client sending a label lk along channel x.

q ≥ p+ rk +M label Σ ; Ω (x : Sk) `p Q :: (z : U)
Σ ; Ω (x : N{lri

i : Si}) `q x.lk ; Q :: (z : U)
NLk

Since the continuation Q needs potential p to typecheck, and the potential to be
sent with the label is rk, we need a total potential of at least p+rk +M label, where
M label is the cost of sending a label. Hence, we get the constraint q ≥ p+rk+M label.

The rule NR describes a provider that is awaiting a message on channel x
and has local potential q available.

q + ri ≥ qi Σ ; Ω `qi Pi :: (x : Si) (∀i ∈ I)
Σ ; Ω `q case x (li ⇒ Pi)i∈I :: (x : N{lri

i : Si})
NR

The second premise tells us that the branch Pi needs potential qi to typecheck.
But the branch Pi is reached after receiving the label li with potential ri. Hence,
the initial potential q must be able to cover the difference qi − ri. Since potential
q can typecheck all the branches, we get the constraint q ≥ qi − ri for all i.

To spawn a new process defined by X , we split the context Ω into Ω1 Ω2, and
we use Ω1 to type the newly spawned process and Ω2 for the continuation Qx.

r ≥ p+ q x′ : S ← X @ p← y′ : W = Px′,y′ ∈ Σ
Ω1 = y : W Σ ; Ω2 (x : S) `q Qx :: (z : U)
Σ ; Ω1 Ω2 `r (x← X ← y ; Qx) :: (z : U)

spawn

If the spawned process needs potential p (indicated by the signature) and the
continuation needs potential q then the whole process needs potential r ≥ p+ q.

A forwarding process x← y terminates and its potential q is lost. Since we do
not count forwarding messages in our cost semantics, we don’t need any potential
to type the forward.

q ≥ 0
Σ ; y : S `q x← y :: (x : S) id

The rest of the rules are given in Figure 5. They are similar to the discussed rules
and we omit their explanation.

As an illustration, the resource-aware type for the binary counter was presented
in Section 3 (marked in red). Also, Figure 3 provides the type derivation of the
b0, b1 and e processes (again marked in red). The annotations, along with the
type derivation, prove that an increment has an amortized resource cost of 1
(potential annotation of inc in bits type) and reading a value has a resource cost
of 2 dlog(n+ 1)e+ 2.
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Σ ; (·)
0
� (·) :: (·)

emp
Σ ; Ω

S

� C :: Ω′ Σ ; Ω′
S′

� C′ :: Ω′′

Σ ; Ω
S+S′

� (C C′) :: Ω′′
compose

Σ ; Ω1 `p P :: (x : A)

Σ ; Ω Ω1
p+w

� (proc(x,w, P )) :: (Ω (x : A))
Cproc

Σ ; Ω1 `p
cf
P :: (x : A)

Σ ; Ω Ω1
p+w

� (msg(x,w, P )) :: (Ω (x : A))
Cmsg

Fig. 6. Typing rules for a configuration

6 Soundness

This section concludes the discussion of Resource-Aware SILL by proving the
soundness of the resource-aware type system with respect to the cost semantics.
So far, we have analyzed and type-checked processes in isolation. However, as
our cost semantics indicates, processes always exist in a configuration, where
they interact with other processes. Hence, we need to extend the typing rules to
configurations.

Configuration Typing At runtime, a program state in Resource-Aware SILL
is a set of processes interacting via messages. Such a set is represented as as
a multi-set of proc and msg predicates as described in Section 4. To type the
resulting configuration C, we first need to define a well-formed signature.

A signature Σ is said to be well formed if every process definition x : S ←
X @ p ← y : W = Px,y in Σ is well typed according to the process typing
judgment, i.e. Σ ; Ω `p Px,y :: (x : S).

We use the following judgment to type a configuration.

Σ;Ω1
S

� C :: Ω2

It states that Σ is well-formed and that the configuration C uses the channels in
the context Ω1 and provides the channels in the context Ω2. The natural number
S denotes the sum of the total potential and work done by the system. We call
S the weight of the configuration.

The configuration typing judgment is defined using the rules presented in
Figure 6. The rule emp defines that an empty configuration is well-typed with
weight 0. The rule compose composes two configurations C and C′: C provides
service on the channels in Ω′ while C′ uses the channels in Ω′. The weight of the
composed configuration C C′ is obtained by summing up their individual weights.
The rule Cproc creates a configuration out of a single process. The weight of this
singleton configuration is obtained by adding the potential of the process and
the work performed by it. Similarly, the rule Cmsg creates a configuration out
of a single message. Since we account for the cost while typing the processes
(see Figure 5), using the same judgment to type the processes would lead to
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paying for the same message twice. Hence, the messages are typed in a cost-free
judgment where M label = M channel = M close = 0.

Soundness Theorem 1 is the main theorem of the paper. It is a stronger version
of a classical type preservation theorem and the usual type preservation is a
direct consequence. Intuitively, it states that the weight of a configuration never
increases during an evaluation step. This also implies that the weight of the
initial configuration is an upper bound on the weight of any configuration it can
ever step to. The soundness connects the potential with the work (i.e. the type
system with the cost semantics).

Theorem 1 (Soundness). Consider a well-typed configuration C w.r.t. a well-

formed signature Σ such that Σ;Ω1
S

� C :: Ω2. If C 7→ C′, then there exist Ω′1, Ω′2
and S′ such that Σ;Ω′1

S′

� C′ :: Ω′2 and S′ ≤ S.

The proof of the soundness theorem is achieved by a case analysis on the cost
semantics, followed by an inversion on the typing of a configuration. The complete
proof is presented in Appendix A. The preservation theorem is a corollary of the
soundness, since we prove that the configuration C′ is well-typed.

The soundness implies that the weight of a configuration is an upper bound
on the total work performed by an evaluation starting in that configuration. We
are particularly interested in the special case of a configuration that starts with 0
work. In this case, the weight corresponds to the initial potential of the system.

Corollary 1 (Upper Bound). If Σ;Ω1
S

� C :: Ω2, and C 7→∗ C′, then S ≥W ′,
where W ′ is the total work performed by the configuration C′, i.e. the sum of the
work performed by each process and message in C′. In particular, if the work done
by the initial configuration C is 0, then the potential P of the initial configuration
satisfies P ≥W ′.

Proof. Applying the Soundness theorem successively, we get that if C 7→∗ C′ and

Σ;Ω1
S

� C :: Ω2 and Σ;Ω′1
S′

� C′ :: Ω′2, then S′ ≤ S. Also, S′ = P ′ +W ′, where
P ′ is the total potential of C′, while W ′ is the total work performed so far in C′.
Since P ′ ≥ 0, we get that W ′ ≤ P ′ +W ′ = S′ ≤ S. In particular, if W = 0, we
get that P = P +W = S ≥W ′, where P and W are the potential and work of
the initial configuration respectively.

The progress theorem of Resource-Aware SILL is a direct consequence of
progress in SILL [44]. Our cost semantics are a cost observing semantics, i.e. it is
just annotated with counters observing the work. Hence, any runtime step that
can be taken by a program in SILL can be taken in Resource-Aware SILL.

7 Case Study: Stacks and Queues

As an illustration of our type system, we present a case study on stacks and
queues. Stacks and queues have the same interaction protocol: they store elements
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of a variable type A and support inserting and deleting elements. They only differ
in their implementation and resource usage. We express their common interface
type as the simple session type storeA.

storeA = N{ ins : A( storeA,
del : ⊕{none : 1, some : A⊗ storeA}}

The session type dictates that a process providing a service of type storeA, gives
a client the choice to either insert (ins) or delete (del) an element of type A. Upon
receipt of the label ins, the providing process expects to receive a channel of type
A to be enqueued and recurses. Upon receipt of the label del, the providing process
either indicates that the queue is empty (none), in which case it terminates, or
that there is a channel stored in the queue (some), in which case it deletes this
channel, sends it to the client, and recurses.

To account for the resource cost, we need to add potential annotations
leading to two different resource-aware types for stacks and queues. Since we
are interested in counting the total number of messages exchanged, we set
M label = M channel = M close = 1 in our type system to obtain a concrete bound.

Stacks The type for stacks is defined below.

stackA = N{ ins0 : A
0
( stackA,

del2 : ⊕{none0 : 10, some0 : A
0
⊗ stackA}}

A stack is implemented as a sequence of elem processes terminated by an empty
process. The implementation and type derivation of elem is presented below.

1: (x:A) (t:stackA) `0 elem :: (s : stackA)
2: s← elem← x t =
3: case s
4: (ins⇒ y ← recv s ; % (y:A) (x:A) (t:stackA) `0 s : stackA

5: s′ ← elem← x t ; % (y:A) (s′ : stackA) `0 s : stackA

6: s← elem← y s′

7: | del⇒s.some ; % (x:A) (t:stackA) `1 s : A
0
⊗ stackA

8: send s x ; % t:stackA `0 s : stackA

9: s← t)

The recursive elem process stores an element of the stack. It uses channel x : A
(element being stored) and channel t : stackA (tail of the stack) and provides
service along s : stackA. The implementation demonstrates that if the elem
process receives an ins message along s, it receives the element y (line 4), spawns
a new elem process using its original element x (line 5), and continues with
another instance of the elem process with the received element y (line 6). In this
way, it adds the element y to the head of the sequence. Otherwise, elem receives
a del message along s and responds with the some label (line 7), followed by the
channel x it stores (line 8). It then forwards all communication along s to t.
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Inserting an element has no resource cost, since no messages are sent by
the elem process. Similarly, deleting an element has a cost of 2, which is used
to send two messages: the some label and the element x. This is reflected by
the type stackA, which needs 0 and 2 potential units for insertion and deletion,
respectively, as indicated by the resource annotations.

We now implement and type the empty process.

10: · `0 empty :: (s : stackA)
11: s← empty =
12: case s (ins⇒ y ← recv s ; % (y:A) `0 s : stackA

13: e← empty ; % (y:A) (e : stackA) `0 s : stackA

14: s← elem← y e

15: | del⇒s.none ; % · `1 s : 1
16: close s)

The sequence of elem processes ends with an empty process, providing service
along channel s where it can receive the label ins or del. If it receives the label ins,
it receives the element y to be inserted (line 12), spawns a new empty process
(line 13), and continues execution as an elem process with the received element
(line 14). On receiving the label del, it just sends the none label (line 15) followed
by the close message (line 16), indicating that the stack is empty.

Inserting an element sends no messages and thus has cost 0. Deleting an
element sends two messages and has cost 2, which is reflected in the resource
annotations of the labels in the type storeA. Note that deleting an element requires
the system to send back two messages, either the none label followed by the close
message, or the some label followed by the element. Therefore, an implementation
of stacks will have a resource cost of at least 2 for deletion. This shows that
the above implementation is the most efficient w.r.t. our cost semantics because
insertion has no resource cost, and deletion has the least possible cost.

Queues Next, we consider the queue interface which is achieved by using the
same storeA interface and annotating it with a different potential. The tight
potential bound depends on the number of elements stored in the queue. Hence,
a precise resource-aware type needs access to this internal measure in the type. A
type queueA[n] intuitively defines a queue of size n, i.e. a process offering along
a channel of type queueA[n] connects a sequence of n elements.

queueA[n] = N{ ins2n : A
0
( queueA[n+ 1],

del2 : ⊕{none0 : 10, some0 : A
0
⊗ queueA[n− 1]}}

Similar to a stack, a queue is also implemented by a sequence of elem processes,
connected via channels, and terminated by the empty process. We show the
implementation of elem below.

1: (x:A) (t:queueA[n− 1]) `0 elem :: (s : queueA[n])
2: s← elem← x t =
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3: case s (
4: ins⇒ y ← recv s ; % (y:A) (x:A) (t:queueA[n− 1]) `2n s:queueA[n+ 1]
5: t.ins ; % (y:A)(x:A)(t:A

0
( queueA[n]) `1 s:queueA[n+ 1]

6: send t y ; % (x : A) (t : queueA[n]) `0 s : queueA[n+ 1]
7: s← elem← x t

8: | del⇒ s.some ; % (x:A)(t:queueA[n− 1]) `1 s:A
0
⊗ queueA[n− 1]

9: send s x ; % t:queueA[n− 1] `0 s : queueA[n− 1]
10: s← t)

Similar to the implementation of a stack, the elem process provides along s :
queueA, stores the element x : A, and uses the tail of the queue t : queueA. When
the elem process receives the ins message along s, it receives the element y (line 4),
and passes the ins message (line 5) along with y (line 5) to t. Since the process at
the other end of t is also implemented using elem, it passes along the element to
its tail too. Thus the element travels to the end of the queue where it is finally
inserted. The deletion is similar to that for stack.

For each insertion, the ins label along with the element travels to the end of
the queue. Hence, the resource cost of each insertion is 2n where n is the size of
the queue and this is reflected in the type queueA in the potential annotation of
ins as 2n. Similar to the stack, deletion has a resource cost of 2 to get back the
some label and the element. We now consider the empty process.

· `0 empty :: (s : queueA[0])
s← empty =

case s (
ins⇒ y ← recv s ; % (y:A) `0 s : queueA[1]

e← empty ; % (y:A) (e : queueA[0]) `0 s : queueA[1]
s← elem← y e

| del⇒ s.none ; % · `1 s : 1
close s)

The implementation of empty process is identical to that of stacks. Since insertion
does not cause the process to send any messages, its resource cost is 0. On the
other hand, deletion costs 2 units because the process sends back the none label
followed by the close message. This is correctly reflected in the queue type. Since
s : queueA[0], the annotation for ins is 2n = 2 · 0 = 0. Similarly, del is annotated
with a potential of 2.

The resource-aware types show that the implementation for stacks is more
efficient than that of queues. This follows from the potential annotation. The
label ins is annotated by 2n for stackA and with 0 for queueA. The label del has
the same annotation in both types.

Functional queues In a functional language, a queue is often implemented with
two lists. The idea is to enqueue into the first list and to dequeue from the second
list. If the second list is empty then we copy the first list over, thereby reversing
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its order. Since the cost of the dequeue operation varies drastically between the
dequeue operations, amortized analysis is again instrumental in the analysis of
the worst-case behavior and shows that the worst-case amortized cost for deletion
is actually a constant.

Appendix B.3 contains an implementation of a functional queue in Resource-
Aware SILL. The type of the queue is

queue′A = N{ ins6 : A
0
( queue′A,

del2 : ⊕{ some0 : A
0
⊗ queue′A, none0 : 10}}

Resource-aware session types enable us to translate the amortized analysis to
the distributed setting. The type prescribes that an insertion has an amortized
cost of 6 while the deletion has an amortized cost of 2. The main idea here is
that the elements are inserted with a constant potential in the first list. While
deleting, if the second list is empty, then this stored potential in the first list is
used to pay for copying the elements over to the second list. The exact potential
annotations for the two lists can be found in Appendix B.3. As demonstrated
from the resource-aware type, this implementation is more efficient than the
previous queue implementation, which has a linear resource cost for insertion.

Generic clients The notion of efficiency of a store can be generalized and quantified
by considering clients for the stack and queue interface. A client interacts with
a generic store via a sequence of insertions and deletions. A provider can then
implement the store as a stack, queue, priority queue, etc. (same interface) and
just expose the resource-aware type for storeA. Our type system can then use
just the interface type and the generic client implementation to derive resource
bounds on the client. For simplicity, the clients are typed in an affine type system
which allows us to throw away dummy channels (see below).

We provide a general mechanism for implementing clients for a generic store.
We define a generic storeA type at which the potential annotations are arbitrary
natural numbers.

storeA[n] = N{ insi : A
a
( storeA[n+ 1],

deld : ⊕{nonep : 1e, somes : A
t
⊗ storeA[n− 1]}}

A client is defined by a list ` of ins and del messages that it sends to the store.
We index the client C`,n using `, and the internal measure n of the storeA type.
The channel along which the client provides is irrelevant for our analysis and is
represented using a dummy channel d : D. For ease of notation, we define the
potential needed for a client C`,n as a function φ(`, n).

We implement the client C`,n as follows. First, consider the case when ` = [],
i.e. an empty list.

· `0 C[],n :: (d : D)
d← C[],n = close d
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The client for an empty list just closes the channel d. We assume that all clients
are typed with the cost-free metric to only count for the messages sent inside
the stores. So C[],0 needs 0 potential. For the potential function, this means
φ([], n) = 0.

Next, we implement the client when the head of the list ` is ins.

Ω (x : A) (s : storeA[n]) `q Cins::`,n :: (d : D)
d← Cins::`,n ← Ω x s =
s.ins ; % Ω (x : A) (s : A

a
( storeA[n+ 1]) `q−i d : D

send s x ; % Ω (s : storeA[n+ 1]) `q−i−a d : D
d← C`,n+1 ← Ω s

The client sends an ins label followed by the element x. If Cins::`,n needs a potential
q, then the type derivation informs us that C`,n+1 needs a potential q − i − a.
Thus, φ(ins :: `, n) = φ(`, n+1)+i+a. Finally, we show the client implementation
if the head of the list ` is del.

Ω (s : storeA[n]) `q Cdel::` :: (d : D)
d← Cdel::`,n ← Ω s =
s.del ; % Ω (s : ⊕{nonen : 1e, somes : A

t
⊗ storeA[n− 1]}) `q−d d : D

case s (
some⇒ x← recv s ; % Ω (x : A) (s : storeA[n− 1]) `q−d+s+t d : D

d← C`,n−1 ← Ω x s

| none⇒ wait s) % Ω `q−d+p+e d : D

The client sends the del label and then case analyzes on the label it receives. If it
receives the some label, it receives the element and then continues with C`,n−1,
else it receives the none label and waits for the channel s to close. In terms of
the potential function, this means

φ(del :: `, n) =
{
φ(`, n− 1) + d− s− t if n > 0
max(0, d− p− e) otherwise

Walking through the list ` and chaining the potential equations together, we can
achieve a resource bound on the client C`,n by computing φ(`, n).

The stackA and queueA interface types are specific instantiations of the storeA

type. For the stack interface, plugging in appropriate potential annotations
i = a = p = e = s = t = 0, and d = 2, we get (ignoring the case where the stack
becomes empty)

φ([], n) = 0 φ(ins :: `, n) = φ(`, n+ 1) φ(del :: `, n) = φ(`, n− 1) + 2

Similarly, considering the queue type as another instantiation of the storeA type,
and plugging a = p = e = s = t = 0, i = 2n and d = 2, we get

φ([], n) = 0 φ(ins :: `, n) = φ(`, n+ 1) + 2n φ(del :: `, n) = φ(`, n− 1) + 2
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Finally, looking at queue′A as another instantiation of the storeA type and plugging
a = p = e = s = t = 0, i = 6 and d = 2, we get

φ([], n) = 0 φ(ins :: `, n) = φ(`, n+ 1) + 6 φ(del :: `, n) = φ(`, n− 1) + 2

This allows us to compare arbitrary clients of two (same or different) interfaces
and compare their resource cost. The resource-aware types are expressive enough
to obtain these resource bounds without referring the implementation of the store
interface. For instance, an important property of queues is that every insertion is
more costly than the previous one. The cost of insertion depends on the size of
the queue, which, in turn, increases with every insertion. Hence, the complexity
of the queue system depends on the sequence in which inserts and deletes are
performed. In particular, we can consider the efficiency of two different clients
for the queue system, by solving the above system of equations.

For instance, consider two clients Q`1,n and Q`2,n, with two different message
lists `1 = [ins, . . . , ins, del, . . . , del], i.e. m insertions followed by m deletions, and
`2 = [ins, del, ins, del, . . . , ins, del], i.e. m instances of alternate insertions and
deletions. In both cases, we have the same number of insertions and deletions.
However, the resource cost of the two systems are completely different. Solving
the system of equations, we get that φ(`1, n) = 2mn + m(m − 1) + 2m, while
φ(`2, n) = 2m(n+1), which shows that the second client is an order of magnitude
more efficient than the first one. More examples are presented in Appendix B.

8 Related Work

Session types have been introduced by Honda [32,33]. The technical development
in this article is based on previous work on [44,40]. By removing the potential
annotation from the type rules in Section 5 we arrive at the type system of loc.
cit. The internal measures and type families that we use are inspired by [24].
Other recent innovations in session types include sharing of resources [9] and
dynamic monitors [34]. In contrast to our work, all the aforementioned articles
do not discuss static resource analysis.

Static resource bound analysis for sequential programs has been extensively
studied. Successful approaches are based on refinement types [18,15], linear
dependent types [37], abstract interpretation [46,25,5,16], deriving and solving re-
currence relations [19,20,4,36], term rewriting [11,8]. These works do not consider
message-passing programs nor concurrent or parallel evaluation.

Our work is based on type-based amortized resource analysis. Automatic
amortized resource analysis (AARA) has been introduced as a type system
to automatically derive linear [30] and polynomial bounds [27] for sequential
functional programs. It can also be integrated with program logics to derive
bounds for imperative programs [7,14]. Moreover, it has been used to derive
bounds for term-rewrite systems [31] and object-oriented programs [29]. A recent
work also considers bounds on the parallel evaluation cost (also called span) of
functional programs [28]. The innovation of our work is the integration of AARA
and session types and the analysis of message-passing programs that communicate
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with the outside world. Instead of function arguments, our bounds depend on the
messages that are send along channels. As a result, the formulation and proof of
the soundness theorem is quite different from the soundness of sequential AARA.

We are only aware of a couple of other works that study resource bounds for
concurrent programs. Gimenez et al. [22] introduced a technique for analyzing the
parallel and sequential space and time cost of evaluating interaction nets. While
it also based on linear logic and potential annotations, the flavor of the analysis
is quite different. Interaction nets are mainly used to model parallel evaluation
while session types focus on the interaction of processes. A main innovation of our
work is that processes can exchange potential via messages. It is not clear how we
can represent the examples we consider in this article as interaction nets. Albert
et al. [3,2] have studied techniques for deriving bounds on the cost of concurrent
programs that are based on the actor model. While the goals of the work are
similar to ours, the used technique and considered examples are dissimilar. A
major difference is that our method is type-based and compositional. A unique
feature of our work is that types describe bounds as functions of the messages
that are sent along a channel.

9 Conclusion

We have introduced resource-aware session types, a linear type system that
combines session types [32,40] and type-based amortized resource analysis [30,27]
to reason about the resource usage of message-passing processes. The soundness of
the type system has been proved for a core session-typed language with respect to
a cost semantics that tracks the total communication cost in a system of processes.
We have demonstrated that our technique can be used to prove tight resource
bounds and supports amortized reasoning by analyzing standard session-type
data structures such as distributed binary counters, stacks, and queues.

Our approach addresses some of the main challenges of analyzing message-
passing programs such as compositionality and description of symbolic bounds.
However, there are several open problems that we plan to tackle as part of future
work. The technique we have developed in this paper does not yet account for
the concurrent execution cost of processes, or the span. We are working on a
companion paper that describes a type-based analysis to derive bounds on the
span; the earliest time a concurrent computation terminates assuming an infinite
number of processors. Due to data dependencies in a concurrent program, a
process needs to wait for messages from other processes, and computing these
waiting times statically makes span analysis challenging.

Similarly, we have focused on the foundations and meta theory of resource-
aware session types in this paper. The next step is to implement our analysis. An
advantage of our method is that it is based upon type-based amortized resource
analysis for sequential programs. We will integrate the type system with SILL
for functional programs [27]. We designed the type system with automation in
mind and we are confident that we can support automatic type inference using
templates and LP solving similar to AARA [30,27]. To this end, we are working
on an algorithmic version of the declarative type system presented here.
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A Proof of Soundness Theorem

We present the complete proof of the soundness theorem. We reiterate the rules
of cost semantics and typing. Figure 4 presents the cost semantics for our session-
typed language, while Figure 5 presents the full set of typing rules. Finally,
Theorem 1 defines the soundness theorem establishing that the typing rules for a
configuration presented in Figure 6 are sound w.r.t. the rules for cost semantics
presented in Figure 4. We follow the complete proof of the soundness theorem.
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Proof. The proof proceeds by case analysis on the cost semantics of our language,
i.e. on the judgment C 7→ C′. By the compose rule, we can split the configuration
such that C = (CM D) and C′ = (C′M D) and CM 7→ C′M . Using the compose rule,

Σ ; Ω
SM

� CM :: Ω′ Σ ; Ω′
SD

� D :: Ω′′

Σ ; Ω
SM +SD

� (CM D) :: Ω′′
compose

Σ ; Ω
SM

� C′M :: Ω′ Σ ; Ω′
SD

� D :: Ω′′

Σ ; Ω
S′

M +SD

� (C′M D) :: Ω′′
compose′

Hence, to show that S′ ≤ S, it suffices to show that S′M ≤ SM . We proceed by
case analysis on the CM 7→ C′M judgment.

– Case (spawnc) : CM = proc(d,w, x ← Px ← y ; Qx). Inverting the typing
rule spawn on configuration CM , we get

r ≥ p+ q Ω1 Ω2 `r x← Px ← y ; Qx :: (d : U) (4)

and in C′M = proc(c, 0, Pc) proc(d,w,Qc), we get (the premise due to inver-
sion)

Ω1 `p Pc :: (c : S) Ω2 (c : S) `q Qc :: (d : U)
From the cost semantics rule spawnc,

proc(d,w, x← Px ← y ; Qx)
proc(c, 0, Pc) proc(d,w,Qc)

spawnc

Since S is the sum of work and potential of each process in the configuration,
we get SM = r+w, while S′M = (pP +wP ) + (pQ +wQ) = (p+ 0) + (q+w) =
p+ q + w ≤ r + w = SM since p+ q ≤ r (by Equation 4).

– Case (fwds) : CM = proc(c, w, c← d). Inverting the typing rule fwd on CM ,

q ≥ 0 d : S `q c← d :: (c : S)

Inverting the same rule in C′M ,

q′ ≥ 0 d : S `q
′

cf
c← d :: (c : S)

Using the semantics rule fwds,

proc(c, w, c← d)
msg(c, w, c← d) fwds

Since we are free to choose q′, we set q′ ≤ q. Computing SM and S′M , we get

S′M = q′ + w

≤ q + w

= SM

28



– Case (fwd+
r ) : CM = proc(d,w, P ) msg(c, w′, c ← d). Inverting the fwd rule

for CM ,
q1 ≥ 0 Ω `q1 P :: (d : S) (5)

q2 ≥ 0 d : S `q2 c← d :: (c : S)

Using Equation 5 and noting that c and d have the same type S, we get for
C′M ,

q′1 ≥ 0 Ω `q
′
1 [c/d]P :: (c : S)

From the cost semantics rule fwd+
r , we get

proc(d,w, P ) msg(c, w′, c← d)
proc(c, w + w′, [c/d]P ) fwd+

r

Since we are free to choose q′1, we set q′1 ≤ q1. Computing SM and S′M , we
get

S′M = q′1 + w + w′

≤ q1 + q2 + w + w′

= (q1 + w) + (q2 + w′)
= SM

– Case (fwd−r ) : CM = proc(e, w, P ) msg(c, w′, c ← d). Inverting the fwd rule
for CM ,

q1 ≥ 0 Ω (c : S) `q1 P :: (e : U) (6)

q2 ≥ 0 d : S `q2 c← d :: (c : S)

Using Equation 6 and noting that c and d have the same type S, we get for
C′M ,

q′1 ≥ 0 Ω (d : S) `q
′
1 [d/c]P :: (e : U)

From the cost semantics rule fwd−r , we get

proc(e, w, P ) msg(c, w′, c← d)
proc(e, w + w′, [d/c]P ) fwd−r

Since we are free to choose q′1, we set q′1 ≤ q1.

S′M = q′1 + w + w′

≤ q1 + q2 + w + w′

= (q1 + w) + (q2 + w′)
= SM

– Case (⊕Cs) : CM = proc(c, w, c.lk ; P ). Inverting the typing rule ⊕Rk on
CM , we get

q1 ≥ p+ rk +M label Ω `q1 (c.lk ; P ) :: (c : ⊕{lri
i : Si}i∈I) (7)
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and in C′M , we get (the premise due to inversion)

Ω `p [c′/c]P :: (c′ : Sk)

q′1 ≥ q2 + rk c′ : Sk `q
′
1 (c.lk ; c← c′) :: (c : ⊕{lri

i : Si}i∈I) (8)

q2 ≥ 0 c′ : Sk `q2 c← c′ :: (c : Sk) (9)

Using the cost semantics rule ⊕Cs, we get

proc(c, w, c.lk ; P )
proc(c′, w +M label, [c′/c]P ) msg(c, 0, c.lk ; c← c′)

⊕Cs

Again, S′M = (p + w + M label) + (q′1 + 0). Since, we need to prove that
there exists such an S′M , we can choose q′1 and q2 arbitrarily such that
they satisfy Equations 8 and 9. We set q2 = 0 and q′1 = rk. Hence, S′M =
(p+ w +M label) + rk ≤ q1 + w ≤ SM (by Equation 7)

– Case (⊕Cr) : CM = msg(c, w, c.lk ; c ← c′) proc(d,w′, case c (li ⇒ Qi)i∈I).
Inverting the typing rule ⊕L on CM , we get

q1 ≥ q2 + rk c′ : Sk `q1 (c.lk ; c← c′) :: (c : ⊕{lri
i : Si}i∈I) (10)

q2 ≥ 0 c′ : Sk `q2 c← c′ :: (c : Sk) (11)

q3 + rk ≥ qk Ω (c : ⊕{lri
i : Si}i∈I) `q3 case c (li ⇒ Qi)i∈I :: (d : U) (12)

and in C′M (premise of the typing rule due to inversion), we get

Ω (c′ : Sk) `qk [c′/c]Qk :: (d : U)

Using the cost semantics rule ⊕Cr, we get

msg(c, w, c.lk ; c← c′) proc(d,w′, case c (li ⇒ Qi)i∈I)
proc(d,w + w′, [c′/c]Qk) ⊕Cr

Again, S′M = qk + w + w′ ≤ q3 + rk + w + w′ ≤ q3 + q2 + rk + w + w′ ≤
q3 + q1 + w + w′ ≤ (q1 + w) + (q3 + w′) = SM (by Equations 10, 11 and 12).

– Case (NCs) : Analogous to( Cs.
– Case (NCr) : Analogous to( Cr.
– Case (⊗Cs) : Analogous to ⊕Cs.
– Case (⊗Cr) : Analogous to ⊕Cr.
– Case (( Cs) : CM = proc(d,w, send c e ; P ). Applying the rule( L on CM ,

we get

q1 ≥ p+ r +M channel Ω (e : S) (c : S
r
( T ) `q1 (send c e ; P ) :: (d : U)

Inverting the same rule on C′M , we get

Ω (c′ : T ) `p [c′/c]P :: (d : U)
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q′1 ≥ q2 + r (e : S) (c : S
r
( T ) `q

′
1 send c e ; c′ ← c :: (c′ : T )

q2 ≥ 0 c : T `q2 c′ ← c :: (c′ : T )

From the cost semantics rule( Cs, we get

proc(d,w, send c e ; P )
proc(d,w +M channel, [c′/c]P ) msg(c′, 0, send c e ; c′ ← c)

( Cs

Since we can choose arbitrary values for q′1 and q2 satisfying the above
inequalities, we set q2 = 0 and q′1 = r. Computing SM and S′M , we get

S′M = (p+ w +M channel) + (q′1 + w′)
= (p+ r +M channel + w) + (q′1 − r + w′)
≤ q1 + w + w′)
= SM

– Case (( Cr) : CM = msg(c′, w, send c e ; c′ ← c) proc(c, w′, x← recv c ; Qx).
Applying the rule ( L on the message in CM , we get

q1 ≥ q2 + r (e : S) (c : S
r
( T ) `q1 send c e ; c′ ← c :: (c′ : T )

q2 ≥ 0 c : T `q2 c′ ← c :: (c′ : T )

Applying the rule ( R on the process in CM , we get

q3 + r ≥ p Ω `q3 (x← recv c ; Qx) :: (x : S
r
( T )

Inverting the( R rule, we get for C′M ,

Ω (e : S) `p [c′/c]Qe :: (c′ : T )

From the cost semantics rule( Cr, we get

msg(c′, w, send c e ; c′ ← c) proc(c, w′, x← recv c ; Qx)
proc(c, w + w′, [c′/c]Qe) ( Cr

Computing SM and S′M , we get

S′M = p+ w + w′

≤ q3 + r + w + w′

≤ q3 + q2 + r + w + w′

≤ q3 + q1 + w + w′

= (q1 + w) + (q3 + w′)
= SM

31



– Case (1Cs) : CM = proc(c, w, close c). Applying the 1R rule on CM , we get

q ≥ r +M close · `q close c :: (c : 1r)

Inverting the same rule for C′M , we get

q′ ≥ r · `q
′

close c :: (c : 1r)

From the cost semantics rule 1Cs, we get

proc(c, w, close c)
msg(c, w +M close, close c)

1Cs

Setting q′ = r and computing SM and S′M , we get

S′M = q′ + w +M close

= r + w +M close

≤ q + w

= SM

– Case (1Cr) : CM = msg(c, w, close c) proc(d,w′,wait c ; Q). Applying the
rule 1R on the message in CM , we get

q1 ≥ r · `q1 close c :: (c : 1r)

Applying the 1L rule on the process in CM , we get

q2 + r ≥ p Ω (c : 1r) `q2 wait c ; Q :: (d : U)

Inverting the 1L rule for C′M , we get

Ω `p Q :: (d : U)

From the cost semantics rule 1Cr, we get

msg(c, w, close c) proc(d,w′,wait c ; Q)
proc(d,w + w′, Q) 1Cr

Computing SM and S′M , we get

S′M = p+ w + w′ +M close

≤ q2 + r + w + w′

≤ q2 + q1 + w + w′

≤ (q1 + w) + (q2 + w′)
= SM

Hence, in all of the above cases, S′M ≤ SM establishing that S′ ≤ S, thus showing
that the potential type system is sound w.r.t. the cost semantics.
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B More Examples

Our type system is quite expressive and can be used to derive bounds on many
more examples. In this section, we will derive bounds on several list processes.
We will start with simple examples, such as the nil, cons and append processes.
We will then derive bounds on stacks and queues being implemented using lists.
Finally, we will conclude with some higher order functions such as map and fold.
For each of the following examples, we assume the standard cost metric, where
we count the number of messages exchanged, i.e. M label = M channel = M close = 1.
First, we consider the list protocol as a simple session type.

listA = ⊕{ cons : A⊗ listA,
nil : 1}

The type prescribes that a process providing service of type listA will either send
a label cons followed by an element of type A and recurse, or will send a nil
label followed by a close message and then terminate. On the client side (i.e. a
process that uses a channel of type listA in its context), the opposite behavior is
observed, i.e. a client receives the messages that the provider sends (sequence of
cons labels and elements terminated by a nil label and the close messsage). The
append process is a SILL implementation of the standard append function which
appends two lists.

B.1 Basic Processes

We present the implementations of nil, cons and append processes.

nil

The nil process is used to create an empty list. Formally, a nil process uses an
empty context, and provides an empty list along a channel l : listA. Concretely,
this means it sends a nil label followed by a close message along l. First, we
introduce the resource-aware session type for listA.

listA = ⊕{ nil0 : 10,

cons0 : A
0
⊗ listA}

This resource-aware type decorates each label and type operator with 0 poten-
tial, implying that none of the messages carry any potential, and the process
potential needs to pay only for the cost of sending the messages. We present the
implementation followed by the type derivation for the nil process.

· `2 nil :: (l : listA)
l← nil =
l.nil ; % · `1 l : 10

close l % · `0 ·
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The type of nil process shows that the process potential needed is 2, which
intuitively agrees with our cost model. The process sends two messages, each of
them costing unit potential. We explain the type derivation briefly. The initial
type of the process is · `2 l : listA. Now, for l to behave as an empty list, the
nil process needs to send the nil label first. As the listA type prescribes, the nil
label carries no potential, this send only costs 1. Updating the type of l and the
process potential, we get · `1 l : 10. Finally, the nil process needs to send the
close message, which again costs 1 as the type 1 carries no potential in the type
definition of listA. Thus, our type system successully verifies that the nil process
needs a potential of 2, hence its resource usage is 2.

cons

Now, let’s look at the cons process.
(x : A) (t : list0

A) `2 cons :: (l : list0
A)

l← cons← x t =
l.cons ; % (x : A) (t : list0

A) `1 l : A
0
⊗ list0

A

send l x ; % (t : list0
A) `0 l : list0

A

l← t

We can do another annotated type for cons.
list1

A = ⊕{ nil0 : 1,
cons1 : A

0
⊗ list1

A}

(x : A) (t : list1
A) `3 cons :: (l : list1

A)
l← cons← x t =
l.cons ; % (x : A) (t : list1

A) `1 l : A
0
⊗ list1

A

send l x ; % (t : list1
A) `0 l : list1

A

l← t

append

Finally, let’s try the append process.
list2

A = ⊕{ nil0 : 1,
cons2 : A

0
⊗ list2

A}

(l1 : list2
A) (l2 : list0

A) `0 append :: (l : list0
A)

l← append← l1 l2 =
case l1 (cons⇒ x← recv l1 ; % (x : A) (l1 : list2

A) (l2 : list0
A) `2 l : list0

A

l.cons ; % (x : A) (l1 : list2
A) (l2 : list0

A) `1 l : list0
A

send l x ; % (l1 : list2
A) (l2 : list0

A) `0 l : list0
A

l← append← l1 l2
| nil⇒ wait l1 ; % (l1 : 1) (l2 : list0

A) `0 l : list0
A

l← l2) % (l2 : list0
A) `0 l : list0

A
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B.2 Stacks as Lists

The stack interface introduced in Section 7 can be implemented using lists. First,
we define the resource-aware types.

list2
A = ⊕{ nil2 : 10,

cons2 : A
0
⊗ list2

A}

stack4
A = N{ ins4 : A

0
( stack4

A,

del0 : ⊕{ some0 : A
0
⊗ stack4

A,
none0 : 10}}

We need several sub-processes for the implementation of the stack using a
list. We will implement and type them first.

· `4 nil :: (l : list2
A)

l← nil =
l.nil ; % · `1 l : 10

close l % · `0 ·

(x : A) (t : list2
A) `4 cons :: (l : list2

A)
l← cons← x t =
l.cons ; % (x : A) (t : list2

A) `1 l : A
0
⊗ list2

A

send l x ; % (t : list2
A) `0 l : list2

A

l← t

Finally, we can implement the stack interface using two processes, the first is
stack_new, which creates an empty list and uses it as an empty stack.

· `4 stack_new :: s : (stack4
A)

s← stack_new =
e← nil ; (e : list2

A) `0 (s : stack4
A)

s← stack ← e

The main process is called stack. It uses a list in its context and provides
service along s which behaves as a stack.

l : list2
A `

0 stack :: s : (stack4
A)

s← stack ← l
case s

(ins⇒ x← recv s ; % (x : A)(l : list2
A) `4 s : stack2

A

l′ ← cons← x t % l′ : list2
A `

0 s : stack4
A

s← stack ← l
del⇒ case l

(cons⇒ x← recv l ; % (x : A)(l : list2
A) `2 s : ⊕{some0 : A

0
⊗ stack4

A, none0 : 10}
s.some ; % (x : A)(l : list2

A) `1 s : A
0
⊗ stack4

A
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send s x ; % (l : list2
A) `0 s : stack4

A

s← stack ← l

nil⇒ s.none % (l : 10) `1 s : 10

wait l ; % · `1 s : 10

close s))

B.3 Queues as 2 Lists

A queue can be implemented using 2 lists. Insertion in such a queue has a constant
amortized cost. Since our type system supports amortized analysis, we can derive
a constant resource bound for such an implementation. The resource-aware types
we will be using are as follows.

list(2,2)
A = ⊕{ nil2 : 10,

cons2 : A
0
⊗ list(2,2)

A }

list4
A = ⊕{ nil0 : 10,

cons4 : A
0
⊗ list4

A}

queue(6,2)
A = N{ enq6 : A

0
( queue(6,2)

A ,

deq2 : ⊕{ some0 : A
0
⊗ queue(6,2)

A ,
none0 : 10}}

Again, we use the nil and cons sub-processes with a different type.

· `2 nil :: (l : list4
A)

l← nil =
l.nil ; % · `1 l : 10

close l % · `0 ·

(x : A) (t : list4
A) `6 cons :: (l : list4

A)
l← cons← x t =
l.cons ; % (x : A) (t : list4

A) `1 l : A
0
⊗ list4

A

send l x ; % (t : list4
A) `0 l : list4

A

l← t

The main process queue2 acts as a client for 2 lists, and provides service along
a queue interface. We provide the implementation and its type derivation below.

(in : list4
A) (out : list(2,2)

A ) 0̀ queue2 :: s : (queue(6,2)
A )

s← queue2← l
case s

(enq⇒ x← recv s ; % (x : A)(in : list4
A) (out : list(2,2)

A ) 6̀ s : queue(6,2)
A

in′ ← cons← x in % (in′ : list4
A) (out : list(2,2)

A ) 0̀ s : queue(6,2)
A

s← queue2← in out
deq⇒ case out
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(cons⇒ x← recv out ; % (x : A) (in : list4
A) (out : list(2,2)

A ) 2̀

% s : ⊕{some0 : A
0
⊗ queue(6,2)

A , none0 : 10}

s.some ; % (x : A) (in : list2
A) (out : list0

A) 1̀ s : A
0
⊗ queue4

A

send s x ; % (in : list2
A) (out : list0

A) 0̀ s : queue4
A

s← queue2← in out

nil⇒ wait out ; % (in : list2
A) 4̀ s : queue4

A

out′ ← rev ← in ;% (out′ : list0
A) 2̀ s : queue4

A
case out′

(cons⇒ x← recv out′ ; % (x : A) (out′ : list0
A) 2̀

% s : ⊕{some0 : A
0
⊗ queue4

A, none0 : 10}

s.some ; % (x : A) (out′ : list0
A) 1̀ s : A

0
⊗ queue4

A

send s x ; % (out′ : list0
A) 0̀ s : queue4

A

in′ ← nil ; % (in′ : list2
A) (out′ : list0

A) 0̀ s : queue4
A

s← queue2← in′ out′

nil⇒ wait out′ ; % · 0̀ s : ⊕{some0 : A
0
⊗ queue4

A, none0 : 10}
s.none ; % · 0̀ s : 10

close s)))

B.4 Higher Order Functions

Let’s consider some higher order functions. First, let’s consider the map function.

mapper2
AB = N{ next0 : A

0
( B

2
⊗mapper2

AB ,

done0 : 12}

list2
A = ⊕{ nil1 : 10,

cons2 : A
0
⊗ list2

A}

list0
A = ⊕{ nil0 : 10,

cons0 : A
0
⊗ list0

A}

Now, let’s consider the implementation of the map function.

(l : list2
A) (m : mapper2

AB) `0 map :: (k : list0
A)

k ← map← l m =
case l

(cons⇒ x← recv l ; % (x : A) (l : list2
A) (m : mapper2

AB) `2 (k : list0
A)

m.next ; % (x : A) (l : list2
A) (m : A

0
( B

2
⊗mapper2

AB) `1 (k : list0
A)

send m x ; % (l : list2
A) (m : B

2
⊗mapper2

AB) `0 (k : list0
A)

y ← recv m ; % (l : list2
A) (y : B) (m : mapper2

AB) `2 (k : list0
A)

k.cons ; % (l : list2
A) (y : B) (m : mapper2

AB) `1 (k : A
0
⊗ list0

A)
send k y ; % (l : list2

A) (m : mapper2
AB) `0 (k : list0

A)
k ← map← l m

nil⇒ wait l ; % (m : mapper2
AB) `1 (k : list0

A)
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m.done ; % (m : 12) `0 (k : list0
A)

wait m ; % · `2 (k : list0
A)

k.nil ; % · `1 (k : 10)
close k)

Now, let’s consider the fold function.

folder0
AB = N{ next0 : A

0
( B

0
( B

0
⊗ folder0

AB ,

done0 : 10}

list3
A = ⊕{ nil1 : 10,

cons3 : A
0
⊗ list2

A}

Now, let’s consider the implementation of the fold function.

(l : list3
A) (m : folder0

AB) (b : B) `0 fold :: (r : B)
r ← fold← l m b =

case l
(cons⇒ x← recv l ; % (x : A) (l : list2

A) (m : folder0
AB) (b : B) `3 (r : B)

m.next ; % (x : A) (l : list3
A) (m : A

0
( B

0
( B

2
⊗ folder0

AB) (b : B) `2 (r : B)
send m x ; % (l : list3

A) (m : B
0
( B

2
⊗ folder0

AB) (b : B) `1 (r : B)
send m b ; % (l : list3

A) (m : B
2
⊗ folder0

AB) `0 (r : B)
y ← recv m ; % (l : list2

A) (y : B) (m : folder0
AB) `2 (r : B)

k ← map← l m

nil⇒ wait l ; % (m : folder0
AB) (b : B) `1 (r : B)

m.done ; % (m : 10) (b : B) `0 (r : B)
wait m ; % (b : B) `0 (r : B)
r ← b)
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