Practical Refinement Session Type Inference

Toby Ueno and Ankush Das

Boston University, Boston, MA, USA
{uenot,ankushd}@bu.edu

Abstract. Session types express and enforce safe communication in con-
current message-passing systems by statically capturing the interaction
protocols between processes in the type. Recent works extend session
types with arithmetic refinements, which enable additional fine-grained
description of communication, but impose additional annotation burden
on the programmer. To alleviate this burden, we propose a type infer-
ence algorithm for a session type system with arithmetic refinements. We
develop a theory of subtyping for session types, including an algorithm
which we prove sound with respect to a semantic definition based on
type simulation. We also provide a formal inference algorithm that gen-
erates type and arithmetic constraints, which are then solved using the
z3 SMT solver. The algorithm has been implemented on top of the Rast
language, and includes 3 key optimizations that make inference feasible
and practical. We evaluate the efficacy of our inference engine by eval-
uating it on 6 challenging benchmarks, ranging from unary and binary
natural numbers to linear A-calculus. We show the performance benefits
provided by our optimizations in coercing z3 into solving the arithmetic
constraints in reasonable time.

Keywords: Session Types - Type Inference - Refinement Types

1 Introduction

Binary session types [5, 6, 26-28] provide a structured way to express commu-
nication protocols in concurrent message-passing systems. Types are assigned
to bi-directional channels connecting processes and describe the type and direc-
tion of communication. Type checking then ensures that processes on either end
of the channel respect the interaction described by the channel type, i.e., they
follow both the type and direction. As a result, standard type safety theorems
guarantee session fidelity (preservation), i.e., protocols are not violated at run-
time and deadlock-freedom (progress), i.e., no process ever gets stuck. However,
even in the presence of recursion, vanilla session types can only specify very basic
protocols which has led to a number of extensions, such as context-free session
types [41, 42], label-dependent session types [43], and general dependent session
types [24, 44-46].

One such extension is to integrate session types with refinements [12, 13, 15],
in the style of DML [18, 47] to enable lightweight verification of message-passing
programs. For instance, consider the simple (unrefined) session type for naturals:

2 T. Ueno and A. Das

type nat = ©{succ : nat,zero : 1}

The communication protocol governed by this type is that the sender can either
produce the succ label or the zero label, on which the receiver must branch
upon. However, the type does not give any information beyond this basic behav-
ior. In particular, the type does not define exactly how many succ labels will be
produced by the type. To address this limitation, one can refine the type:

type nat[n] £ &{succ : ?{n > 0}.nat[n — 1], zero : ?{n = 0}.1}

The type is indexed by a natural number n that denotes the number of succ
labels produced by the sender. On sending the succ label, the type ?{n >
0}.nat[n — 1] describes that the sender must produce a proof that n > 0, af-
ter which the type transitions to nat[n — 1], meaning that the sender will now
produce (n — 1) succ labels. Such refinements enable lightweight verification of
protocol processes; for instance, one can define that an add process can take two
naturals nat[m] and nat[n] to produce nat[m + n].

As useful as refinements are, they introduce a significant syntactic burden
on the programmer. First, programmers need to annotate process declarations
(like add) with the refined type of all channels connected to it. Second, they need
to add explicit assertions and assumptions in their programs for successful type
checking. Finally, there is usually very little feedback from the compiler in the
event that the type annotations are incorrect. As programs get more complicated,
so do the annotations, further exacerbating the cost of this overhead.

To address this syntactic overhead, this paper proposes an automatic type
inference algorithm for refinement session types. The goal is to infer the (possi-
bly recursive) type of processes from their definitions. However, this task poses
several challenges, both in theory and implementation. First, type checking, and
therefore, type inference is undecidable [13] even in the presence of simple lin-
ear arithmetic refinements. Thus, any practical algorithm must be approximate
and rely on appropriate heuristics. Second, session types follow structural and
equi-recursive typing; type equality does not depend on type names, rather the
structure of types. Moreover, there are no explicit folds or unfolds in programs
to handle recursion. This more expressive nature of typing introduces complica-
tions for the inference engine, which needs to keep track of the type structure
based on its communication. Third, the most general refined type for a process is
often not the most useful one. As an example, consider a process that produces
nat[0] by sending a zero label and terminating. The most general type of this
process is ©{zero : 1}, which is a subtype of nat[0], but probably not the most
useful type. On the other hand, producing any supertype of the most general
type is also not satisfactory. As an example, we can infer many possibilities for
index arguments; for example, a valid type for the add process is to take nat[2m)
and nat[n] to produce nat[2m + n]. Although valid, this is not the most precise
type for add. In particular, this type would not work for numbers where the
first argument is odd. Therefore, the most general type is sometimes useful, but
not always— the type that is reported to the user must be general enough to
accommodate a large set of programs.

Practical Refinement Session Type Inference 3

To infer a more realistic type for processes, we extend the notion of subtyping
in session types to arithmetic refinements. To that end, we adopt and generalize
the declarative definition for subtyping introduced in seminal work by Gay and
Hole [20]. Using this definition as our foundation, we introduce a set of algo-
rithmic subtyping rules that produce a set of type constraints from which the
most general type can be inferred. We show that this algorithm is sound: if A is
a subtype of B according to our algorithm, it must be so under our definition.
Next, we introduce a range of heuristics in our inference engine that carefully
balance precision and practicality to achieve user-friendly types.

We have implemented our type inference engine on top of the Rast [10-12]
programming language. Rast is a language targeted towards analyzing paral-
lel and sequential complexity of session-typed message-passing programs. Rast
supports type refinements and type checking, but not type inference. Our im-
plementation performs inference in two stages: first inferring the base session
type for each channel, and then inferring the type indices. Separating out these
two stages not only simplifies the inference engine but rejects ill-typed programs
early. The first stage of inference collects the subtyping constraints and solves
them using a standard unification algorithm. The second stage extracts the arith-
metic constraints from subtyping and ships them to the z3 SMT solver [16]. To
improve the performance of type inference, we introduce 3 key optimizations
in both stages: (i) transitivity to eliminate the intermediate types in a process
definition, (4i) polynomial templates to reduce the search space of arithmetic
expressions for z3, and (iii) theory of reals to find a satisfying assignment faster,
which is then converted to natural numbers, if possible.

We analyze the efficacy of our inference engine and the performance improve-
ments provided by the optimizations using 6 benchmarks from the Rast language.
These include unary and binary natural numbers indexed by their value, lists
indexed by their size, and linear A-calculus expressions indexed by the size of the
term. We infer the type of a few standard processes, e.g., standard arithmetic
operations on numbers like addition and doubling; standard list operations like
append and split; and evaluation of expressions in the calculus. Our experiments
reveal that transitivity provides an order of magnitude performance benefit in
the first stage. Moreover, both polynomial templates and theory of reals are im-
portant to make the second stage feasible. Without these two optimizations, z3
times out on even the simplest of examples. We conclude that all 3 optimizations
are necessary to make inference scalable and practical.

To summarize, the paper makes the following contributions:

— A declarative definition of subtyping and a sound algorithm for subtyping
of refinement session types (Section 4),

— A type inference algorithm that generates typing and arithmetic constraints
and its proof of soundness (Section 5),

— An implementation (Section 6) of our inference engine along with the 3
optimizations, and

— An evaluation (Section 7) of our algorithm on 6 challenging benchmarks.

The supplementary material contains the complete set of subtyping and inference
rules along with proofs of soundness.

4 T. Ueno and A. Das

2 Motivating Examples

This section will informally introduce the main challenges underlying our type
inference engine through a series of motivating examples. We follow the syntax of
the Rast language [12, 15] for message-passing programs where communication
happens via bi-directional channels that are typed using a session type. This
session type can be viewed as being offered by a provider process, while being
used by a client process. To communicate safely, the provider and client must
perform dual matching actions, as governed by the type. Revisiting the example
of natural numbers, the basic type is defined as

type nat = @{zero : 1, succ : nat}

The & type is associated with a set of labels {zero,nat} of which the channel
provider can choose one to send. The type after the message transmission is
indicated by the colon: if the provider sends zero, the continuation type is 1
type, indicating termination and closing of the channel; if instead the provider
sends succ, the type recurses back to nat, meaning the protocol simply repeats.

Processes can be defined in Rast using a declaration describing the process
type and a definition describing the implementation. We follow the declaration
and definition of a process called two that represents the number 2:

decl two : . F (x: nat)
proc x < two = x.succ; x.succ; x.zero; close x

The first line shows the declaration: the left of the turnstile () shows the chan-
nels (and their types) used by the process, while the right shows the offered
channel and type. The two process does not use any channels, hence a dot (-)
on the left and offers channel x of type nat. The process definition for two (be-
ginning with proc) expresses that the process sends exactly two succ labels on
channel = (x.k denotes sending label k on channel x) followed by a zero label,
and then ultimately terminates by closing the channel x. Without type infer-
ence, Rast only supports type checking meaning the programmer is required to
provide both the process declaration and definition. The goal of this work is
to automatically generate the declaration given the definition, in the style of
languages like OCaml and SML.

Structural Subtyping in Inference At first, we might try a naive approach at
type inference to produce the most general type. For instance, if we are sending
label k on offered channel x, the most general type of x must be &{k : Ay}, where
Ay is the type of channel x after the communication. If we apply this technique
on the process two above, we will arrive at the following type:

proc x <— two = x.succ; % x: B{succ: B{succ: &{zero: 1}}}
X.succ; % x: ®{succ: ®{zero:1}}
X.zero; % x: ®{zero:1}
close x % x: 1

It is easier to follow this type inference bottom-up to build the inferred type
incrementally. The last operation on x is closing, hence its type at that point

Practical Refinement Session Type Inference 5

must be 1, as indicated by the comment on the right. Next, we send the label
zero, meaning the most general type for x must be ®{zero : 1} because this is
the simplest type that allows sending of label zero. Following this intuition for
the next 2 labels, we get the type of x to be &{succ : ®{succ : §{zero: 1}}}.

This type however is not satisfactory for a variety of reasons. First, this type
is not generalizable: the process types for one, two, three, ... will all be different
which, in turn, hampers code reuse. Even a programmer would be more inclined
to use nat as the process type. Second, this type would not be usable for a larger
process like add which needs to be defined for generic natural numbers, and
not every particular number and type. Second, although the generated type (or
the most general type) is correct for typechecking purposes, using this type in
type error messages would be unncessarily verbose and will progressively become
more incomprehensible as programs grow in complexity.

Evident from this is the necessity of a notion of subtyping: we would like to
have a system where @{succ : ®{succ : ®{zero : 1}}} is a subtype of nat. This
subtyping system must also account for the structural nature of types rather than
a nominal one. This is in contrast with refinement type systems for functional
languages like Liquid Types [38] and DML [47] where the base types can be
inferred using a standard Hindley-Milner inference algorithm. As will be evident
from our subtyping algorithm, there is no notion of base types in structural
type systems. Concretely, this decision entails that message labels like zero and
succ are not tied to the nat type specifically, unlike e.g. the constructors of an
algebraic datatype in most functional languages. For instance, we can use the
same constructors for multiple types as follows:

type even = ®{zero : 1, succ : odd} type odd = ®{succ : even}

And both even and nat are valid types for process two. Thus, our algorithm for
subtyping must analyze the (possibly mutually recursive) structures of types.
Our approach is to infer the most general type that is provided in the signature
by the programmer. With subtyping in place, we can say that a process offers
a channel of the most general type or any valid supertype, thereby significantly
increasing readability while maintaining correctness.

2.1 Introducing Refinements

The notion of subtyping becomes more involved in the presence of arithmetic
refinements. For instance, revisiting the refinement of natural number type:

type nat[n] = @{zero : ?{n = 0}.1, succ: ?{n > O}.nat[n — 1]}

The refinements enforce that the provider is only permitted to send the zero
label when n = 0, and the succ when n > 0, respectively. By specifying refine-
ments on types, we are able to convey more type-level information about our
processes: for instance, we can guarantee that the amended two process will send
ezactly two succ messages if the offered type is nat[2].

decl two : . F (x: nat[2])
proc x < two = x.succ; assert x {2 > 0}; x.succ; assert x {1 > 0};
x.zero; assert x {0 = 0}; close x

6 T. Ueno and A. Das

We describe the implementation of the process to show how the proof obligations
are upheld. Each time we send a succ message, we need to send a proof that
n > 0 which is achieved using an assertion. Therefore, the process sends first
asserts that {2 > 0} after sending succ when the type of x is nat[2]. After this,
the type transitions to nat[1], hence the process sends another succ followed by
asserting that {1 > 0}. Finally, the type transitions to nat[0], hence the process
sends the zero label and an assertion that {0 = 0} and closes.

As can be observed from this example, these assertions add a significant
syntactic overhead on the programmer. To eliminate this burden, our inference
algorithm also performs program reconstruction which inserts these assertions
automatically. Our inference engine deduces these assertions by following the
type structure of the refined nat type. Remarkably, this reconstruction is per-
formed effectively even if multiple types (e.g., even, odd, nat) are using the same
label constructors.

Refinement Inference. In addition to inferring type names like nat, we must
also infer the refinements on those types. These refinements are not guaranteed
to be numbers, as in the two process; rather, they are arbitrary expressions
which can involve free arithmetic variables. The following process, which adds
two numbers, is shown after reconstruction, but before refinement inference:

decl add[m][n]: (x: nat[e®(m,n)]) (y: nat[el(m,n)]) - (z: nat[e2(m,n)])
proc z < add[m][n] x y = case x (
zero = assume x {e@(m,n) = 0}; wait x; z <> vy
| succ = assume x {e@(m,n) 0};
z.succ; assert z {e2(m,n) > 0};
z < add[m-1][n] x vy)

\

The add process case analyzes on x. If x sends the zero label (meaning x is 0),
we simply identify channels y and z (equivalent to returning y) in a functional
setting. On the other hand, in the succ branch, we assume that x is greater
than 0, we send the succ label on z followed by asserting that ea(m,n) > 0 (as
required by nat type). Finally, we recurse by calling the add process again.
Suppose we have already determined that each channel has type nat; we must
still find expressions eg, e1, and e, in variables m, n such that all of our assertions
hold. We delegate this non-trivial task to z3: we first identify any constraints on
any candidate expressions, e.g. that eg(m,n) = 0 implies ea(m,n) = e1(m,n)
since channel y is forwarded on to z in the zero branch. Similarly, in the succ
branch, we get that eg(m,n) > 0 implies ex(m,n) > 0. With these constraints,
we query z3 to find a satisfying assignment for our refinements. In the case of
add, we would expect that eg(m,n) = m, e;(m,n) =n, and ea(m,n) = m + n.
Naturally, our first attempt was to treat e;’s as uninterpreted functions, which
z3 has the ability to solve for. We simply shipped our constraints over to z3,
asking for a satisfying assignment. In practice, however, this approach is not
feasible: either the solver times out or it returns a non-polynomial expression that
cannot be expressed in our refinement layer, such as if-then-else constructs. Thus,
we first substitute each expression with a polynomial template: for instance, we

Practical Refinement Session Type Inference 7

transform eg(m, n) into com-+cin+-co, and only ask z3 to solve for the coefficients
¢;’s. Any expression in our language takes this form, so we lose no generality,
and we find that this optimization greatly improves both the reliability and
performance of z3. In fact, polynomial templating is only one such optimization
which enables our algorithm to succeed on reasonably complex examples; we
detail others in Section 6.

3 Background on Refinement Session Types

We describe the language of session types upon which we implement type in-
ference. We first introduce the basic session types, which constitute the core of
our communication protocols, followed by the refinement layer, which extends
the core with constructs to send and receive proofs and witnesses. We include
detailed examples of each type constructor in Appendix A.

3.1 Basic Session Types

Our basic session type system is in correspondence with intuitionistic linear
logic [5]. The types allow exchange of labels, other channels, and close, i.e.,
termination messages. The type and process syntax is defined as:

A, B = @ {l: Av}oer | &{¢: As}ser. (internal and external choice)

| A9 B|A— B (tensor and lolli)

|1V (unit and type variable)
P:=xk;P|casex ({= P) (send and receive labels)

|sendze; P|ly<«recva; P (send and receive channels)

| close z | wait ; P (close and wait for close)

|z eyl fy; P (forward and spawn)

The structural types are divided into pairs of dual types— namely, we say &
and & are dual to each other, as are ® and —. The dual of a type exhibits
communication in the opposite direction. For instance, a provider of a channel
x of type ®{¢ : As}ser, must send one of the labels k € L via the expression
x.k and continue as Ay. Dually, if a provider offers x : &{¢: As}scyr, it receives
a label in L, which it case-analyzez via the expression case z (¢ = F;); the
process continues as P, and the channel as Ay. The other types, ® and —o, are
analogous, but for sending channels instead of labels: provider of z : A ® B will
send a channel e of type A via send x e. Dually, a provider of x : A — B will
receive a channel of type A which it binds to y via y < recv z. Finally, a provider
of (z : 1) must use close x to terminate channel x and the process, while the
client takes the form wait x ; P, i.e., waits for = to close and then continue as
P. The remaining pieces of syntax, ¢ < y and x < f 7y, refer to forwarding
and spawning, respectively. Forwarding = <> y means that we identify channels
x and y passing all messages between them, and spawning a new process f is
analogous to a function call in other languages: we provide f with channels 7
and receive a channel x back. Finally, note that a process offers one channel and
consumes any number of other channels. And the role of a type flips based on
whether it is provided or consumed.

8 T. Ueno and A. Das

3.2 Refinement Layer

Types are refined using the following type and process constructs:

A= Mo} Al Yo} A (assertion and assumption)
| In.A | Vn.A (quantifiers)
| Vel (indexed type variable)

P ::= assert x {¢} ; P|assume x {¢} ; P (assert and assume)
| send x {e}; P | {n} + recvz; P, (send and receive witnesses)

The crucial types for verifying program behavior are 7, and its dual, !. When
we provide (z : 7{¢}.A), we send a proof of ¢ along x via assert x {¢}, and the
client of = receives this proof of ¢ via assume x {¢}. Note that no actual proof
objects are sent at runtime; instead, we merely communicate that such a proof
exists. As before, the dual (x : [{¢}.A) reverses the direction of communication,
allowing for the provider of = to receive a proof and for a client to send one. We
also allow channels to send and receive witnesses through the quantifier types 3
and V. A provider of (z : In. A) sends a witness expression e via send z {e}, a
client of x receives the value of e for n and substitutes [e/n]A in the continuation
via {n} < recv z. Type Vn. A exhibits dual behavior. We use these witnesses to
communicate natural numbers which can themselves be used in future assertions
and assumptions. For instance, we could write 3k. 7{n = 2 x k}.nat[k] to signify
that n is even and k is its witness.

The language for arithmetic expressions e and propositions ¢ is standard and
described below. We use i to denote constant numbers and n for variables.

ex=ilet+e||le—e|exe|n
pu=e=cle>e|T|L|-¢|pVe
Although, in principle, our grammar allows arbitrary polynomial arithmetic ex-

pressions, most of our examples are restricted to linear expressions. We found
that for any higher-degree polynomials, inference via z3 becomes infeasible.

3.3 Type Variables and Signatures

We operate within a signature X' containing type definitions, process declarations,
and process definitions as follows:

Yu=- |2 Vin|¢|=A
| X,AE f[n] (20 A)
| Xz fn]y=P
A= | A(z: A

(type definition)
(process declaration)
(process definition)
(process context)

The type definition V|7 |] = A means that V is indexed by some refinements
7 such that ¢ holds; when we write V[e], we interpret this as A[e/n]. We adopt
an equirecursive and structural approach to types, foregoing any explicit com-
munication for unfolding. The process declaration A &= f[r] 1 (z : A) tells us

Practical Refinement Session Type Inference 9

that f offers a channel z of type A, and that f consumes all channels x of type
Ain A. The process f is also indexed by some refinements 7 which can be freely
used in the types in A and A. Its corresponding definition = < f[n] 5y = P
is likewise indexed by 7, but instead of type information, gives us the process
expression P for f using channels x and y. Again, variables in 7 can appear
freely in definitions, e.g., in assertions and assumptions.

4 Subtyping

To define a subtyping algorithm and prove its correctness, we must first begin
with a semantic definition of subtyping, which is adopted from Gay and Hole
[20]’s definition using a type simulation.

Type Simulation Our definition of a type simulation generalizes prior work by
Das and Pfenning [14], who defined a type bisimulation for the purposes of type
equality. We rely upon the notion of closed types: a type is closed if it contains
no free arithmetic variables. To account for types with refinement variables, we
introduce the notion of wvalidity. Recall that the signature X' collects all type
definitions of the form V@ | ¢] = A. This signature is then called valid if the
implicit constraint ¢ holds for all occurrences V[e] in the signature. Formally, if
V'[e] appears in any type definition in X, then F ¢[e/m]. We further require a valid
signature to only contain contractive type definitions, disallowing definitions of
the form V[| ¢] = V'[e]. We include a complete formal definition of valid types
and signatures in Appendix B.

Definition 1. On a valid signature X, we define unfolds(Ve]) = Ale/n] if
Vin| ¢] = A € X and unfolds(A) = A otherwise (when A is not a type variable).

Definition 2 (Type Simulation). A relation R on closed, valid types is a
type simulation under X if, for any types A, B such that (A, B) € R, when we
take S = unfolds(A) and T = unfoldx(B), the following holds:

i) If S = &{l : Ag}eer, then T = &{m : By }mem- Also, L C M and
(A¢,Be) € R for all £ € L.
i) If S = &{€ : Ai}eer, then T = &{m : Bp}menm- Also, L 2 M and
(A, Bin) € R for allm e M.
’LZZ) IfS = A ®A2, then T = B1 ® B>. AlSO, (Al,Bl) € R and (AQ,BQ) € R.
iU) IfS = Ay — Ay, then T = By — B>. Also, (Bl,Al) € R and (AQ,BQ) € R.
v) If S=1, then T =1.
vi) If S = {¢}.A, then T = {}.B. Also, either E ¢, E ¢, and (A, B) € R;
or E —¢.
vig) If S = {¢}. A, then T = {y}.B'. Also, either E ¢, E ¢, and (A, B) € R;
or E —.
vigi) If S = 3Im.A, then T = In.B. Also, Vi € N we have (A[i/m], B[i/n]) € R.
ir) If S =Vm.A then T =Vn.B. Also, Vi € N we have (A[i/m], B[i/n]) € R.

Each type constructor has a corresponding case in Definition 2 which intu-
itively reduces to the notion that the first type in a pair A should simulate the

10 T. Ueno and A. Das

behavior of the second type B. Concretely, the communication behaviors allowed
by A must be a subset of behaviors allowed by B. For instance, in case (i) for @,
we require that the label-set for A is a subset of the label-set for B i.e. every label
that a provider of A can send can be received by a client of B but not vice-versa.
Likewise, case (iv) for S = A; —o As and T' = B; — Bs notably adds (B, A1)
to R since —o (like arrow types) is contravariant in the first argument. Cases
(7) — (v) have been borrowed from Gay and Hole [20]’s subtyping definition.

Worth noting are novel cases (vi) — (ix) as they concern refinements. Case
(vi) states that for ?{¢}. A, either ¢ must be true or false. In the former case,
¥ must also be true and (A, B) € R. However, in the latter case, the relation
holds vacuously since the provider of such a channel will cease to communicate,
which effectively simulates any continuation type. Case (vii) is analogous but
flips the directionality of constraints. Finally, case (viii) (resp. (iz)) say that a
quantified type Im. A (resp. Vm. A) simulates another one if all substitutions
of m are already in the type simulation. With type simulations in tow, we then
define subtyping simply as follows:

Definition 3. For closed valid types A and B, we say A <: B, i.e. A is a
subtype of B, if there is a type simulation R such that (A, B) € R.

4.1 Algorithmic Subtyping

Subtyping is fundamentally undecidable in the presence of refinements. This
fact is entailed by the fact that even the simpler problem of type equality is
undecidable in the presence of refinements, as shown by prior work [14]. Nev-
ertheless, we propose a sound algorithm which approximates subtyping, ex-
pressed via a series of inference rules with a primary judgment of the form
V:C; I'lFA<:B. Here, V and C respectively represent the list of free arith-
metic variables and the governing constraint, and we likewise invoke the auxiliary
judgment V ; C F ¢ to represent semantic entailment. I" is a list of closures of
the form (V ; C ; Vifer] <: Vz[ez]) that have already been encountered which
we capture for the purposes of loop detection. We omit some standard rules for
brevity; the full series of subtyping rules can be found in appendix C.

Figure 1 describes selected rules for subtyping concerning arithmetic refine-
ments, where the most interesting rules are sty and st rules. The first premise
of rule sty states that ¢ must imply v, capturing the intuition of Definition 2
that either ¢ and v both hold or ¢ is false. The second premise requires that
continuation type A must be a subtype of B under the constraint C A ¢. Rule st
is analogous, only flipping the direction of implication, similar to Definition 2.
Rule st; handles the cases where the constraint C is contradictory. Under such
a constraint, arbitrary types A and B are subtypes since such a situation will
never arise at runtime. This rule comes in handy when type checking branches
that are impossible due to refinements (e.g. zero branch on type nat[n + 1]).

The heart of loop detection lies in the steypq and stqer rules, each of which may
apply when we encounter type names Vi[e7] and V;[€3]. stexpd effectively unrolls
those type names according to our signature X, but it also generates a closure

Practical Refinement Session Type Inference 11

ViCEd =% ViCA¢:;TIFA<: B

t
ViCiTIF 2{6).A <: 1{u).B St
V,CEY— ¢ V;CANY; T'FA<: B . V;CE L .
V.C:TIF{¢}.A<: {4}.B = ViC:TFA<B ™~
Viltilp1] = A€ X W ul¢]=Be X ~v=(V;C; Ve <: Vaez])
Vi C; Iy IF Aler/vi] <: Blez /2] .
Sex
VC; I Viler] <: Valea) P
ViciViE <Vl er VicrV A =anG =a
Stdef

V;C; 'k Vifer] <: Valez]
Fig. 1: A selection of rules for the subtyping algorithm.

~ and adds it to our context I', denoting that we have “seen” V7 and V5, refined
by these particular expressions €; and €3, under this particular V and C. Now
if, later in our algorithm, we encounter those same V; and V5 again, we eagerly
follow the stges rule. Our new V and C are likely different than those in 7, so
the second premise asserts (informally) that we can find a substitution between
them, and if such a substitution does exist, we conclude that our algorithm
succeeds. This coinductive structure allows our algorithm to handle types which
could otherwise be expanded infinitely. This is also the source of incompleteness
of our algorithm: since we can only expand a finite number of times, we must
apply the stger rule eventually, which may then fail to detect a loop.

4.2 Soundness

We now prove that our algorithm is sound with respect to Definition 3. Proving
subtyping of A <: B effectively reduces to constructing a type simulation R such
that (A, B) € R. The main intuition here is that such a type simulation can be
constructed from the subtyping derivation built using our algorithmic rules. We
here motivate the key ideas; a full proof sketch can be found in Appendix D.

Definition 4. We define YW.C — A <: B (read: for all V, C implies A is
a subtype of B) if there exists a type simulation R such that, for all ground
substitutions o over V such that = Clo], we get (Alo], Blo]) € R.

This definition extends the idea of subtyping from closed types (e.g., nat[2]) to
symbolic types (e.g., nat[n]). This is necessary since our subtyping algorithm
works on symbolic types. The intuition behind this definition is that A is a
subtype of B if for all substitutions o that satisfy C, A[o] is a subtype of Blo].
As an example, we can say Vn.n > 0 — nat[n] <: nat[n] because nat[1] <: nat[1],
nat[2] <: nat[2], and so on.

Definition 5. Given a derivation D of V ; C ; I' IF A <: B, we define the set
of closures S(D) such that, for each sequent V' ;C' ; I IF A’ <: B’, we include
(V';C; A <:B') e S(D).

12 T. Ueno and A. Das

This set of closures from a derivation is exactly what we need to construct the
type simulation. The key idea here is that for a valid derivation, all these closures
must represent valid subtyping relations as well. Finally, the type simulation
is constructed by applying ground substitutions to all closures found in the
derivation. This intuition is captured in the following theorem.

Theorem 1 (Soundness). IfV;C;-IF A<: B, thenVV.C — A <: B.

Proof. By construction of the type simulation
R ={(Alo],Blo]) | (V;C;A<:B) € S(D) and o :V and FE Clo]}

We show in Appendix D that R is indeed a type simulation.

5 Inference Algorithm

This section presents our rules for constraint generation, which form the the-
oretical backbone of our type inference algorithm. The rules themselves are in
close correspondence with the standard typechecking rules for our language. Our
primary judgment takes the same form V ;C ; A+ P :: (2 : C) for a program
P offering channel z of type C, and consuming all channels (z : A,;) € A. As
with subtyping, we also operate within the context of a list of free arithmetic
variables V and a governing constraint C. For comparison, we include below the
typechecking rule for G R:

(kel) ViC; AP (z: Ag)

-®R
ViCiAFak: P (z: {0 Adeer)

Since we are doing inference as opposed to typechecking, we amend this rule to
reflect that we are not given x’s type structure a priori. We treat it instead as a
variable to which we apply a type constraint, which conveniently takes the form
of the subtyping judgment V ; C F A <: B for types A and B asserting that A is
a subtype of B. We highlight the introduced intermediate type names and new
arithmetic variables in blue, and assume all such names are fresh.

V;Clke{k:B}<: A V;C; A P:(z:B)

R
ViC;Abak; P:(x: A ©

Our resulting @R rule is a simple structural rule which generates a single sub-
typing constraint. Informally, when we encounter the program A+ x.succ; P ::
(z : A), we know that A must be a @-type, and that it must contain the label
succ: both pieces of information are captured via the type constraint premise.
We would then continue our algorithm on the latter premise with the freshly
introduced intermediate type B. The other structural rules are analogous and
omitted for brevity.

The above rule (and all structural rules) only create type constraints. In
addition, some rules yield constraints of another sort: arithmetic constraints,
which take the form of semantic entailment V ; C F ¢ for a proposition ¢,

Practical Refinement Session Type Inference 13

asserting that ¢ holds under V and C. These rules are generated for the refinement
type constructors that are responsible for exchanging proofs. In what follows, we
highlight a few representative rules. A full list can be found in Appendix E.

ViCE¢ ViClIF?{¢} A" <: A V;C;A}—P::(x:A’)VR
V;C; At assertx {¢}; P::(x: A) ‘

The ?R rule is notable for introducing both an arithmetic constraint and a
type constraint. The arithmetic constraint mirrors that of the corresponding
typechecking rule, and simply states that ¢ must hold. Our type constraint,
in tandem with the subtyping rules, asserts that A must have the structure
?2{1}.A’ for some 9, but ¢ need not be identical to ¢: we instead must have
V;CE ¢ — 1, ie. ¢ is stronger than 9.

Vi;ClkA<: o} A ViCAp; A (z: AVFQ = (2:0)

V;C; A (x:A)Fassumez {¢};Q = (2:C) L

If the channel of the same type appears in our context A, we instead apply the
7L rule. In right rules, we see that the freshly generated type appears to the
left of the subtype constraint. In contrast, for all left rules, the fresh type falls
on the right due to the duality of types. When we offer a channel (z : C), we
want that our declared type is broader, or a supertype, of whatever our program
necessitates— e.g. we might declare (z : nat) even if our process only sends
the zero label. Conversely, if we consume a channel (z : A), we need A to be
narrower, or a subtype, of what our program dictates, i.e. the program should
be able to handle any of A’s behavior. In this instance where A = 7{¢}. A’ for
some ¢, subtyping dictates that 1 should be at least as strong as ¢, since if A
"sends" a proof of ¥, we consequently receive a proof of ¢.

V;CEe>0 V:ClF3dn.A <: A ViC;AFP:(x: A)
V;CAn=e;Arsendz {e}; P: (z: A

JR

The JR rule again contains both an arithmetic and a type constraint. The arith-
metic constraint dictates that whatever expression we send should be a natural
number, i.e., e > 0 to maintain the invariant that all witnesses are natural num-
bers. Of special note in this particular rule is that, since we are doing inference,
we cannot perform a substitution A’[e/n] as in typechecking, since we lack any
information about where n might occur in the fresh name A’. As a tidy solution,
we instead store the substitution as an equivalence in our governing constraint
C, such that any further continuations have access to the value of n without our
needing to know ahead of time.

(yi:Blier - fIn| gl =P (2’ - A)e X
V;CA¢le/n|l-A'le/n] <: A (iel) V;CAd¢le/n] - B; <: Bile/n]
Vi;C; A (x: Ale/n])FQ :: (z: C)

ViCi A (yi: Bi)ier o flE]ly;Q:(2:C)

def

14 T. Ueno and A. Das

Our final example, the def rule for spawning processes, is noteworthy for inter-
acting with the signature: our declaration of f has A" and B as type variables,
which are constrained both by the body P; of f and here by our spawning of
f. Our subtyping constraints are deceptively straightforward: for each channel
(y; : B;) consumed by our spawning of f, we compare it with the corresponding
channel in the declaration (y, : B}) of f, and we assert that the "real" type B; is
a subtype of the "expected" type B.. Conversely, we also constrain the offered
type A’ of f such that A’ is a subtype of our fresh variable A.

In practice, the def rule is especially important in that it generates the ma-
jority of our arithmetic constraints, despite not generating any as an explicit
premise. To solve type constraints, we apply our subtyping algorithm as pre-
sented in Section 4, which consequently generates arithmetic constraints. We
elaborate further on the relationship between type and arithmetic constraints,
as well as the constraint solving process as a whole, in the following section.

We conclude with a statement on the soundness of our inference algorithm:

Theorem 2. Let z < f[V] T; = P be the definition of a process f. For fresh
type names A; and C such that (z: C) and A = (x; : Aj)vi, and if V ;T ; Ak
P::(z:C), then P is a well-typed process.

6 Implementation

We implemented the type inference algorithm on top of the Rast implementa-
tion [12], which already supports lexing, parsing, and typechecking for session
types with arithmetic refinements. The inference engine consists of 2,069 lines of
SML code, and integrates with the z3 SMT solver [16] to model arithmetic con-
straints. Our general approach begins by introducing placeholder declarations
for each process in the file; for every definition proc x < f[V] x1 x2 ... xn,
we introduce the declaration

decl f[V] : (x1 : Ajfer]) (x2 @ Asfez]) ... (xn @ Aplen]) B (x :+ Ale])

where each type Ay, Ao, ..., A,, Ais a fresh type variable refined with arithmetic
expressions e;(V) over the free variables V of the process. Our goal is to find a
type assignment which maps each type variable to a concrete type name declared
in the program, as well as an expression assignment which maps each e; to a
symbolic arithmetic expression. Theorem 2 dictates that these assignments result
in a well-typed program, which is validated by running the Rast type checker
on the inferred types. We follow a discussion of how this inference is carried
out in two stages, the practical challenges we faced, and the optimizations we
introduced to address them.

Two-Stage Inference When inferring the type of a process, we form con-
straints of two different sorts: type constraints and arithmetic constraints. Our
constraint generation rules on processes create both sorts, and our subtyping al-
gorithm, which we use to solve type constraints, may yield additional arithmetic
constraints that must also be satisfied for inference to succeed.

Practical Refinement Session Type Inference 15

At first, it might be tempting to solve both sorts of contraints in a unified
pass. However, this becomes infeasible in practice. To see why, first note that
arithmetic constraints cannot be solved eagerly due to the presence of process
spawns. Consider a process foo that calls the two process twice, assigning the
offered channel to y and z respectively.

decl two: . F (x: Ale()])
proc x < foo =y < two; z < two;

Both calls to two in the foo process will generate constraints on type Ale()], which
in turn will generate multiple distinct arithmetic constraints on e. Since e must
be the same in both constraints, it is insufficient to demonstrate the satisfiability
of these two constraints independently; a solver might otherwise invalidly assign
different values to e. Thus, we must first collect all arithmetic constraints and
then solve them all in one large batch.

However, taking this approach and otherwise following the rules as written
leads to remarkable blowup in the number of constraints we generate and ex-
pensive solver calls we must make. The primary reason for this blowup is the
presence of the st rule, which dictates that arbitrary, even mismatched, types
can be subtypes under constraint C as long as C is false. Thus, whenever we
might be tempted to return false when subtyping on a structural mismatch,
such as V ; C F A <: B, we must instead add to our arithmetic constraint set the
constraint ¥V ; C F L. Thus, in this naive approach, we are not able to rule out
any type assignments without making a solver call, which becomes prohibitively
expensive due to the exponential number of possible assignments.

We therefore chose to restrict the programmer from writing any dead code;
that is, code where V ; C £ L. This restriction has a number of consequences,
but the essential one is that we can now rule out type assignments on structure
without checking whether C is satisfiable. Taking advantage of this restriction,
we split type inference into two stages: the first stage operates solely upon type
structures, where all refinements are stripped from the program, and yields a
list of structurally viable type assignments; the second stage reconsiders the
refinements for a specific type assignment, collecting the resulting arithmetic
constraints and passing them into the z3 SMT solver. This two-stage approach
has the additional benefit of drawing a clean boundary between the decidable
and undecidable fragments of our algorithm: in particular, type inference without
refinements is decidable, and so we can return determinate error messages upon
encountering a type mismatch.

6.1 First Stage of Inference

The first stage collects the constraints generated during type checking and sub-
typing, strips off the refinements, and proceeds to compute a type assignment.
Since this stage is actually decidable, our algorithm is guaranteed to terminate
and either find a satisfying type assignment, or report a type error. Thus, if the
program is ill-typed due to structural typing (i.e., without refinements), then it
is guaranteed to be detected.

16 T. Ueno and A. Das

Transitivity As described, our type constraint generation rules produce a fresh
“intermediate” type variable for every process expression we encounter. For in-
stance, revisiting the two process and recalling the @R inference rule from Sec-
tion 5, we will generate the following constraints:

decl two : . F (x : A)
proc x < two = X.succ;

o°

@{succ: I} <: A

X.SUCC; % @{succ: 1} <: I
X.zero; % @®{zero: L} <: I
close x % 1<:1y

We generate fresh intermediate type variables (denoted by I,,) as a placeholder
for the continuation type. If we do not distinguish between these intermedi-
ate variables and the “signature” variables (e.g., A) which we introduce in our
declarations, we will generate a large number of constraints, putting a heavy
load on our inference engine. To make matters worse, when these types have
index refinements, each such intermediate variable will also create arithmetic
constraints, which will make constraint solving infeasible for z3. This imposes a
serious limitation on the scalability of inference.

We address this limitation with a crucial observation: if A <: B, then so is
®{k : A} < ®{k : B}. To see this in action in the above example, note the
second constraint: @{succ : I1} <: Iy from which we can deduce via transitivity
that @{succ : ®{succ : I1}} <: ®{succ : Ip}. Combining this with the first
constraint via transitivity, we get &{succ : ®{succ: I }} <: &{succ : Iy} <: A.
Now, we can eliminate the intermediate variable Iy to obtain that @®{succ :
®{succ : Iy }} <: A. Taking this all the way, we can eliminate all intermediate
variables to obtain ®{succ : ®{succ : ®{zero: 1}}} <: A.

This observation leads to the most significant optimization in our inference
engine, which we call transitivity. It partly relies on transitivity of subtyping.

Theorem 3 (Transitivity). If A <: B and B <: C, then A <: C.

Before we generate a type assignment, we perform a transitivity pass, which
eliminates intermediate variables whenever possible. This dramatically reduces
the number of type and arithmetic constraints, leading to significant speedups in
inference, which we evaluate in Section 7. Not all intermediate variables will be
removed by transitivity though—specifically, forwarding between channels which
have both previously been communicated on will result in a type constraint of
the form V ; C E Iy <: I7. In such cases, we choose I; to perform any appropriate
substitutions by transitivity, and we leave Iy "free", that is, unconstrained—I
will only appear in the continuation type of another constraint.

Once the intermediate variables are eliminated, we assign, to each remaining
type variable, an initial search space consisting of each defined type name in the
file. Then, for each type variable, we substitute the type variable with one type
from its search space, and run a partial version of subtyping on any relevant
constraints. This modified subtyping algorithm stops eagerly upon encounter-
ing two (non-identical) type names, and returns either a reduced constraint or

Practical Refinement Session Type Inference 17

simply true or false. Failed candidates are removeed from the search space while
successful ones remain, and might get pruned away due to refinements.

Program Reconstruction The refinement-agnostic first stage also allows us to
reconstruct each process definition according to its assigned type, adding back
in assertions and assumptions. We take the approach of forcing calculus [15], ea-
gerly assuming whenever possible and lazily asserting when absolutely necessary,
guaranteeing that any assertions “see” all possible assumptions. Reconstruction
also means that the programmer no longer has to manually write assertions
or assumptions— a labor-intensive process which significantly bloats the source
code, offsetting many potential practical benefits of type inference. We also re-
construct impossible branches, in line with our restriction that the programmer
cannot themselves write unreachable code. Specifically, if a label in the type of
a label-set is absent from a case statement, we manually insert it and say that
it is impossible. This approach, in tandem with the two-stage solution, consti-
tutes our solution to the aforementioned impossible-blowup problem: in the type
solution stage, we assume that C is never false, which permits us to eliminate
possible type assignments on structure.

6.2 Second Stage of Inference

In the second stage, we collecting the arithmetic constraints and attempt to
find a satisfying assignment. Since our first stage has already provided us with
structurally sound type assignments, we generally skip over structural constructs
which are not refinement-related. However, we pay extra attention to the judg-
mental constructs forward and spawn, since they imply subtyping relations be-
tween their operands. For these, we run the complete subtyping algorithm and
collect any resulting constraints. This generation substage yields a list of arith-
metic constraints which are shipped off to z3 [16], which, if they are satisfiable,
returns values which we can parse into an expression assignment. If z3 fails to
find a solution, i.e., either because there is none, or the problem is undecidable,
or due to a timeout, we say there is no solution and move on to the next type
assignment if there exists one. Note that this stage actually attempts to solve an
undecidable problem, hence our algorithm is incomplete. However, because of
our numerous optimizations and heuristics, it works remarkably well in practice.

Polynomial Templates The bulk of our implementation effort went towards
coercing z3 into cooperating with our style of constraints and scaling it to a
wide variety of challenging benchmarks. We translate our arithmetic constraints
of the form V ; C F ¢ into the logical formulas VV.C = ¢, where C and ¢
include expression variables e;()V) which we want to solve for. Our initial ap-
proach was to treat e;’s as uninterpreted functions and rely solely upon z3’s
built-in uninterpreted function solver. Unfortunately, this approach turned out
to be insufficient for even the most trivial examples: even when z3 did not time
out, it would return a function interpretation which was piecewise or otherwise
inexpressible in our language for arithmetic expressions.

18 T. Ueno and A. Das

Our next optimization is based on the observation that we only allow re-
finement expressions that are polynomials over the quantified variables. Tak-
ing advantage of this, we represent each expression as a multivariate poly-
nomial of degree d, and solve for all introduced coefficients. For instance, if
d = 2 and we have free variables m,n for an expression e, we say e(m,n) =
co + c1m + con + csm? 4 camn + csn?. By providing this template to the solver,
we greatly restrict the number of possible interpretations which z3 must consider
relative to purely uninterpreted functions, thereby reducing the solver burden
significantly. Although this technique practically worked mostly for degree d = 1,
in principle, we can support non-linear refinements through this approach.

Real Arithmetic Our refinements only allow natural numbers, and do not sup-
port real values in arithmetic expressions. However, we found that z3 stalls less
frequently if we solve within a real-valued logic, as opposed to an integer-valued
one. Of course, with this approach we risk z3 returning non-integer values when
modeling our coefficients, which must ultimately be integers, but this occurrence
turns out to be much less frequent than expected. Oftentimes, z3 simply returns
exact integer values, even when the same constraints would time out for an in-
teger logic. When z3 does return a floating-point value, we fall back to trying
integer logic.

7 Evaluation

Methodology We evaluate the performance and efficacy of our inference algo-
rithm on a variety of challenging benchmarks, that are known to be well-typed.
Experiments were performed on a 2021 MacBook Pro with 16GB of RAM and
an 8-core M1 Pro CPU. For each benchmark, we present the execution time of
both stages: type constraint solving (Stage 1) and arithmetic constraint solving
(Stage 2). We evaluate the efficacy of our three key optimizations as follows:

— Polynomial Templates: We run our inference engine with two strategies: uif
stands for uninterpreted functions, while poly stands for using polynomial
templates.

— Real Arithmetic: Our calls to z3 also have two modes: real stands for real
arithmetic, while int stands for integers.

— Transitivity: We enable/disable transitivity which eliminates the intermedi-
ate type variables, so that we do not need to find a satisfying type assignment
for them.

Our results are summarized in Tables 1-6, each table representing one bench-
mark. For all experiments, each call to z3 was set to timeout after 10 seconds,
and each trial, which might make multiple such calls, was run for a maximum of
60 seconds in total. All numerical results are averaged across 10 trials, rounded
to the nearest millisecond.

Our algorithm yields four possible results:

— success: inference finds a valid type and arithmetic assignment,

Practical Refinement Session Type Inference 19

Strategy | Arithmetic | Transitivity | Result | Stage 1 (ms) | Stage 2 (ms)
poly real true success 0.77 303.97
poly real false success 11.55 297.94
poly int true timeout n/a n/a
poly int false timeout n/a n/a
uif real true timeout n/a n/a
uif real false timeout n/a n/a
uif int true timeout n/a n/a
uif int false timeout n/a n/a

Table 1: Unary Nats: 60 lines of code, 3 types, 7 processes

— timeout: either a call to z3 for a particular type assignment fails to return
within the specified 10-second limit, or the overall algorithm execution time
exceeds the 60-second limit,

— inexpressible: when z3, under uif mode, returns an expression assignment
that cannot be expressed by our arithmetic language, e.g., expressions con-
tain if-then-else constructs; or in the real arithmetic case, a floating-point
number is returned that cannot be converted into an integer.

Technically, there is a fourth possibility as well: if the program is ill-typed, our
inference algorithm returns unsat. However, for our evaluation, we chose to
focus on well-typed benchmarks.

7.1 Results

For each benchmark, we briefly explain its contents, present the experimental
results, and discuss any notable findings.

Unary Natural Numbers This benchmark primarily contains the refined nat-
ural number based on the types

type nat[n] = ®&{zero : ?{n = 0}.1, succ: ?{n > 0}.nat[n — 1]}
type natpair[m][n] = nat[m] ® nat[n] ® 1

The second pair type is necessary for duplicating numbers due to linearity re-
strictions. The module includes 4 main processes and 3 helper and test processes:
add for adding two numbers, clone for making a copy of a number, consume
that consumes a nat to return 1, and double which doubles a number using
clone and add.

Table 1 describes the results of our inference algorithm along with the lines
of code, and number of type and process definitions. First, we note that infer-
ence succeeds only when we use both real arithmetic and polynomial templates.
Transitivity further produces an order of magnitude speedup in Stage 1, with
only a minimal increase in Stage 2. As was expected, Stage 2 takes 1-2 orders
of magnitude time more than Stage 1, since it involves calls to z3. The types
inferred in each case were as expected, for example

decl add[m][n] : (x : nat[m]) (y : nat[n]) & (z : nat[m+n])
decl double[n] : (x : nat[n]) F (y : nat[2xn])

20 T. Ueno and A. Das

Strategy Arithmetic | Transitivity Result Stage 1 (ms) Stage 2 (ms)
poly real true success 0.47 118.89
poly real false success 4.03 118.23
poly int true timeout n/a n/a
poly int false timeout n/a n/a
uif real true inexpressible 0.45 22.46
uif real false inexpressible 4.12 22.00
uif int true inexpressible 0.48 22.69
uif int false inexpressible 4.37 19.74

Table 2: Direct Nats: 47 lines of code, 3 types, 7 processes

Direct Natural Numbers An alternative representation for natural numbers
is directly through refinements, via the type nat = dn.1. Instead of sending ‘n’
succ messages, this type produces a single natural number as a refinement and
terminates. This benchmark contains all the same programs as unary naturals,
but with this modified representation.

Table 2 describes the results of our experiments. Successful satisfying as-
signments again only occur for the specific combination of polynomial tem-
plates along with real arithmetic, regardless of transitivity. With uninterpreted
functions, inference does find a solution but heavily relies upon the aforemen-
tioned if-then-else constructs to effectively case-analyze the constraints instead
of finding linear solutions. For instance, if we use add[m/|[n] only as add[2][3] and
add[4][5], then instead of outputting the expected expression m + n, z3 outputs
if m = 2 then 5 else 9.

Binary Numbers A more efficient representation of natural numbers is in their
binary form. Instead of sending n succ messages, a type can send [log, n] 0’s
and 1’s. This representation is captured in this benchark which introduce a type
bin[n] which can send labels b0, bl, or e, representing 0, 1, and termination,
respectively. We encode them in little endian format, i.e. the least significant
bit is sent first, which makes implementations more convenient and types more
intuitive. The refinement indexes their value.

type bin[n] = &{bO : ?{n > 0}.3k. ?{n = 2k}.bin[k],
bl:?{n > 0}.3k. ?7{n = 2k + 1}.bin[k],
e: {n=0}1}

The type of bin[n] signifies that the provider can either send labels b0, b1, or e.
In the case of b0, the provider provides a proof that indeed n > 0 and produces
a new number k such that n = 2k, meaning that n is even. Analogously for b1,
the provider asserts that n > 0 and is odd by producing k such that n = 2k + 1.
Lastly, in the case of e, the provider proves that n = 0 and terminates. For this
benchmark, we implement successor and double with a few helper processes.

The results are presented in Table 3. For this benchmark, the type constraints
turn out to be more challenging than the arithmetic constraints primarily due to
the complexity of the bin type. Hence, we observe a significant impact from the
transitivity optimization— without transitivity, Stage 1 takes twice as long as
Stage 2, but with transitivity, Stage 1 is faster by multiple orders of magnitude.

Practical Refinement Session Type Inference

21

Strategy Arithmetic | Transitivity Result Stage 1 (ms) Stage 2 (ms)
poly real true success 0.279 52.17
poly real false success 88.72 49.06
poly int true timeout n/a n/a
poly int false timeout n/a n/a

uif real true timeout n/a n/a
uif real false timeout n/a n/a
uif int true inexpressible 0.22 24.34
uif int false inexpressible 87.95 19.55

Table 3: Binary Nats: 56 lines of code, 2 types, 4 processes

Strategy | Arithmetic | Transitivity Result Stage 1 (ms) Stage 2 (ms)
poly real true success 1.19 808.51
poly real false success 144.04 806.00
poly int true timeout n/a n/a
poly int false timeout n/a n/a

uif real true timeout n/a n/a
uif real false timeout n/a n/a
uif int true timeout n/a n/a
uif int false timeout n/a n/a

Table 4: Lists: 108 lines of code, 4 types, 12 processes

Like previous examples, we need both polynomial templates and real arithmetic
for scalable inference; uninterpreted functions produces inexpressible results. The
types inferred are as expected and successfully typecheck:

(x : bin[n]) F
: bin[n]) +

(y : bin[n+1])
(y : bin[2*n])

decl successor[n]
decl double[n] (x
Lists This is another practically important data structure, particularly in the
context of session types to store data. Since we currently do not support inference
of polymorphic session types, we use Lisp-style lists of natural numbers, where
the list is refined by its length. The type list[n] allows either sending the cons
label if n > 0, transitioning to list[n — 1], or the nil label if n = 0.

type list[n] = @{cons : ?{n > 0}.nat ® list[n — 1],
nil : 7{n = 0}.1}

To focus on inference of lists, we use unrefined natural numbers (nat) as the
type of elements stored inside the list. We implement 2 important (with some
helper) list processes: append, which concatenates two lists, and split which
splits a list in half using two mutually recursive processes that operate on even-
length and odd-length lists. We also include a listpair[m][n] type, analogous to
the aforementioned natpair type, to realize split.

Table 4 describes the results: we successfully find a solution only when using
real arithmetic and polynomial templates. However, unlike unary nats, we now
see a significant benefit from transitivity, which supports our hypothesis that
more complex types— which beget longer, more complex programs— benefit
much more from transitivity. As expected, the types inferred are as follows:

22 T. Ueno and A. Das

decl append[m][n] : (x : list[m]) (y : list[n]) F (z : list[m+n])
decl split_even[n] : (x : list[2#n]) F (y : listpair[n][n])
decl split_odd[n] : (x : list[2xn+1]) F (y : listpair[n+1][n])

Linear A-calculus Our most challenging benchmark is an implementation of
a linear A-calculus of expressions on top of session types. Due to its complexity,
we present this example via 2 benchmarks: the first one does not contain any
refinements while the second one indexes types with their size. Expressions are
represented using the following type:

type exp = @{lam : exp —o exp, app : exp ® exp}
Subtyping plays an important role here because the type of values written as
type val = @{lam : exp —o exp}

is a subtype of exp, i.e., the type of expressions: all values are also expressions.
We implement processes to evaluate and normalize expressions, and we include
a couple of simple programs (id, swap) in the calculus.

Table 5 contains results of the inference engine. Immediately evident is that
transitivity here makes a significant difference: only those trials with transitivity
enabled succeed, while the others time out. This is because of the presence of both
val and exp types. In previous examples, type assignments could immediately
rule out a large swath of the search space because there was only one type
that would structurally fit a type variable, but here exp and val are at times
interchangeable. Stage 1 involves much more work, which is exacerbated by the
presence of intermediate type variables if we forego transitivity. As an example,
we end up with 1024 valid type assignments after Stage 1. Of course, since we lack
refinements, z3 has no constraints to solve, and so the strategy and arithmetic
optimizations, which only relate to z3, have no observable effect. Since Stage 2
concerns arithmetic refinements, of which there are none in this benchmark, the
calls to z3 finish in ~20ms.

Due to subtyping, there are many possible combinations of types that our al-
gorithm could correctly infer. Our particular implementation infers the following
key declarations, prioritizing the narrower type val over its supertype exp:

decl apply : (el : val) (e2 : val) - (e : exp)
decl eval : (e : exp) F (v : val)
decl norm : (e : exp) F (n : exp)

Sized Linear \-calculus Finally, our most challenging benchmark is extended
with a refinement representing the size of the term, as follows:

type exp[n] = &{lam : ?{n > 0}.Vn.exp[n] — exp[n +n’ — 1],
app : Yn1.Yng. 7{n =ny + ng + 1}.exp[ni] ® exp[nza]}

We adapt the aforementioned subtype val to val[n]. Finally, we introduce a new
type, boundedVal[n] = 3k. ?7{k < n}.val[k], as the new return type of our eval

Practical Refinement Session Type Inference

Strategy | Arithmetic | Transitivity | Result | Stage 1 (ms) | Stage 2 (ms)
poly real true success 38.33 23.33
poly real false timeout n/a n/a
poly int true success 39.85 20.64
poly int false timeout n/a n/a
uif real true success 38.57 21.08
uif real false timeout n/a n/a
uif int true success 39.83 20.48
uif int false timeout n/a n/a

Table 5: Linear A-calculus: 72 lines of code, 3 types, 8 pr

ocesses

23

Strategy | Arithmetic | Transitivity Result Stage 1 (ms) Stage 2 (ms)
poly real true success 16.91 64.35
poly real false timeout n/a n/a
poly int true success 17.33 11217.74
poly int false timeout n/a n/a

uif real true timeout n/a n/a
uif real false timeout n/a n/a
uif int true timeout n/a n/a
uif int false timeout n/a n/a

Table 6: Sized Linear A-calculus: 95 lines of code, 4 types, 10 processes

process: although we cannot evaluate the exact size of an evaluated term, we can
place an upper bound on it.

This example reflects the full power of our optimizations: like linear A-
calculus, disabling transitivity always leads to a timeout in Stage 1. Since we also
have arithmetic constraints to solve for this benchmark, our polynomial template
strategy proves crucial in preventing a z3 timeout. We successfully find solutions
for both integer and real arithmetic with both other optimizations, but integer
arithmetic takes several orders of magnitude longer to solve. In other words, all
three of our optimizations are necessary in order to perform type inference on
this benchmark in reasonable time.

Again, our implementation prioritizes the narrower type val[n] over exp[n]
and returns the following key declarations:

val[m]) (e2 : vall[n]) F (e :
boundedValln])

decl apply[m][n] : (el :
decl eval : (e : exp[n]) F (v :

exp[m+n+1])

Noteworthy here is that, via the inferred type of eval, our algorithm deduces
that the evaluation of an expression with size n yields a value whose size is no
greater than n.

8 Related Works

Techniques for Inferring Type Refinements Numerous techniques have
been proposed for inferring refinement types for functional programs. The ear-
liest works on refinement type inference was in the context of ML [18] where
the types were refined by a finite programmer-specified lattice. Finiteness was
crucial for decidability of type inference, and type refinement was performed

24 T. Ueno and A. Das

iteratively until reaching a fixed point. Our type system is considerably more
expressive with a possibly infinite set of arithmetic refinements, which makes in-
ference undecidable. Nonetheless, they introduced this technique of inference in
stages: first inferring base types followed by inferring type refinements. This style
was later adopted by Liquid Types [38] where inference was reduced to Hindley-
Milner type inference for base types [9], followed by liquid constraint generation
and constraint solving. Type inference in this setting is decidable because they
adopt a conservative but decidable notion of subtyping, where subtyping of arbi-
trary dependent types is reduced to a set of implication checks over base types.
In contrast, our notion of subtyping is general and therefore, undecidable.

Inference of type refinements has also been carried out using abstract in-
terpretation [32] by reducing it to computing invariants of simple, first-order
imperative programs. The FUSION algorithm [8] reduces inference to finding a
satisfying assignment for (nested) Horn Clause Constraints in Negation Normal
Form (NNF). Hashimoto and Unno [25] reduce inference to a type optimiza-
tion problem which is further reduced to a Horn constraint optimization prob-
lem. This technique can infer maximally preferred refinement types based on a
user-specified preference. Pavlinovic et al. [36] propose a more general type sys-
tem that is parametric both with the choice of the abstract refinement domain
and context-sensitivity of control flow information. More recently, learning-based
techniques using randomized testing [48] and LLMs [39] have also been proposed
for refinement inference.

The most distinguishing aspect of our style of refinements is that session types
follow structural typing, whereas the aforementioned systems follow nominal
typing. With nominal typing where type equality and subtyping for base types
depends on the name, inferring the base type for all intermediate sub-expressions
becomes decidable and reduces to standard Hindley-Milner inference. On the
other hand, prior work [13] shows that even though linear arithmetic as well
as type equality (and therefore subtyping) for basic session types are decidable,
the combination makes typing undecidable. More concretely, there is no notion
of a “base type” with session types and therefore, our subtyping rules cannot
be separated into subtyping for base types and refinements; they mix together
naturally. As a result, even our first stage of inference differs from these works
and eliminates the intermediate types instead of inferring them. More closely
related to our work is the recent work on structural type refinements [3] which
builds on algebraic subtyping to combine properties of nominal and structural
type systems. The main difference between the two works is the design of the
refinement layer. While we refine types with arithmetic expressions, they use
polymorphic variants, thus supporting type application and union. Due to this,
we rely on a solver for inference while they use constraint-based type inference.

Session Type Inference Also related to our system are techniques for ses-
sion type inference which originated from observing communication primitives
in m-calculus [23, 37] implemented in OCaml [30] and Haskell [31]. Session types
have also been inferred with control flow information [7] and in a calculus of
services and sessions [34]. Almeida et al. [2] propose an algorithm for inference

Practical Refinement Session Type Inference 25

of FreeST [1] which is an implementation of context-free session types [42]. This
technique builds on Quick Look [40] to enable inference of type annotations in
polymorphic applications. Although FreeST allows non-regular protocols, arith-
metic refinements are more general and can encode stronger properties based
on sizes and values that can even be non-linear. Therefore, the inference algo-
rithms are also quite different and FreeST does not require solving arithmetic
constraints. To that end, none of these works support the DML-style [47] of
refinements like our system.

Session Subtyping The concept of subtyping for session types has its roots in
seminal work by Gay and Hole [20], which introduces both the formal notion of
a type simulation and a practical subtyping algorithm for basic session types in
the m-calculus. Our work builds upon theirs by introducing refinements to the
language. Crucially, their algorithm is both sound and complete, but a complete
subtyping algorithm is impossible in the presence of refinements; thus, our algo-
rithm is sound, but not complete. Session subtyping has been further explored
in a variety of more specific contexts: for instance, Horne and Padovani [29] de-
velop and compare subtyping relation in both the isorecursive and equirecursive
settings, and others [21, 22, 33| propose subtyping for multiparty session types.
Mostrous and Yoshida [35] propose subtyping for asynchronous session types in
a higher-order m-calculus, extending the idea of a type simulation into an asyn-
chronous type simulation. Bravetti et al. [4] show that asynchronous subtyping
is undecidable in the presence of recursion. In contrast to these works, ours is the
first to explore session subtyping alongside a refinement system. Our notion of
refinements is adopted from Das and Pfenning [15], but their work was restricted
to type equality and did not provide a type inference algorithm.

9 Conclusion

This paper presents a type inference algorithm for structural session types with
arithmetic refinements. We develop a theoretical treatment of subtyping, intro-
duce formal inference rules for constraint generation, and implement our algo-
rithm in the Rast language. In addition, we detail the practical optimizations
necessary to solve our constraints reliably, and we demonstrate the benefits of
these optimizations by evaluating the performance of our implementation on a
number of examples.

The primary future direction we wish to pursue is the extension of our al-
gorithm to other constructs in the Rast language. Specifically, Rast supports
both temporal and resource-aware types [12], both of which we expect to involve
relatively natural extensions of our current algorithm. Recent developments in
polymorphic [17] and probabilistic [19] session types also comprise interesting
new domains into which evolutions of our work might extend.

1]

2]

4]

[5]

18]

19]

Bibliography

Almeida, B., Mordido, A., Vasconcelos, V.: Freest: Context-free session
types in a functional language. Electronic Proceedings in Theoretical Com-
puter Science 291, 12-23 (03 2019), https://doi.org/10.4204/EPTCS.291.2
Almeida, B., Mordido, A., Vasconcelos, V.T.: Local type inference for
context-free session types. In: Derakhshan, F., Hoffmann, J. (eds.) Pro-
ceedings 16th International Workshop on Programming Language Ap-
proaches to Concurrency and Communication-cEntric Software, Hamil-
ton, Canada, 4th May 2025, Electronic Proceedings in Theoretical Com-
puter Science, vol. 420, pp. 1-11, Open Publishing Association (2025),
https://doi.org/10.4204/EPTCS.420.1

Binder, D., Skupin, I., Lawen, D.,; Ostermann, K.: Structural refinement
types. In: Proceedings of the 7th ACM SIGPLAN International Work-
shop on Type-Driven Development, p. 15-27, TyDe 2022, Association for
Computing Machinery, New York, NY, USA (2022), ISBN 9781450394390,
https://doi.org/10.1145/3546196.3550163, URL https://doi.org/10.1145/
3546196.3550163

Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous
session subtyping. Information and Computation 256, 300-320 (2017), ISSN
0890-5401, https://doi.org/https://doi.org/10.1016/j.ic.2017.07.010, URL
https://www.sciencedirect.com/science/article/pii/S0890540117301190
Caires, L., Pfenning, F.: Session Types as Intuitionistic Linear Propositions.
In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F.,
Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Su-
dan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010 - Concurrency Theory, vol. 6269, pp.
222-236, Springer Berlin Heidelberg, Berlin, Heidelberg (2010), ISBN 978-3-
642-15374-7 978-3-642-15375-4, https://doi.org/10.1007/978-3-642-15375-
4 16, URL http://link.springer.com/10.1007/978-3-642-15375-4_16, se-
ries Title: Lecture Notes in Computer Science

Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session
types. Mathematical Structures in Computer Science 760 (11 2014)
Collingbourne, P., Kelly, P.H.J.: Inference of session types from control flow.
Electron. Notes Theor. Comput. Sci. 238(6), 15-40 (Jun 2010), ISSN 1571-
0661, https://doi.org/10.1016/j.entcs.2010.06.003, URL https://doi.org/
10.1016/j.entcs.2010.06.003

Cosman, B., Jhala, R.: Local refinement typing. Proc. ACM Program. Lang.
1(ICFP) (Aug 2017), https://doi.org/10.1145/3110270, URL https://doi.
org/10.1145/3110270

Damas, L., Milner, R.: Principal type-schemes for functional programs.
In: Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, p. 207212, POPL ’82, Associ-
ation for Computing Machinery, New York, NY, USA (1982), ISBN

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Practical Refinement Session Type Inference 27

0897910656, https://doi.org/10.1145/582153.582176, URL https://doi.
org/10.1145/582153.582176

Das, A., Hoffmann, J., Pfenning, F.: Parallel complexity analysis with
temporal session types. Proc. ACM Program. Lang. 2(ICFP) (Jul 2018),
https://doi.org/10.1145/3236786, URL https://doi.org/10.1145/3236786
Das, A., Hoffmann, J., Pfenning, F.: Work analysis with resource-aware
session types. In: Proceedings of the 33rd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, p. 305-314, LICS ’18, Association for
Computing Machinery, New York, NY, USA (2018), ISBN 9781450355834,
https://doi.org/10.1145/3209108.3209146, URL https://doi.org/10.1145/
3209108.3209146

Das, A., Pfenning, F.: Rast: Resource-Aware Session Types with Arith-
metic Refinements (System Description). In: Ariola, Z.M. (ed.) 5th In-
ternational Conference on Formal Structures for Computation and De-
duction (FSCD 2020), Leibniz International Proceedings in Informatics
(LIPIcs), vol. 167, pp. 33:1-33:17, Schloss Dagstuhl-Leibniz-Zentrum fiir In-
formatik, Dagstuhl, Germany (2020), ISBN 978-3-95977-155-9, ISSN 1868-
8969, https://doi.org/10.4230/LIPIcs.FSCD.2020.33, URL https://drops.
dagstuhl.de/opus/volltexte/2020/12355

Das, A., Pfenning, F.: Session Types with Arithmetic Refine-
ments pp. 18 pages, 512384 bytes (2020), ISSN 1868-8969,
https://doi.org/10.4230/LIPICS.CONCUR.2020.13, URL https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.13
Das, A., Pfenning, F.: Session types with arithmetic refinements (2020),
URL https://arxiv.org/abs/2005.05970

Das, A., Pfenning, F.: Verified Linear Session-Typed Concurrent
Programming. In: Proceedings of the 22nd International Sympo-
sium on Principles and Practice of Declarative Programming, pp.
1-15, ACM, Bologna Italy (Sep 2020), ISBN 978-1-4503-8821-4,
https://doi.org/10.1145/3414080.3414087, URL https://dl.acm.org/doi/
10.1145/3414080.3414087

De Moura, L., Bjgrner, N.: Z3: an efficient smt solver. In: Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, p. 337-340,
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008), ISBN
3540787992

DeYoung, H., Mordido, A., Pfenning, F., Das, A.: Parametric subtyping for
structural parametric polymorphism. Proc. ACM Program. Lang. 8(POPL)
(Jan 2024), https://doi.org/10.1145/3632932, URL https://doi.org/10.
1145/3632932

Freeman, T., Pfenning, F..: Refinement types for ml. SIG-
PLAN Not. 26(6), 268277 (may 1991), ISSN 0362-1340,
https://doi.org/10.1145/113446.113468, URL https://doi.org/10.1145/
113446.113468

Fu, Q., Das, A., Gaboardi, M.: Probabilistic refinement session types (com-
panion report) (2025), https://doi.org/10.5281 /zenodo.15185261

28

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

T. Ueno and A. Das

Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta
Informatica 42(2-3), 191-225 (Nov 2005), ISSN 0001-5903, 1432-0525,
https://doi.org/10.1007/s00236-005-0177-z, URL http://link.springer.
com/10.1007/s00236-005-0177-z

Ghilezan, S., Jaksi¢, S., Pantovié, J., Scalas, A., Yoshida, N.: Precise sub-
typing for synchronous multiparty sessions. Journal of Logical and Al-
gebraic Methods in Programming 104, 127-173 (2019), ISSN 2352-2208,
https://doi.org/https://doi.org/10.1016/j.jlamp.2018.12.002, URL https:
//www.sciencedirect.com/science/article/pii/S2352220817302237
Ghilezan, S., Pantovi¢, J., Proki¢, 1., Scalas, A., Yoshida, N.: Precise sub-
typing for asynchronous multiparty sessions. ACM Trans. Comput. Logic
24(2) (Nov 2023), ISSN 1529-3785, https://doi.org/10.1145/3568422, URL
https://doi.org/10.1145/3568422

Graversen, E.F., Harbo, J.B., Hiittel, H., Bjerregaard, M.O., Poulsen, N.S.,
Wahl, S.: Type inference for session types in the pi-calculus. In: Hildebrandt,
T., Ravara, A., van der Werf, J.M., Weidlich, M. (eds.) Web Services, For-
mal Methods, and Behavioral Types, pp. 103-121, Springer International
Publishing, Cham (2016), ISBN 978-3-319-33612-1

Griffith, D., Gunter, E.L.: Liquidpi: Inferrable dependent session types. In:
Brat, G., Rungta, N., Venet, A. (eds.) NASA Formal Methods, pp. 185
197, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), ISBN 978-3-
642-38088-4

Hashimoto, K., Unno, H.: Refinement type inference via horn constraint
optimization. In: Blazy, S., Jensen, T. (eds.) Static Analysis, pp. 199-
216, Springer Berlin Heidelberg, Berlin, Heidelberg (2015), ISBN 978-3-
662-48288-9

Honda, K.: Types for dyadic interaction. In: Goos, G., Hartmanis, J.,
Best, E. (eds.) CONCUR’93, vol. 715, pp. 509-523, Springer Berlin Heidel-
berg, Berlin, Heidelberg (1993), ISBN 978-3-540-57208-4 978-3-540-47968-
0, https://doi.org/10.1007/3-540-57208-2 35, URL http://link.springer.
com/10.1007/3-540-57208-2_35, series Title: Lecture Notes in Computer
Science

Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type
discipline for structured communication-based programming. In: Hankin, C.
(ed.) Programming Languages and Systems, pp. 122-138, Springer Berlin
Heidelberg, Berlin, Heidelberg (1998), ISBN 978-3-540-69722-0

Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session
types. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 273-284,
POPL 08, ACM, New York, NY, USA (2008), ISBN 978-1-59593-689-
9, https://doi.org/10.1145/1328438.1328472, URL http://doi.acm.org/10.
1145/1328438.1328472

Horne, R., Padovani, L. A logical account of subtyping
for session types. Journal of Logical and Algebraic Meth-
ods in Programming 141, 100986 (2024), ISSN 2352-2208,

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Practical Refinement Session Type Inference 29

https://doi.org/https://doi.org/10.1016/j.jlamp.2024.100986, URL
https://www.sciencedirect.com/science/article/pii/S2352220824000403
Imai, K., Lange, J., Neykova, R.: Kmclib: Automated inference and ver-
ification of session types from ocaml programs. In: Fisman, D., Rosu, G.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems,
pp. 379-386, Springer International Publishing, Cham (2022), ISBN 978-3-
030-99524-9

Imai, K., Yuen, S., Agusa, K.: Session type inference in haskell. In: Honda,
K., Mycroft, A. (eds.) Proceedings Third Workshop on Programming Lan-
guage Approaches to Concurrency and communication-cEntric Software,
Paphos, Cyprus, 21st March 2010, Electronic Proceedings in Theoretical
Computer Science, vol. 69, pp. 74-91, Open Publishing Association (2011),
https://doi.org/10.4204/EPTCS.69.6

Jhala, R., Majumdar, R., Rybalchenko, A.: Hmec: Verifying functional pro-
grams using abstract interpreters. In: Gopalakrishnan, G., Qadeer, S. (eds.)
Computer Aided Verification, pp. 470-485, Springer Berlin Heidelberg,
Berlin, Heidelberg (2011), ISBN 978-3-642-22110-1

Li, E., Stutz, F., Wies, T.: Deciding subtyping for asynchronous multiparty
sessions. In: Weirich, S. (ed.) Programming Languages and Systems, pp.
176205, Springer Nature Switzerland, Cham (2024)

Mezzina, L.G.: How to infer finite session types in a calculus of services and
sessions. In: Lea, D., Zavattaro, G. (eds.) Coordination Models and Lan-
guages, pp. 216-231, Springer Berlin Heidelberg, Berlin, Heidelberg (2008),
ISBN 978-3-540-68265-3

Mostrous, D., Yoshida, N.: Session typing and asyn-
chronous subtyping for the higher-order m-calculus. Informa-
tion and Computation 241, 227-263 (2015), ISSN 0890-5401,
https://doi.org/https://doi.org/10.1016/j.ic.2015.02.002, URL https:
//www.sciencedirect.com/science/article/pii/S0890540115000139
Pavlinovic, Z., Su, Y., Wies, T..: Data flow refinement type
inference. Proc. ACM Program. Lang. 5(POPL) (Jan 2021),
https://doi.org/10.1145/3434300, URL https://doi.org/10.1145/3434300
Pucella, R., Tov, J.A.: Haskell session types with (almost) no class. In: Pro-
ceedings of the First ACM SIGPLAN Symposium on Haskell, pp. 25-36,
Haskell ’08, Association for Computing Machinery, New York, NY, USA
(2008), ISBN 9781605580647, https://doi.org/10.1145/1411286.1411290,
URL https://doi.org/10.1145/1411286.1411290

Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid types. In: Proceedings
of the 29th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, p. 159-169, PLDI ’08, Association for Com-
puting Machinery, New York, NY, USA (2008), ISBN 9781595938602,
https://doi.org/10.1145/1375581.1375602, URL https://doi.org/10.1145/
1375581.1375602

Sakkas, G., Sahu, P., Ong, K., Jhala, R.: Neurosymbolic Modu-
lar Refinement Type Inference . In: 2025 IEEE/ACM 47th Interna-
tional Conference on Software Engineering (ICSE), pp. 627-627, IEEE

30

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

T. Ueno and A. Das

Computer Society, Los Alamitos, CA, USA (May 2025), ISSN 1558-
1225, https://doi.org/10.1109/ICSE55347.2025.00090, URL https://doi.
ieeecomputersociety.org/10.1109/ICSE55347.2025.00090

Serrano, A., Hage, J., Peyton Jones, S., Vytiniotis, D.: A quick look
at impredicativity. Proc. ACM Program. Lang. 4(ICFP) (Aug 2020),
https://doi.org/10.1145/3408971, URL https://doi.org/10.1145/3408971
Silva, G., Mordido, A., Vasconcelos, V.T.. Subtyping Context-Free
Session Types. In: Pérez, G.A., Raskin, J.F. (eds.) 34th Interna-
tional Conference on Concurrency Theory (CONCUR 2023), Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 279, pp.
11:1-11:19, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany (2023), ISBN 978-3-95977-299-0, ISSN 1868-
8969, https://doi.org/10.4230/LIPIcs. CONCUR.2023.11, URL https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.11
Thiemann, P., Vasconcelos, V.T.: Context-free session types. In: Pro-
ceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming, p. 462-475, ICFP 2016, Association for Com-
puting Machinery, New York, NY, USA (2016), ISBN 9781450342193,
https://doi.org/10.1145/2951913.2951926, URL https://doi.org/10.1145/
2951913.2951926

Thiemann, | Vasconcelos, V.T. Label-dependent session
types. Proc. ACM Program. Lang. 4(POPL) (Dec 2019),
https://doi.org/10.1145/3371135, URL https://doi.org/10.1145/3371135
Toninho, B., Caires, L., Pfenning, F.: Dependent session types via
intuitionistic linear type theory. In: Proceedings of the 13th Inter-
national ACM SIGPLAN Symposium on Principles and Practices of
Declarative Programming, p. 161-172, PPDP ’11, Association for Com-
puting Machinery, New York, NY, USA (2011), ISBN 9781450307765,
https://doi.org/10.1145/2003476.2003499, URL https://doi.org/10.1145/
2003476.2003499

Toninho, B., Caires, L., Pfenning, F.: A decade of dependent session types.
In: Proceedings of the 23rd International Symposium on Principles and
Practice of Declarative Programming, PPDP ’21, Association for Com-
puting Machinery, New York, NY, USA (2021), ISBN 9781450386890,
https://doi.org/10.1145/3479394.3479398, URL https://doi.org/10.1145/
3479394.3479398

Wu, H., Xi, H.: Dependent session types. CoRR abs/1704.07004 (2017),
URL http://arxiv.org/abs/1704.07004

Xi, H., Pfenning, F.: Dependent types in practical programming. In: Aiken,
A. (ed.) Conference Record of the 26th Symposium on Principles of Pro-
gramming Languages (POPL 1999), pp. 214-227, ACM Press, San Antonio,
Texas, USA (Jan 1999)

Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In:
Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, pp. 400—411, ICFP 2015, Association for Com-
puting Machinery, New York, NY, USA (2015), ISBN 9781450336697,

Practical Refinement Session Type Inference 31

https://doi.org/10.1145/2784731.2784766, URL https://doi.org/10.1145/
2784731.2784766

32 T. Ueno and A. Das
A Session Type Examples

Closing and waiting. The process examplel has the following declaration:
decl examplel : (x : 1) (y : 1) F (z : 1)

From its type, we deduce that it must wait for z and y to close, and then it
closes the channel it offers, z. A suitable definition would be:

proc z < examplel x y = wait x; wait y; close z

Alternatively, we could wait on y before z.

Sending and receiving labels. We declare the process examplel as follows:
decl negate : (x: @{true:1,false:1}) F (y: ®{true: 1, false: 1})

This process would receive a label from x, either true or false, and then sends
either true or false on y, depending on a case-analysis of what = sent. We define
negate as:

proc y < negate x = case x (
true = vy.false; wait y; close x
| false = y.true; wait y; close x

The types do not tell us which label negate must send when— in the given
definition, we send the opposite label, but we could also just always send false;
both programs would share the same declaration. However, the type system
enforces that we cannot send on x nor receive on y a label outside of the label
set {true, false}.

Sending and receiving channels. An equivalent of function composition in
our language could be written as the process comp below:

decl comp : (x: A—B), (y: B—oC)F (z: A—C(C)
proc z <— comp X y =

a < recv z;

send X a;

send y X;

Z <y

We would first receive a channel a of type A from our provided channel z.
We then send a to x, which changes the type of x into B. Now we send x to y
to get (y : C). We are left with (y : C) F (z : C), at which point we forward
between z and y.

Type names and recursive types. Suppose our signature contains the type
declaration nat = @&{zero : 1,succ : nat} Consider the following process:

Practical Refinement Session Type Inference 33

decl consume : (x: nat) F (y: 1)
proc y < consume x = case X (
zero = y <> X
| succ = y < consume X

Due to linearity, we can never disregard types in our context; if we wish to
throw them away, we must instead transform them into a type which we know
how to close. The process consume does just that, taking a nat and turning it
into 1, which the client can then easily wait on. We implement this process by
first case-analyzing the input: if x sends zero, we can simply forward, but if x
sends succ, it recurses back to nat, so we spawn consume again with z as input.
By repeated respawns of consume, we "consume" all the labels z sends until it
turns into 1.

Assertion and assumption. Let our nat type now refer to the declaration
in a fresh ¥ that nat[n] = @{zero : 7{n = 0}.1, succ : ?{n > 0}.nat[n — 1]}.
Suppose we have a double process which doubles the value of the input, declared
as follows:

decl double[n] : (x: nat[n]) F (y: nat[2*n])
proc y < double[n] x = case x (
zero = assume X {n=0};
y.zero; assert y {2xn=0};
y ¢ X
| succ = assume x {n>0};
y.succ; assert y {2xn>0};
y.succ; assert y {(2xn)-1>0};
y < double[n-1] x

Note the refinement parameter n in the process— when we spawn double,
we now specify an expression in place of n, which in this case corresponds to
the value of the input channel . When we receive a zero label from x, we also
receive a proof that n = 0; we use this fact to assert that 2 +n = 0 on y after
sending zero on y. When we instead receive succ on x, we get that n > 0;
our goal is to send 2 succ messages on y. When we send the first, we use our
assumption to assert that 2xn > 0, and the type of y recurses to nat[(2xn) — 1]
by our type definition. When we send a second succ label, we now must assert
that (2% n) —1 > 0, which still follows from our assertion (and the fact that we
work only in integers). We now have (z : nat[n — 1]) F (y : nat[(2 xn) — 2], and
we conclude by respawning double with refinement n — 1 instead of n.

Witnesses. Consider a type for binary numbers that sends bits b0 and bl, and
terminates with e. If we want to express its value with a refinement, a natural
thought would be to say:

34 T. Ueno and A. Das

type bin[n] = ®{b0 : ?{n > 0}.bin[k/2],
b1: 2{n > 0}.bin[(k — 1)/2],
e: {n=0}1}

However, our arithmetic language lacks a division operator. Instead, we would
use quantifiers to capture the same idea as follows:

type bin[n] = &{b0 : ?{n > 0}.3k. 7{n = 2k}.bin[k],
bl:?{n > 0}.3k. ?{n = 2k + 1}.bin[k],
e: {n=0}1}

Practical Refinement Session Type Inference 35

B Validity
We introduce three validity judgments, for signatures (- X valid), declarations
(Fx X' valid), and types (V ; C Fx A valid).

Fy X valid
— YV —— NIiLV
F X valid Fx (-) valid
Fs X’ valid
ProcDEcLV

b X' AR f[n] (21 A) valid

Fs X valid
7 — — PROCDEFV
Fx Xz« fln]y= P valid
b S valid 7T Fs Avalid A#V'[E
D) vali n » A vali # V'[e] S

e X, V[n | ¢] = A valid
(VKEL) V;Ckx Ay valid LV
1%] C |—2 &{f : AZ}ZGL valid

(VEEL) V;Ckx A, valid
V;Ctkx @{é : Ag}geL valid

V;Ctyx Avalid V;CkFsx B valid v
V:CFs A® B valid ®

V;Ctkx Avalid V;Cltx B valid v

—— 1V
V;Cks A— B valid V;CFx 1 valid

ViCApFs Avalid
V;Chyx {¢}.Avalid

V;CA¢tx Avalid
V;Clyx ?{¢}.Avalid

V,n;Ckx Avalid

V,n;Ckx Avalid
V;CkyxgVn.A valid

V;Ctx In.A valid

Vin|¢leX V; CE ¢le/n]
V; ClFx Vie] valid

DEFV

36 T. Ueno and A. Das

C Subtyping Rules

(Ve L) V;C;I'tA;<: By
s
V;C;FFEB{glAg}gEL <5@{m5Bm}meM

to

(Ym e M) V;C;I'+ A, <: B
% X C 3 Fl—&{f : Ag}gEL < &{m : Bm}me]\/j

stg,

V;C;F"A1<2B1 V,C,F"A2<BQ

V,C,F"A1®A2<31®B2 ste
V;C;FFB1<SA1 V;C;FFA2<ZBQ
V.C:TFA — A, <: B, — B, e Yoirri<1
ViCEd—= V:CA¢:THA<:B
to
V.C, I F o) .A< 1y).B "
ViCEy—>¢ V:CAY:THA<: B
t
V.C:IFol.A< {y).B >
(k fresh) V,k;C; 't Alk/m] <: Blk/n]
V.C:IF3mA<: 3nB 5t
(k fresh) V,k;C; 't Alk/m] <: Blk/n] . V;CEL
V.C:TFVmA< VnB v Yy e rrAa< B
V;Clzelze’l/\---/\en:e’nt
Ve ITFVE <V
Vioilpl] =Ae X Valtzlgo) =B e X
v=(V;C;Vie] <: Valez])
V;C; Iy F Aler/v1] <: Blez /3] .
V.C; T F Vi[a] <: Vales] Steced
Vi svilell < Wle'l) el V:CEVCCNel =e1Ney =63
Stdef

V;C; I Viler] <: Vales]

Practical Refinement Session Type Inference 37
D Soundness

We first provide a series of auxiliary definitions to motivate a key lemma and
our main proof.

Definition 6. For a substitution o, we say V ; C E o to abbreviate that o is a
ground substitution over V such that E Clo].

Definition 7. Given a relation R on wvalid ground types and two types A, B
with V ; C + A, B valid, we say VV.C — A <:g B if, for all substitutions o with
V;CE o, we get (Alo], Blo]) € R.

We say VV.C — A <: B if there exists a type simulation R satisfying VV.C —
A<:p B.

Lemma 1. Suppose YV'.C' — Viler'] <:r Val[ea'], and assume that V ; C E
WV'.C Ney =eg A&y’ =e5. Then it follows that VV.C — Vile1] <:x Vales).

Proof. By definition of <:g, it suffices to show that, for all substitutions o such
that V ; C E o, we get Vi[e1[o]] <:g Va[ez]o]].

Take an arbitrary such o: since F C[o], we can apply o to our second as-
sumption, yielding that 3V'.C' A&y’ = e1[o] A &2’ = e3[o]. By definition, there
is some ground substitution ¢’ over V' such that F C'[0'], e1’[¢’] = e1]o], and
&'[o'] = eo].

From our first assumption, for any such ¢’ with F C’[¢’], we get Vi [e1’[0']] <:r
Valez'[0']]. Since e1’[0”] = er[o] and &5/ [0'] = €3[0], we get Vi [e1]o]] <:r Valez|o]].

Since this applies for any such o, we are done as described above: by defini-
tion, YV.C — Vi[e1] <:r Valez].

Proof of Theorem 1. From the antecedent we get a derivation Dy of V,C, - IF
A <: B. Define R on closed valid types as:

R ={(Alo],Blo]) | (V;C;A<:B)e S(Dy) and V;CFE g}

We will show R is a type simulation. To do so, we consider arbitrary (A[o], Blo]) €
R; by definition of R, there must be some closure (V ; C ; A <: B) € S(Dy) and
some o with V ; C E 0.

Consider first the case where V ; C £ L. It follows from the st; rule that
(V;C; A<: B) e S(Dy). Furthermore, VV.C — A <: B is vacuously true, and
so soundness holds.

If instead V ; C ¥ L, it follows that there exists some ground substitution o
on V that satisfies C, i.e. V ; C F 0. We proceed by case-analysis on the structure
of A with an arbitrary such o. Most cases follow by simple structural analysis;
we include a subset for demonstrative purposes here.

If A=®{¢: As}icr, then by enumeration of rules, we must have B = ®&{m :
B }menr- It follows from stg that, for all £ € L, we get (V ; C ; Ay <: By) €
S(Dy). By definition of R, we then have (Ay[o], Be[o]) € R. Since Alo] = &{¢:
A¢lo]}eer and Blo] = @{m : By[0]}men, we conclude that, for an arbitrary o,

38 T. Ueno and A. Das

if (A[o], Blo]) € R, then (A¢[o], Be[o]) € R for all £ € L. Thus, we have satisfied
the condition for a type simulation.

If A="7{¢}.A’, then by enumeration of rules, we must have B = ?{¢}.B’.
It follows from sty that we get (V ; CA ¢ ; A' <: B') € S(Dy), as well as the
semantic judgment V ; C E ¢ — 1. Since our considered o satisfies E Co],
we have two sub-cases: either F ¢[o] or F ¢[o]. If E ¢[o], it must follow that
E (C A ¢)[o], so by definition of R we get (A’[o], B'[o]) € R. Furthermore, since
EF ¢lo] and V ; C E ¢ — 1, we also have F 1[o]. Since Alo] = ?{¢[o]}.A’ and
Blo] = M{¢[o]}.B’, we satisfy condition (1) for a type simulation. If instead
F ¢[o], then we trivially satisfy condition (2) for a type simulation; thus, in
either subcase, it holds that R is a type simulation.

If A= 3m.A’, then by enumeration of rules, B = 3n.B’. It follows from st3
that we get (V. k ; C ; A'lk/m] <: B'[k/m]) € S(Dy) for some fresh k. Since k
is fresh, k ¢ C, and so for any i € N we get (A'[o,i/k], B'[o,i/k]) € R, thereby
satisfying that R is a type simulation.

If A = Vi[é1], then we have three sub-cases: either the st.q rule, the stger
rule, or the stepq rule applies; we consider them in that order. If we apply the
stger Tule, then we do not add anything to S(Dgp) by definition of R, but in fact
doing so is unnecessary. The first premise of the styer rule tells us that we have
already seen (V' ; C' ; Vi[er'] <: Va[ez']), implying that VV'.C' — Vi[er'] <ix
Vs[ez']. Tt follows from lemma 1 and the second premise to the stger rule that
Vileilo]] <:r Valez|[o]], so therefore (Vi[e1[o]], Va[ez[o]]) € R.

We now conclude our proof. Since our derivation Dy must prove Vg, Co, - I
A <: B, we have (Vo ; Cp ; A <: B) € S(Dy) by definition of S. Then, by
definition of R, we have (A[o], B[o]) € R for any o over V satisfying F C[o]. By
77, we then say VV.C — A <:g B, and finally, since R is a type simulation, we
say VV.C — A <: B and we are done.

Practical Refinement Session Type Inference 39

E Constraint Generation Rules

V;Clka{k:B}<: A V;C;AFP:(z:B)

R
V;C;Arazk; P:(x: A ©

Vi;Clk A< @®{l: As}tecr (MeL) V;Ci;A (z:A)F Q= (z:0)

L
V;C; A (x:A)Fcasex (= Qy) = (2:C) .
Vi CI-&{l: Astoer <: A (WeeL) V;C;AF Py (x: Ay) OR
Vi;C;Abcasex (£ = Fp) 2 (x: A)
V;CIFA< &{k: A} ViCi; A (x: Ap)FQ:: (2:C) oL
Vi;C; A (z:A)bak;P:(z:C)
Vi:ClFA @ Ay <: A V;C; AP (x: Ay) R
V;C;A (y:A)bFsendzy; P (x: A) @
V;ClFA<: A ® Ay V;C;A,(y:Al),(J;:AQ)I—Q::(z:C)®L
ViC;A(z:AbFy+reeva;Q:(z:0)
V;ClFA — Ay <: A V;C;A(y: A1) FP(z: Ay) R
V;C;AFy<recvz; P (z:A) -
ViClFA<: A — Ay ViCi;A(x:A)FQ::(2:0C)
V;C; A (x:A),(y:A1)Fsendzy;Q::(z:C)
V;CkF1<:A IR
V;C;-Fclosex:(x:A)
V:ClFA<:1 V;C;AI—Q::(Z':C)IL
ViCi; A (zx:1)Fwaitx; Q= (z:C)
V;CHFA<:B ”
V;C;(y:A)FgL’Hy::(Jn:B)I
(yi: Blier F fIn] ¢l =P (a1 A)e X
Vi;CAg¢le/n|I-FA'le/n]<:A (iel) V;CA¢le/n]lF B; <: Bje/n]
V;C; A (x: Ale/n) FQ = (2 def
e

C)
ViCiA (Y Bi)ier o+ fle]g;Q:(2:C)

40 T. Ueno and A. Das

V;CE¢ ViClIF?{¢pA < A V;C;A}—P::(x:A/)?R
V;C; Al assertz {¢}; P:: (z: A) '

V;CIFA<: o} A ViCAp; A (z:AVFQ:(2:0)
V;C; A (x:A)Fassume z {¢};Q = (2: C)

7L

Vi;CIFl{er A" < A V;CAQZ);AI—P::(:U:A/)'R
V;C;Ab assumex {¢}; P:: (x: A) '

V;CEo V;ClkA<: o} A ViC; A(x: AVFQ:u(2:C)~ 5

V;C;A(x:A)Fassertz {¢};Q:(2:0) -

Vi;CEe>0 Vi:ClkdnA < A ViCAn=e; ArP:u(z: A)

JR
V;C;AbFsendz {e}; P:(z: A

Vi:ClFA<:InA Vn;Ci;A(x: AV Qi (2:0)
V;C;A(x:A)F{n}+reeva; Q,:(2:0)

JL

V;C;vnA < A Vn;C; AR P, (z: A)

VR
Vi;C;AF{n} +recva; P, (x: A)

ViCEe>0 V;ClFA<:VnA V;CAn=ec;A(z:A)VFQ:(2:0)

V;C;A(x:A)Fsenda{e};Q:(2:C) vk

