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Abstract. Session types statically describe communication protocols
between concurrent message-passing processes. Unfortunately, paramet-
ric polymorphism even in its restricted prenex form is not fully under-
stood in the context of session types. In this paper, we present the
metatheory of session types extended with prenex polymorphism and,
as a result, nested recursive datatypes. Remarkably, we prove that type
equality is decidable by exhibiting a reduction to trace equivalence of de-
terministic first-order grammars. Recognizing the high theoretical com-
plexity of the latter, we also propose a novel type equality algorithm
and prove its soundness. We observe that the algorithm is surprisingly
efficient and, despite its incompleteness, sufficient for all our examples.
We have implemented our ideas by extending the Rast programming
language with nested session types. We conclude with several examples
illustrating the expressivity of our enhanced type system.

1 Introduction

Session types express and enforce interaction protocols in message-passing sys-
tems [28,43]. In this work, we focus on binary session types that describe bilateral
protocols between two endpoint processes performing dual actions. Binary ses-
sion types obtained a firm logical foundation since they were shown to be in a
Curry-Howard correspondence with linear logic propositions [7,8,46]. This allows
us to rely on properties of cut reduction to derive type safety properties such as
progress (deadlock freedom) and preservation (session fidelity), which continue
to hold even when extended to recursive types and processes [16].

However, the theory of session types is still missing a crucial piece: a general
understanding of prenex (or ML-style) parametric polymorphism, encompass-
ing recursively defined types, polymorphic type constructors, and nested types.
We abbreviate the sum of these features simply as nested types [3]. Prior work
has restricted itself to parametric polymorphism either: in prenex form with-
out nested types [25,44]; with explicit higher-rank quantifiers [6,37] (including
bounded ones [23]) but without general recursion; or in specialized form for iter-
ation at the type level [45]. None of these allow a free, nested use of polymorphic
type constructors combined with prenex polymorphism.

In this paper, we develop the metatheory of this rich language of nested ses-
sion types. Nested types are reasonably well understood in the context of func-
tional languages [3,31] and have a number of interesting applications [10,27,36].

http://arxiv.org/abs/2010.06482v4
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One difficult point is the interaction of nested types with polymorphic recursion
and type inference [35]. By adopting bidirectional type-checking we avoid this
particular set of problems altogether, at the cost of some additional verbosity.
However, we have a new problem namely that session type definitions are gener-
ally equirecursive and not generative. This means that even before we consider
nesting, with the definitions

list[α] = ⊕{nil : 1, cons : α⊗ list[α]} list′[α] = ⊕{nil : 1, cons : α⊗ list′[α]}

we have list[A] ≡ list′[B] and also list[list′[A]] ≡ list′[list[B]] provided A ≡ B. The
reason is that both types specify the same communication behavior—only their
name (which is irrelevant) is different. As the second of these equalities shows,
deciding the equality of nested occurrences of type constructors is inescapable:
allowing type constructors (which are necessary in many practical examples)
means we also have to solve type equality for nested types. For example, the
types Tree[α] and STree[α][κ] represent binary trees and their faithfully (and
efficiently) serialized form respectively.

Tree[α] = ⊕{node : Tree[α]⊗ α⊗ Tree[α], leaf : 1}

STree[α, κ] = ⊕{nd : STree[α, α⊗ STree[α, κ]], lf : κ}

We have that Tree[α] ⊗ κ is isomorphic to STree[α, κ] and that the processes
witnessing the isomorphism can be easily implemented (see Section 9).

At the core of type checking such programs lies type equality. We show that
we can translate type equality for nested session types to the trace equivalence
problem for deterministic first-order grammars, which was shown to be decidable
by Jančar, albeit with doubly-exponential complexity [30]. Solomon [41] already
proved a related connection between inductive type equality for nested types
and language equality for DPDAs. The difference is that session type equal-
ity must be defined coinductively, as a bisimulation, rather than via language
equivalence [22]. This is because session types capture communication behavior
rather than the structure of closed values so a type such as R = ⊕{a : R} is
not equal to the empty type E = ⊕{}. The reason is that the former type can
send infinitely many a’s while the latter cannot (due to the coinductive interpre-
tation). Interestingly, if we imagine a lazy functional language such as Haskell
with non-generative recursive types, then R and E would also be different. In
fact, nothing in our analysis of equirecursive nested types depends on linearity,
just on the coinductive interpretation of types. Several of our key results, namely
decidability of type equality and a practical algorithm for it, apply to lazy func-
tional languages! Open in this different setting would still be the question of
type inference, including the treatment of polymorphic recursion.

The decision procedure for deterministic first-order grammars does not ap-
pear to be directly suitable for implementation, in part due to its doubly-
exponential complexity bound. Instead we develop an algorithm combining loop
detection [22] with instantiation [17] and a special treatment of reflexivity to
handle all cases that would have passed in a nominal system. The algorithm
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is sound, but incomplete, and reports success, a counterexample, or an incon-
clusive outcome (which counts as failure). In our experience, the algorithm is
surprisingly efficient and sufficient for all our examples.

We have implemented nested session types and integrated them with the
Rast language that is based on session types [16,17,18]. We have evaluated our
prototype on several examples such as the Dyck language [20], an expression
server [44] and serializing binary trees, and standard polymorphic data structures
such as lists, stacks and queues.

Most closely related to our work is context-free session types (CFSTs) [44].
CFSTs also enhance the expressive power of binary session types by extend-
ing types with a notion of sequential composition of types. In connection with
CFSTs, we identified a proper fragment of nested session types closed under
sequential composition and therefore nested session types are strictly more ex-
pressive than CFSTs.

The main technical contributions of our work are:

– A uniform language of session types supporting prenex polymorphism, type
constructors, and nested types and its type safety proof (Sections 3, 6).

– A proof of decidability of type equality (Section 4).
– A practical algorithm for type equality and its soundness proof (Section 5).
– A proper fragment of nested session types that is closed under sequential

composition, the main feature of context-free session types (Section 7).
– An implementation and integration with the Rast language (Section 8).

2 Overview of Nested Session Types

The main motivation for studying nested types is quite practical and generally
applicable to programming languages with structural type systems. We start
by applying parametric type constructors for a standard polymorphic queue
data structure. We also demonstrate how the types can be made more precise
using nesting. A natural consequence of having nested types is the ability to
capture (communication) patterns characterized by context-free languages. As
an illustration, we express the Dyck language of balanced parentheses and show
how nested types are connected to DPDAs also.

Queues A standard application of parameterized types is the definition of poly-
morphic data structures such as lists, stacks, or queues. As a simple example,
consider the nested type:

queue[α] , N{ins : α ⊸ queue[α],del : ⊕{none : 1, some : α⊗ queue[α]}}

The type queue, parameterized by α, represents a queue with values of type α.
A process providing this type offers an external choice (N) enabling the client
to either insert a value of type α in the queue (label ins), or to delete a value
from the queue (label del). After receiving label ins, the provider expects to
receive a value of type α (the ⊸ operator) and then proceeds to offer queue[α].
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Upon reception of the label del, the provider queue is either empty, in which
case it sends the label none and terminates the session (as prescribed by type
1), or is non-empty, in which case it sends a value of type α (the ⊗ operator)
and recurses with queue[α].

Although parameterized type definitions are sufficient to express the standard
interface to polymorphic data structures, we propose nested session types which
are considerably more expressive. For instance, we can use type parameters to
track the number of elements in the queue in its type!

queue[α, x] , N{ins : α ⊸ queue[α, Some[α, x]],del : x}

Some[α, x] , ⊕{some : α⊗ queue[α, x]} None , ⊕{none : 1}

The second type parameter x tracks the number of elements. This parameter
can be understood as a symbol stack. On inserting an element, we recurse to
queue[α, Some[α, x]] denoting the push of Some symbol on stack x. We initiate the
empty queue with the type queue[α,None] where the second parameter denotes
an empty symbol stack. Thus, a queue with n elements would have the type
queue[α, Somen[α,None]]. On receipt of the del label, the type transitions to x
which can either be None (if the queue is empty) or Some[α, x] (if the queue
is non-empty). In the latter case, the type sends label some followed by an
element, and transitions to queue[α, x] denoting a pop from the symbol stack.
In the former case, the type sends the label none and terminates. Both these
behaviors are reflected in the definitions of types Some and None.

Context-Free Languages Recursive session types capture the class of regular
languages [44]. However, in practice, many useful languages are beyond regular.
As an illustration, suppose we would like to express a balanced parentheses
language, also known as the Dyck language [20] with the end-marker $. We use
L to denote an opening symbol, and R to denote a closing symbol (in a session-
typed mindset, L can represent client request and R is server response). We
need to enforce that each L has a corresponding closing R and they are properly
nested. To express this, we need to track the number of L’s in the output with
the session type. However, this notion of memory is beyond the expressive power
of regular languages, so mere recursive session types will not suffice.

We utilize the expressive power of nested types to express this behavior.

T [x] , ⊕{L : T [T [x]],R : x} D , ⊕{L : T [D], $ : 1}

The nested type T [x] takes x as a type parameter and either outputs L and
continues with T [T [x]], or outputs R and continues with x. The type D either
outputs L and continues with T [D], or outputs $ and terminates. The type D
expresses a Dyck word with end-marker $ [33].

The key idea here is that the number of T ’s in the type of a word tracks the
number of unmatched L’s in it. Whenever the type T [x] outputs L, it recurses
with T [T [x]] incrementing the number of T ’s in the type by 1. Dually, whenever
the type outputsR, it recurses with x decrementing the number of T ’s in the type
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by 1. The type D denotes a balanced word with no unmatched L’s. Moreover,
since we can only output $ (or L) at the type D and not R, we obtain the
invariant that any word of type D must be balanced. If we imagine the parameter
x as the symbol stack, outputting an L pushes T on the stack, while outputtingR
pops T from the stack. The definition of D ensures that once an L is outputted,
the symbol stack is initialized with T [D] indicating one unmatched L.

Nested session types do not restrict communication so that the words repre-
sented have to be balanced. To this end, the type D′ can model the cropped Dyck
language, where unbalanced words can be captured.

T ′[x] , ⊕{L : T ′[T ′[x]],R : x, $ : 1} D′ , ⊕{L : T ′[D′], $ : 1}

The only difference between types T [x] and T ′[x] is that T ′[x] allows us to
terminate at any point using the $ label which immediately transitions to type 1.
Nested session types can not only capture the class of deterministic context-free
languages recognized by DPDAs that accept by empty stack (balanced words),
but also the class of deterministic context-free languages recognized by DPDAs
that accept by final state (cropped words).

Multiple Kinds of Parentheses We can use nested types to express more
general words with different kinds of parentheses. Let L and L′ denote two kinds
of opening symbols, while R and R′ denote their corresponding closing symbols
respectively. We define the session types

S[x] , ⊕{L : S[S[x]],L′ : S′[S[x]],R : x}

S′[x] , ⊕{L : S[S′[x]],L′ : S′[S′[x]],R′ : x}

E , ⊕{L : S[E],L′ : S′[E], $ : 1}

We push symbols S and S′ to the stack on outputting L and L′ respectively.
Dually, we pop S and S′ from the stack on outputting R and R′ respectively.
Then, the type E defines an empty stack, thereby representing a balanced Dyck
word. This technique can be generalized to any number of kinds of brackets.

Multiple States as Multiple Parameters Using defined type names with
multiple type parameters, we enable types to capture the language of DPDAs
with several states. Consider the language L3 = {LnaRna∪LnbRnb | n > 0},
proposed by Korenjak and Hopcroft [33]. A word in this language starts with
a sequence of opening symbols L, followed by an intermediate symbol, either a
or b. Then, the word contains as many closing symbols R as there were Ls and
terminates with the symbol a or b matching the intermediate symbol.

U , ⊕{L : O[C[A], C[B]]} O[x, y] , ⊕{L : O[C[x], C[y]], a : x,b : y}

C[x] , ⊕{R : x} A , ⊕{a : 1} B , ⊕{b : 1}

The L3 language is characterized by session type U . Since the type U is unaware
of which intermediate symbol among a or b would eventually be chosen, it
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cleverly maintains two symbol stacks in the two type parameters x and y of O.
We initiate type U with outputting L and transitioning to O[C[A], C[B]] where
the symbol C tracks that we have outputted one L. The types A and B represent
the intermediate symbols that might be used in the future. The type O[x, y] can
either output an L and transition to O[C[x], C[y]] pushing the symbol C onto
both stacks; or it can output a (or b) and transition to the first (resp. second)
type parameter x (resp. y). Intuitively, the type parameter x would have the
form Cn[A] for n > 0 (resp. y would be Cn[B]). Then, the type C[x] would
output an R and pop the symbol C from the stack by transitioning to x. Once
all the closing symbols have been outputted (note that you cannot terminate pre-
emptively), we transition to type A or B depending on the intermediate symbol
chosen. Type A outputs a and terminates, and similarly, type B outputs b and
terminates. Thus, we simulate the L3 language (not possible with context-free
session types [44]) using two type parameters.

More broadly, nested types can neatly capture complex server-client inter-
actions. For instance, client requests can be captured using labels L,L′ while
server responses can be captured using labels R,R′ expressing multiple kinds of
requests. Balanced words will then represent that all requests have been handled.
The types can also guarantee that responses do not exceed requests.

Concatenation of Dyck Words We conclude this section by proving some
standard properties on balanced parentheses: closure under concatenation and
closure under wrapping. If w1$ and w2$ are two balanced words, then so is w1w2$.
Similarly, if w$ is a balanced word, then so is LwR$. These two properties can
be proved by implementing append and wrap processes capturing the former and
latter properties.

append : (w1 : D), (w2 : D) ⊢ (w : D) wrap : (w : D) ⊢ (w′ : D)

The above declarations describe the type for the two processes. The append
process uses two channels w1 and w2 of type D and provides w : D, whereas
wrap uses w : D and provides w′ : D.

decl fmap’[a][b] : (f : a -o b) |- (g : T[a] -o T[b])

proc g <- fmap’[a][b] f =

w <- recv g ; % (f : a -o b) (w : T[a]) |- (g : T[b])

case w (

L => % (f : a -o b) (w : T[T[a]]) |- (g : T[b])

g.L ; % (f : a -o b) (w : T[T[a]]) |- (g : T[T[b]])

h0 <- fmap’[a][b] f ;

h1 <- fmap’[T[a]][T[b]] h0 ;

send h1 w ; g <-> h1

| R => % (f : a -o b) (w : a) |- (g : T[b])

g.R ; % (f : a -o b) (w : a) |- (g : b)

send f w ; g <-> f

)
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decl fmap[a][b] : (f : a -o b) (w : T[a]) |- (w’ : T[b])

proc w’ <- fmap[a][b] f w =

f’ <- fmap’[a][b] f ; % (f’ : T[a] -o T[b]) (w : T[a]) |- (w’ : T[b])

send f’ w ; w’ <-> f’

decl append’ : (w2 : D) |- (f : D -o D)

proc f <- append’ w2 =

w1 <- recv f ; % (w1 : D) (w2 : D) |- (f : D)

case w1 (

L => % (w1 : T[D]) (w2 : D) |- (f : D)

f.L ; % (w1 : T[D]) (w2 : D) |- (f : T[D])

g <- append’ w2 ; % (w1 : T[D]) (g : D -o D) |- (f : T[D])

f <- fmap[D][D] g w1

| $ => % (w1 : 1) (w2 : D) |- (f : D)

wait w1 ; f <-> w2

)

proc w <- append w1 w2 =

f <- append’ w2 ; % (w1 : D) (f : D -o D) |- (w : D)

send f w1 ; w <-> f

3 Description of Types

The underlying base system of session types is derived from a Curry-Howard
interpretation [7,8] of intuitionistic linear logic [24]. Below we describe the session
types, their operational interpretation and the continuation type.

A,B,C ::= ⊕{ℓ : Aℓ}ℓ∈L send label k ∈ L continue at type Ak

| N{ℓ : Aℓ}ℓ∈L receive label k ∈ L continue at type Ak

| A⊗B send channel a : A continue at type B
| A ⊸ B receive channel a : A continue at type B
| 1 send close message no continuation
| α type variable
| V [B] defined type name

The basic type operators have the usual interpretation: the internal choice
operator ⊕{ℓ : Aℓ}ℓ∈L selects a branch with label k ∈ L with corresponding
continuation type Ak; the external choice operator N{ℓ : Aℓ}ℓ∈L offers a choice
with labels ℓ ∈ L with corresponding continuation types Aℓ; the tensor operator
A⊗B represents the channel passing type that consists of sending a channel of
type A and proceeding with type B; dually, the lolli operator A ⊸ B consists
of receiving a channel of type A and continuing with type B; the terminated
session 1 is the operator that closes the session.

We also support type constructors to define new type names. A type name
V is defined according to a type definition V [α] = A that is parameterized by a
sequence of distinct type variables α that the type A can refer to. We can use
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type names in a type expression using V [B]. Type expressions can also refer to
parameter α available in scope. The free variables in type A refer to the set of
type variables that occur freely in A. Types without any free variables are called
closed types. We call any type not of the form V [B] to be structural.

All type definitions are stored in a finite global signature Σ defined as

Signature Σ ::= · | Σ, V [α] = A

In a valid signature, all definitions V [α] = A are contractive, meaning that A
is structural, i.e. not itself a type name. This allows us to take an equirecursive
view of type definitions, which means that unfolding a type definition does not
require communication. More concretely, the type V [B] is considered equivalent
to its unfolding A[B/α]. We can easily adapt our definitions to an isorecursive
view [34,19] with explicit unfold messages. All type names V occurring in a valid
signature must be defined, and all type variables defined in a valid definition
must be distinct. Furthermore, for a valid definition V [α] = A, the free variables
occurring in Amust be contained in α. This top-level scoping of all type variables
is what we call the prenex form of polymorphism.

4 Type Equality

Central to any practical type checking algorithm is type equality. In our system,
it is necessary for the rule of identity (forwarding) and process spawn, as well as
the channel-passing constructs for types A⊗B and A ⊸ B. However, with nested
polymorphic recursion, checking equality becomes challenging. We first develop
the underlying theory of equality providing its definition, and then establish its
reduction to checking trace equivalence of deterministic first-order grammars.

4.1 Type Equality Definition

Intuitively, two types are equal if they permit exactly the same communica-
tion behavior. Formally, type equality is captured using a coinductive definition
following seminal work by Gay and Hole [22].

Definition 1. We first define unfoldΣ(A) as

V [α] = A ∈ Σ

unfoldΣ(V [B]) = A[B/α]
def

A 6= V [B]

unfoldΣ(A) = A
str

Unfolding a structural type simply returns A. Since type definitions are con-
tractive [22], the result of unfolding is never a type name application and it
always terminates in one step.

Definition 2. Let Type be the set of closed type expressions (no free variables).
A relation R ⊆ Type× Type is a type bisimulation if (A,B) ∈ R implies:

– If unfoldΣ(A) = ⊕{ℓ : Aℓ}ℓ∈L, then unfoldΣ(B) = ⊕{ℓ : Bℓ}ℓ∈L and also
(Aℓ, Bℓ) ∈ R for all ℓ ∈ L.
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– If unfoldΣ(A) = N{ℓ : Aℓ}ℓ∈L, then unfoldΣ(B) = N{ℓ : Bℓ}ℓ∈L and also
(Aℓ, Bℓ) ∈ R for all ℓ ∈ L.

– If unfoldΣ(A) = A1 ⊗A2, then unfoldΣ(B) = B1 ⊗B2 and (A1, B1) ∈ R and
(A2, B2) ∈ R.

– If unfoldΣ(A) = A1 ⊸ A2, then unfoldΣ(B) = B1 ⊸ B2 and (A1, B1) ∈ R
and (A2, B2) ∈ R.

– If unfoldΣ(A) = 1, then unfoldΣ(B) = 1.

Definition 3. Two closed types A and B are equal (A ≡ B) iff there exists a
type bisimulation R such that (A,B) ∈ R.

When the signature Σ is not clear from context we add a subscript, A ≡Σ B.
This definition only applies to types with no free type variables. Since we allow
parameters in type definitions, we need to define equality in the presence of
free type variables. To this end, we define the notation ∀V . A ≡ B where V is
a collection of type variables and A and B are valid types w.r.t. V (i.e., free
variables in A and B are contained in V).

Definition 4. We define ∀V . A ≡ B iff for all closed type substitutions σ : V,
we have A[σ] ≡ B[σ].

4.2 Decidability of Type Equality

Solomon [41] proved that types defined using parametric type definitions with
an inductive interpretation can be translated to DPDAs, thus reducing type
equality to language equality on DPDAs. However, our type definitions have a
coinductive interpretation. As an example, consider the types A = ⊕{a : A} and
B = ⊕{b : B}. With an inductive interpretation, types A and B are empty
(because they do not have terminating symbols) and, thus, are equal. However,
with a coinductive interpretation, type A will send an infinite number of a’s,
and B will send an infinite number of b’s, and are thus not equal. Our reduction
needs to account for this coinductive behavior.

We show that type equality of nested session types is decidable via a reduction
to the trace equivalence problem of deterministic first-order grammars [29]. A
first-order grammar is a structure (N ,A,S) where N is a set of non-terminals,
A is a finite set of actions, and S is a finite set of production rules. The arity
of non-terminal X ∈ N is written as arity(X) ∈ N. Production rules rely on a
countable set of variables V , and on the set TN of regular terms over N ∪ V . A
term is regular if the set of subterms is finite (see [29]).

Each production rule has the form Xα
a
−→ E where X ∈ N is a non-terminal,

a ∈ A is an action, and α ∈ V∗ are variables that the term E ∈ TN can refer
to. A grammar is deterministic if for each pair of X ∈ N and a ∈ A, there
is at most one rule of the form Xα

a
−→ E in S. The substitution of terms B

for variables α in a rule Xα
a
−→ E, denoted by XB

a
−→ E[B/α], is the rule

(Xα
a
−→ E)[B/α]. Given a set of rules S, the trace of a term T is defined as

traceS(T ) = {a ∈ A∗ | (T
a
−→ T ′) ∈ S, for some T ′ ∈ TN }. Two terms are trace

equivalent, written as T ∼S T ′, if traceS(T ) = traceS(T
′).
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V ⊢ Aℓ ⇒ (Bℓ, Σℓ) (∀ℓ ∈ L)

V ⊢ ⊕{ℓ : Aℓ}ℓ∈L → (⊕{ℓ : Bℓ}ℓ∈L,∪ℓ∈LΣℓ)
⊕

V ⊢ Aℓ ⇒ (Bℓ, Σℓ) (∀ℓ ∈ L)

V ⊢ N{ℓ : Aℓ}ℓ∈L → (N{ℓ : Bℓ}ℓ∈L,∪ℓ∈LΣℓ)
N

V ⊢ A1 ⇒ (B1, Σ1) V ⊢ A2 ⇒ (B2, Σ2)

V ⊢ A1 ⊗ A2 → (B1 ⊗B2, Σ1 ∪Σ2)
⊗

V ⊢ A1 ⇒ (B1, Σ1) V ⊢ A2 ⇒ (B2, Σ2)

V ⊢ A1 ⊸ A2 → (B1 ⊸ B2, Σ1 ∪Σ2)
⊸

V ⊢ 1→ (1, ·)
1

V ⊢ α→ (α, ·)
var

A structural V ⊢ A→ (B,Σ) (V fresh)

V ⊢ A⇒ (B,Σ@V [V] = B)
rename− str

A = 1, α

V ⊢ A⇒ (A, ·)
rename− nostr

(·) −→ (·)
emp

Σ −→ Σ′ α ⊢ A→ (B,ΣA)

Σ,V [α] = A −→ Σ′, ΣA, V [α] = B
step

Fig. 1: Algorithmic Rules for Internal Renaming

The crux of the reduction lies in the observation that session types can be
translated to terms and type definitions can be translated to production rules of a
first-order grammar.We start the translation of nested session types to grammars
by first making an initial pass over the signature and introducing fresh internal
names such that the new type definitions alternate between structural (except
1 and α) and non-structural types. These internal names are parameterized
over their free type variables, and their definitions are added to the signature.
This internal renaming simplifies the next step where we translate this extended
signature to grammar production rules.

The internal renaming is defined using the judgment Σ −→ Σ′ as defined in
Figure 1. Each definition is taken from the signature Σ, and then the definition
is internally renamed and added to the original signature.

Example 1. As a running example, consider the queue type from Section 2:

Q[α] = N{ins : α ⊸ Q[α],del : ⊕{none : 1, some : α⊗Q[α]}}
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After performing internal renaming for this type, we obtain the following
signature:

Q[α] = N{ins : X0[α],del : X1[α]} X1[α] = ⊕{none : 1, some : X2[α]}

X0[α] = α ⊸ Q[α] X2[α] = α⊗Q[α]

We introduce the fresh internal names X0, X1 and X2 (parameterized with free
variable α) to represent the continuation type in each case. Note the alternation
between structural and non-structural types (of the form V [B]).

Next, we translate this extended signature to the grammar G = (N ,A,S)
aimed at reproducing the behavior prescribed by the types as grammar actions.

N = {Q,X0, X1, X2,⊥}

A = {&ins,&del,⊸1,⊸2 ⊕none,⊕some,⊗1,⊗2, }

S = {Qα
&ins
−−−→ X0α, Qα

&del
−−−→ X1α, X0α

⊸1−−→ α, X0α
⊸2−−→ Qα,

X1α
⊕none
−−−−→ ⊥, X1α

⊕some
−−−−−→ X2α, X2α

⊗1−−→ α, X2α
⊗2−−→ Qα}

Essentially, each defined type name is translated to a fresh non-terminal. Each
type definition then corresponds a sequence of rules: one for each possible con-
tinuation type with the appropriate label that leads to that continuation. For
instance, the type Q[α] has two possible continuations: transition to X0[α] with
action &ins or to X1[α] with action &del. The rules for all other type names is
analogous. When the continuation is 1, we transition to the nullary non-terminal
⊥ disabling any further action. When the continuation is α, we transition to α.
Since each type name is defined once, the produced grammar is deterministic.

Formally, the translation from an (extended) signature to a grammar is han-
dled by two simultaneous tasks: translating type definitions into production rules
(function τ below), and converting type names, variables and the terminated ses-
sion into grammar terms (function L·M). The function L·M : OType → TN from
open session types to grammar terms is defined by:

L1M = ⊥ type 1 translates to ⊥
LαM = α type variables translate to themselves

LV [B1, . . . , Bn]M = V LB1M · · · LBnM type names translate to first-order terms

Due to this mapping, throughout this section we will use type names indistinctly
as type names or as non-terminal first-order symbols.

The function τ converts a type definition V [α] = A into a set of production
rules and is defined according to the structure of A as follows:

τ(V [α] = ⊕{ℓ : Aℓ}ℓ∈L) = {LV [α]M
⊕ℓ
−−→ LAℓM | ℓ ∈ L}

τ(V [α] = N{ℓ : Aℓ}ℓ∈L) = {LV [α]M
Nℓ
−−→ LAℓM | ℓ ∈ L}

τ(V [α] = A1 ⊗A2) = {LV [α]M
⊗i−−→ LAiM | i = 1, 2}

τ(V [α] = A1 ⊸ A2) = {LV [α]M
⊸i−−→ LAiM | i = 1, 2}

The function τ identifies the actions and continuation types corresponding to
A and translates them to grammar rules. Internal and external choices lead to
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actions ⊕ℓ and Nℓ, for each ℓ ∈ L, with Aℓ as the continuation type. The type
A1 ⊗ A2 enables two possible actions, ⊗1 and ⊗2, with continuation A1 and
A2 respectively. Similarly A1 ⊸ A2 produces the actions ⊸1 and ⊸2 with A1

and A2 as respective continuations. Contractiveness ensures that there are no
definitions of the form V [α] = V ′[B]. Our internal renaming ensures that we
do not encounter cases of the form V [α] = 1 or V [α] = α because we do not
generate internal names for them. For the same reason, the L·M function is only
defined on the complement types 1, α and V [B].

The τ function is extended to translate a signature by being applied point-
wise. Formally, τ(Σ) =

⋃
(V [α]=A)∈Σ τ(V [α] = A). Connecting all pieces, we

define the fog function that translates a signature to a grammar as:

fog(Σ) = (N ,A,S), where: S = τ(Σ)

N = {X | (Xα
a
−→ E) ∈ τ(Σ)} A = {a | (Xα

a
−→ E) ∈ τ(Σ)}

The grammar is constructed by first computing τ(Σ) to obtain all the production
rules. N and A are constructed by collecting the set of non-terminals and actions
from these rules. The finite representation of session types and uniqueness of
definitions ensure that fog(Σ) is a deterministic first-order grammar.

Checking equality of types A and B given signature Σ finally reduces to
(i) internal renaming of Σ to produce Σ′, and (ii) checking trace-equivalence of
terms LAM and LBM given grammar fog(Σ′). If A and B are themselves structural,
we generate internal names for them also during the internal renaming process.
Since we assume an equirecursive and non-generative view of types, it is easy
to show that internal renaming does not alter the communication behavior of
types and preserves type equality. Formally, A ≡Σ B iff A ≡Σ′ B.

Theorem 1. A ≡Σ B if and only if LAM ∼S LBM, where (N ,A,S) = fog(Σ′)
and Σ′ is the extended signature for Σ.

Proof. For the direct implication, assume that LAM 6∼S LBM. Pick a sequence of
actions in the difference of the traces and let w0 be its greatest prefix occurring
in both traces. Either w0 is a maximal trace for one of the terms, or we have
LAM

w0−−→ LA′M and LBM
w0−−→ LB′M, with LA′M

a1−→ LA′′M and LB′M
a2−→ LB′′M, where

a1 6= a2. In both cases, we have A′ 6≡ B′. To show that, let us proceed by case
analysis on A′ assuming that A′ ≡ B′.

Case unfoldΣ(A
′) = ⊕{ℓ : Aℓ}ℓ∈L. In this case, we would have unfoldΣ(B

′) =
⊕{ℓ : Bℓ}ℓ∈L. Hence, we would have a1 = ⊕ℓ for some ℓ ∈ L and w = w0 · a1
would occur in both traces and would be greater than w0, which is a contradic-
tion.

Case unfoldΣ(A
′) = N{ℓ : Aℓ}ℓ∈L. Similar to the previous case.

Case unfoldΣ(A
′) = A1 ⊗ A2. In this case we would have unfoldΣ(B

′) =
B1⊗B2. Hence, a1 ∈ {⊗1,⊗2} and we would have w = w0 ·a1 occurring in both
traces, which contradicts the assumption that w0 is the greatest prefix occurring
in both traces.

Case unfoldΣ(A
′) = A1 ⊸ A2. Similar to the previous case.



Nested Session Types 13

Case unfoldΣ(A
′) = 1. In this case, we would have unfoldΣ(B

′) = 1. Hence,
w0 would be the maximal trace for both terms, which is a contradiction with the
fact that w0 is a prefix of a sequence of actions in the difference of the traces.

Since all cases led to contradictions, we have A′ 6≡ B′. The conclusion that
A 6≡ B, follows immediately from the property: if LA0M

w
−→ LA1M and LB0M

w
−→ LB1M

and A1 6≡ B1, then A0 6≡ B0. We prove this property by induction on the
length of w. If |w| = 0, then A1 coincides with A0 and B1 coincides with B0, so
A0 6≡ B0. Now, let n > 0 and assume the property holds for any trace of length

n. Consider w = w′ ·a with |w′| = n and let A2, B2 be s.t. LA0M
w′

−→ LA2M
a
−→ LA1M

and LB0M
w′

−→ LB2M
a
−→ LB1M. With a case analysis on A2, similar to the analysis

above, since A1 6≡ B1, we conclude that A2 6≡ B2. By induction hypothesis we
have A0 6≡ Bo.

For the reciprocal implication, assume that LAM ∼S LBM. Consider the relation

R = {(A0, B0) | traceS(LA0M) = traceS(LB0M)} ⊆ Type× Type.

Obviously, (A,B) ∈ R. To prove that R is a type bisimulation, let (A0, B0) ∈ R
and proceed by case analysis on A0 and B0. We sketch a couple of cases for A0.
The other cases are analogous.

Case unfoldΣ(A0) = ⊕{ℓ : Aℓ}ℓ∈L. In this case we have LA0M
⊕ℓ
−−→ LAℓM.

Since, by hypothesis, the traces coincide, traceS(LA0M) = traceS(LB0M), we have

LB0M
⊕ℓ
−−→ LBℓM and, thus, unfoldΣ(B0) = ⊕{ℓ : Bℓ}ℓ∈L. Moreover, using Observa-

tion 3 of Jančar [29], we have traceS(LAℓM) = traceS(LBℓM). Hence, (Aℓ, Bℓ) ∈ R.
Case unfoldΣ(A0) = 1. In this case, traceS(LA0M) = traceS(⊥) = ∅. Since B0

is a closed type and traceS(LA0M) = traceS(LB0M) and the types are contractive,
we have unfoldΣ(B0) = 1.

However, type equality is not only restricted to closed types (see Definition 4).
To decide equality for open types, i.e. ∀V . A ≡ B given signature Σ, we introduce
a fresh label ℓα and type Aα for each α ∈ V . We extend the signature with type
definitions: Σ∗ = Σ ∪α∈V {Aα = ⊕{ℓα : Aα}}. We then replace all occurrences
of α in A and B with Aα and check their equality with signature Σ∗. We prove
that this substitution preserves equality.

Theorem 2. ∀V . A ≡Σ B iff A[σ∗] ≡Σ∗ B[σ∗] where σ∗(α) = Aα for all α ∈ V.

Proof. The direct implication is immediate because σ∗ is a closed substitution.
For the reciprocal implication, assume that ∀V . A 6≡Σ B. Either for any closed
substitution σ : V , A[σ] 6≡ B[σ], in which case A[σ∗] 6≡ B[σ∗]; or there exists
σ′ : V s.t. A[σ′] 6≡ B[σ′]. In the latter, there is a distinct trace for A[σ′] and
B[σ′], resulting from the substitution. Thus, a maximal trace w1 belonging to
both trace(A[σ′]) and trace(B[σ′]) leads to a subterm C of σ′(β) and to a subterm

D of σ′(γ), respectively: A[σ′]
w1−−→ C and B[σ′]

w1−−→ D, where β 6= γ. In that

case, there is a subtrace w0 of w1 such that A
w0−−→ β and B

w0−−→ γ . Hence, we
conclude that A[σ∗]

w0−−→ Aβ and B[σ∗]
w0−−→ Aγ and Aβ 6≡Σ∗ Aγ , because ℓβ and

ℓγ are distinct labels.
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Theorem 3. Checking ∀V . A ≡ B is decidable.

Proof. Theorem 2 reduces equality of open types to equality of closed types.
Theorem 1 reduces equality of closed nested session types to trace equivalence
of first-order grammars. Jančar [29] proved that trace equivalence for first-order
grammars is decidable, hence establishing the decidability of equality for nested
session types.

5 Practical Algorithm for Type Equality

Although type equality can be reduced to trace equivalence for first-order gram-
mars (Theorem 1), the latter problem has a very high theoretical complexity
with no known practical algorithm [29]. In response, we have designed a coin-
ductive algorithm for approximating type equality. Taking inspiration from Gay
and Hole [22], we attempt to construct a bisimulation. Our proposed algorithm
is sound but incomplete and can terminate in three states: (i) types are proved
equal by constructing a bisimulation, (ii) counterexample detected by identi-
fying the position where types differ, or (iii) terminated without a conclusive
answer due to incompleteness. We interpret both (ii) and (iii) as a failure of
type-checking (but there is a recourse; see Section 5.1). The algorithm is deter-
ministic (no backtracking) and the implementation is quite efficient in practice.
For all our examples, type checking is instantaneous (see Section 8).

The fundamental operation in the equality algorithm is loop detection where
we determine if we have already added an equation A ≡ B to the bisimulation we
are constructing. Due to the presence open types with free type variables, deter-
mining if we have considered an equation already becomes a difficult operation.
To that purpose, we make an initial pass over the given types and introduce
fresh internal names abstracted over their free type variables. In the resulting
signature defined type names and type operators alternate and we can perform
loop detection entirely on defined type names (whether internal or external).

Example 2 (Queues). After creating internal names %i for the type queue[α] =
N{ins : α ⊸ queue[α],del : ⊕{none : 1, some : α ⊗ queue[α]}} we obtain the
following signature (note the alternation between type names and operators).

queue[α] = N{ins : %0[α],del : %2[α]} %0[α] = %1[α] ⊸ queue[α]
%1[α] = α %2[α] = ⊕{none : %3, some : %4[α]} %3 = 1
%4[α] = %5[α]⊗ queue[α] %5[α] = α

Based on the invariants established by internal names, the algorithm only
needs to alternately compare two type names or two structural types, i.e., types
with an operator on the head. The rules are shown in Figure 2. The judgment
has the form V ; Γ ⊢Σ A ≡ B where V contains the free type variables in the
types A and B, Σ is a fixed valid signature containing type definitions of the
form V [α] = C, and Γ is a collection of closures 〈V ; V1[A1] ≡ V2[A2]〉. If a
derivation can be constructed, all closed instances of all closures are included
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V ; Γ ⊢ Aℓ ≡ Bℓ (∀ℓ ∈ L)

V ; Γ ⊢ ⊕{ℓ : Aℓ}ℓ∈L ≡ ⊕{ℓ : Bℓ}ℓ∈L

⊕
V ; Γ ⊢ Aℓ ≡ Bℓ (∀ℓ ∈ L)

V ; Γ ⊢ N{ℓ : Aℓ}ℓ∈L ≡ N{ℓ : Bℓ}ℓ∈L

N

V ; Γ ⊢ A1 ≡ B1 V ; Γ ⊢ A2 ≡ B2

V ; Γ ⊢ A1 ⊗ A2 ≡ B1 ⊗B2

⊗
V ; Γ ⊢ A1 ≡ B1 V ; Γ ⊢ A2 ≡ B2

V ; Γ ⊢ A1 ⊸ A2 ≡ B1 ⊸ B2

⊸

V ; Γ ⊢ 1 ≡ 1
1

α ∈ V
V ; Γ ⊢ α ≡ α

var
V ; Γ ⊢ A ≡ A′

V ; Γ ⊢ V [A] ≡ V [A′]
refl

V1[α1] = A ∈ Σ V2[α2] = B ∈ Σ C = 〈V ; V1[A1] ≡ V2[A2]〉

V ; Γ, C ⊢Σ A[A1/α1] ≡ B[A2/α2]

V ; Γ ⊢Σ V1[A1] ≡ V2[A2]
expd

〈V ′ ; V1[A′

1
] ≡ V2[A′

2
]〉 ∈ Γ

∃σ′ : V ′.
(

V ; Γ ⊢ V1[A′

1
[σ′]] ≡ V1[A1] ∧ V ; Γ ⊢ V2[A′

2
[σ′]] ≡ V2[A2]

)

V ; Γ ⊢ V1[A1] ≡ V2[A2]
def

Fig. 2: Algorithmic Rules for Type Equality

in the resulting bisimulation (see the proof of Theorem 5). A closed instance of
closure 〈V ; V1[A1] ≡ V2[A2]〉 is obtained by applying a closed substitution σ
over variables in V , i.e., V1[A1[σ]] ≡ V2[A2[σ]] such that the types V1[A1[σ]] and
V2[A2[σ]] have no free type variables. Because the signature Σ is fixed, we elide
it from the rules in Figure 2.

In the type equality algorithm, the rules for type operators simply compare
the components. If the type constructors (or the label sets in the ⊕ and N rules)
do not match, then type equality fails having constructed a counterexample to
bisimulation. Similarly, two type variables are considered equal iff they have the
same name, as exemplified by the var rule. Finally, to account for α-renaming,
when comparing explicitly quantified types (rule ∃γ , ∀γ), we substitute α and β
by the same fresh variable γ.

The rule of reflexivity is needed explicitly here (but not in the version of Gay
and Hole) due to the incompleteness of the algorithm: we may otherwise fail to
recognize type names parameterized with equal types as equal. Note that the
refl rule checks a sequence of types.

Now we come to the key rules, expd and def. In the expd rule we expand the
definitions of V1[A1] and V2[A2], and add the closure 〈V ; V1[A1] ≡ V2[A2]〉 to
Γ . Since the equality of V1[A1] and V2[A2] must hold for all its closed instances,
the extension of Γ with the corresponding closure remembers exactly that.

The def rule only applies when there already exists a closure in Γ with the
same type names V1 and V2. In that case, we try to find a substitution σ′ over V ′

such that V1[A1] is equal to V1[A′
1[σ

′]] and V2[A2] is equal to V2[A′
2[σ

′]]. Imme-
diately after, the refl rule applies and recursively calls the equality algorithm on
both type parameters. Existence of such a substitution ensures that any closed in-
stance of 〈V ; V1[A1] ≡ V2[A2]〉 is also a closed instance of 〈V ′ ; V1[A′

1] ≡ V2[A′
2]〉,
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which are already present in the constructed type bisimulation, and we can ter-
minate our equality check, having successfully detected a loop.

The algorithm so far is sound, but potentially non-terminating. There are
two points of non-termination: (i) when encountering name/name equations, we
can use the expd rule indefinitely, and (ii) we call the type equality recursively
in the def rule. To ensure termination in the former case, we restrict the expd

rule so that for any pair of type names V1 and V2 there is an upper bound on
the number of closures of the form 〈− ; V1[−] ≡ V2[−]〉 allowed in Γ . We define
this upper bound as the depth bound of the algorithm and allow the program-
mer to specify this depth bound. Surprisingly, a depth bound of 1 suffices for all
of our examples. In the latter case, instead of calling the general type equality
algorithm, we introduce the notion of rigid equality, denoted by V ; Γ  A ≡ B.
The only difference between general and rigid equality is that we cannot employ
the expd rule for rigid equality. Since the size of the types reduce in all equality
rules except for expd, this algorithm terminates. When comparing two instanti-
ated type names, our algorithm first tries reflexivity, then tries to close a loop
with def, and only if neither of these is applicable or fails do we expand the
definitions with the expd rule. Note that if type names have no parameters, our
algorithm specializes to Gay and Hole’s (with the small optimizations of reflex-
ivity and internal naming), which means our algorithm is sound and complete
on monomorphic types.

Soundness. We establish the soundness of the equality algorithm by construct-
ing a type bisimulation from a derivation of V ; Γ ⊢ A ≡ B by (i) collecting the
conclusions of all the sequents, and (ii) forming all closed instances from them.

Definition 5. Given a derivation D of V ; Γ ⊢ A ≡ B, we define the set S(D)
of closures. For each sequent (regular or rigid) of the form V ; Γ ⊢ A ≡ B in D,
we include the closure 〈V ; A ≡ B〉 in S(D).

Lemma 1 (Closure Invariants). For any valid derivation D with the set of
closures S(D),

– If 〈V ; ⊕{ℓ : Aℓ}ℓ∈L ≡ ⊕{ℓ : Bℓ}ℓ∈L〉 ∈ S(D) from ⊕ rule, then 〈V ; Aℓ ≡
Bℓ〉 ∈ S(D) for all ℓ ∈ L.

– If 〈V ; N{ℓ : Aℓ}ℓ∈L ≡ N{ℓ : Bℓ}ℓ∈L〉 ∈ S(D) from N rule, then 〈V ; Aℓ ≡
Bℓ〉 ∈ S(D) for all ℓ ∈ L.

– If 〈V ; A1⊗A2 ≡ B1⊗B2〉 ∈ S(D) from ⊗ rule, then 〈V ; A1 ≡ B1〉 ∈ S(D)
and 〈V ; A2 ≡ B2〉 ∈ S(D).

– If 〈V ; A1 ⊸ A2 ≡ B1 ⊸ B2〉 ∈ S(D) from ⊸ rule, then 〈V ; A1 ≡ B1〉 ∈
S(D) and 〈V ; A2 ≡ B2〉 ∈ S(D).

– If 〈V ; V [A1] ≡ V [A2]〉 ∈ S(D) from refl rule, then for each 〈V ; Ai
1 ≡ Ai

2〉 ∈
S(D) for each i in 1..|A|.

– If 〈V ; V1[A1] ≡ V2[A2]〉 ∈ S(D) from expd rule and V1[α1] = B1 ∈ Σ and
V2[α2] = B2 ∈ Σ, then 〈V ; B1[A1/α1] ≡ B2[A2/α2]〉 ∈ S(D).

Proof. By induction on the type equality judgment.
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Theorem 4 (Soundness). If V ; · ⊢ A ≡ B, then ∀V . A ≡ B. Consequently,
if V is empty, we get A ≡ B.

Proof. Given a derivation D0 of V0 ; · ⊢ A0 ≡ B0, construct S(D0) and define
relation R0 as follows:

R0 = {(A[σ], B[σ]) | 〈V ; A ≡ B〉 ∈ S(D0) and σ over V}

Then, construct R1 as follows:

R1 = {(V [A], V [B]) | V [α] = C ∈ Σ and (Ai, Bi) ∈ R0 ∀i ∈ 1..|A|}

Consider R to be the reflexive transitive closure of R0∪R1. Note that extending
a relation by its reflexive transitive closure preserves its bisimulation properties
since the bisimulation is strong. We prove that R is a type bisimulation. Then
our theorem follows since the closure 〈V0 ; A0 ≡ B0〉 ∈ S(D0), and hence, for
any closed substitution σ, (A0[σ], B0[σ]) ∈ R.

To prove R is a bisimulation, we consider (A[σ], B[σ]) ∈ R where 〈V ; A ≡
B〉 ∈ S(D0) for some σ over V . We case analyze on the rule in the derivation
which added the above closure to R.

Consider the case where ⊕ rule is applied. The rule dictates that A = ⊕{ℓ :
Aℓ}ℓ∈L and B = ⊕{ℓ : Bℓ}ℓ∈L. Since 〈V ; A ≡ B〉 ∈ S(D0), by Lemma 1, we
obtain 〈V ; Aℓ ≡ Bℓ〉 ∈ S(D0) for all ℓ ∈ L. By the definition of R, we get that
(Aℓ[σ], Bℓ[σ]) ∈ R. Also, A[σ] = ⊕{ℓ : Aℓ[σ]}ℓ∈L and similarly, B[σ] = ⊕{ℓ :
Bℓ[σ]}ℓ∈L. Hence, R satisfies the closure condition (case 1) from Definition 2.
The cases for N, ⊗, ⊸ and 1 are analogous.

If the applied rule is var, then A = α and B = α. In this case, the relation R
contains any (σ, σ) for a ground session type σ. To proveR is a type bisimulation,
we need to subcase on the form of σ. For instance, if σ is of the form ⊕{ℓ : Aℓ},
then we need to prove that (Aℓ, Aℓ) ∈ R. But since Aℓ is a ground session type,
the definition of R implies that it contains (Aℓ, Aℓ). The remaining subcases are
analogous.

Consider the case where expd rule is applied. In this case, A = V1[A1] and
B = V2[A2] and (A[σ], B[σ]) ∈ R. Suppose the definitions are V1[α1] = B1

and V2[α2] = B2. Next, we havea unfoldΣ(A) = B1[A1/α1] and unfoldΣ(B) =
B2[A2/α2]. From Lemma 1, we conclude that 〈V ; B1[A1/α1] ≡ B2[A2/α2]〉 ∈
S(D0). Since the next applied rule has to be one of ⊕,N,⊗,⊸,1, var, we can
use Lemma 1 again to obtain the closure conditions of a type bisimulation.

The most crucial case is when the applied rule is def as we attempt to close off
the loop here. In this case, the second premise of the def rule ensures that there
exists a substituion σ′ over V ′ which entails 〈V ; V1[A′

1[σ
′]], V1[A1]〉 ∈ S(D0)

and 〈V ; V2[A′
2[σ

′]], V2[A2]〉 ∈ S(D0). To satisfy the closure condition, we

need to prove (V1[A1[σ]], V2[A2[σ]]) ∈ R for any closed substitution σ over
V . The key lies in composing the closed substitution σ with the substitution
σ′ : V ′ → V to obtain the closed substitution σ ◦ σ′ over V ′. The closure
〈V ; V1[A′

1[σ
′]], V1[A1]〉 ∈ S(D0) implies that (V1[A′

1[σ ◦ σ
′]], V1[A1[σ]]) ∈ R. The

closure 〈V ; V2[A′
2[σ

′]], V2[A2]〉 ∈ S(D0) implies (V2[A′
2[σ ◦ σ

′]], V2[A2[σ]]) ∈ R.
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The first premise states that 〈V ′ ; V1[A′
1] ≡ V2[A′

2]〉 ∈ S(D0). This entails that

(V1[A′
1[σ0]], V2[A′

2[σ0]]) ∈ R for any substituion σ0 over V ′. Setting σ0 = σ ◦ σ′

entails (V1[A′
1[σ ◦ σ

′]], V2[A′
2[σ ◦ σ

′]]) ∈ R. The transitive property of R then
ensures that (V1[A1], V2[A2]) ∈ R.

The last two cases concern reflexivity, one that comes from directly the clo-
sure obtained from applying the refl rule, and the other comes from the re-
lation R1. First, consider the case (V [A1[σ]], V [A2[σ]]) ∈ R which is added
due to the closure 〈V ; V [A1] ≡ V [A2]〉 ∈ S(D0). Lemma 1 ensures that
〈V ; A1

i ≡ A2
i〉 ∈ S(D0) for each i, implying (A1

i[σ], A2
i[σ]) ∈ R0. And

suppose V [α] = B ∈ Σ. We subcase on the form of B. Consider the repre-
sentative subcase where B = ⊕{ℓ : Bℓ}ℓ∈L. To prove R is a bisimulation, we
need to prove (Bℓ[A1[σ]/α], Bℓ[A2[σ]/α]) ∈ R. Note however the internal renam-
ing condition ensures that Bℓ = VB[α] for some (possibly internal) type name
VB . But then the definition of R1 coupled with the consequence of Lemma 1
ensures that (VB [A1[σ]], VB [A2[σ]]) ∈ R, satisfying the closure condition. The
other structural subcases are analogous. Consider the subcase where B = α.
Thus, V [A1] = Ai

1 and V [A2] = Ai
2, and since (A1

i[σ], A2
i[σ]) ∈ R0, they are

contained in R as well.
A similar argument covers the latter case where (V [A1[σ]], V [A2[σ]]) ∈ R

due to R1.
Thus, R is a bisimulation.

5.1 Type Equality Declarations

One of the primary sources of incompleteness in our algorithm is its inability to
generalize the coinductive hypothesis. As an illustration, consider the following
two types D and D′, which only differ in the names, but have the same structure.

T [x] , ⊕{L : T [T [x]],R : x} D , ⊕{L : T [D], $ : 1}

T ′[x] , ⊕{L : T ′[T ′[x]],R : x} D′ , ⊕{L : T ′[D′], $ : 1}

To establish D ≡ D′, our algorithm explores the L branch and checks T [D] ≡
T ′[D′]. A corresponding closure 〈· ; T [D] ≡ T ′[D′]〉 is added to Γ , and our algo-
rithm then checks T [T [D]] ≡ T ′[T ′[D′]]. This process repeats until it exceeds the
depth bound and terminates with an inconclusive answer. What the algorithm
never realizes is that T [x] ≡ T ′[x] for all x ∈ Type; it fails to generalize to this
hypothesis and is always inserting closed equality constraints to Γ .

To allow a recourse, we permit the programmer to declare (concrete syntax)

eqtype T[x] = T’[x]

an equality constraint easily verified by our algorithm. We then seed the Γ in
the equality algorithm with the corresponding closure from the eqtype constraint
which can then be used to establish D ≡ D′

· ; 〈x ; T [x] ≡ T ′[x]〉 ⊢ D ≡ D′
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which, upon exploring the L branch reduces to

· ; 〈x ; T [x] ≡ T ′[x]〉, 〈· ; D ≡ D′〉 ⊢ T [D] ≡ T ′[D′]

which holds because under the substitution [D/x] as required by the def rule.
In the implementation, we first collect all the eqtype declarations in the pro-

gram into a global set of closures Γ0. We then validate every eqtype declaration
by checking V ; Γ0 ⊢ A ≡ B for every pair (A,B) (with free variables V) in
the eqtype declarations. Essentially, this ensures that all equality declarations
are valid w.r.t. each other. Finally, all equality checks are then performed under
this more general Γ0. The soundness of this approach can be proved with the
following more general theorem.

Theorem 5 (Seeded Soundness). For a valid set of eqtype declarations Γ0,
if V ; Γ0 ⊢ A ≡ B, then ∀V . A ≡ B.

Our soundness proof can easily be modified to accommodate this require-
ment. Intuitively, since Γ0 is valid, all closed instances of Γ0 are already proven
to be bisimilar. Thus, all properties of a type bisimulation are still preserved if
all closed instances of Γ0 are added to it.

One final note on the rule of reflexivity: a type name may not actually depend
on its parameter. As a simple example, we have V [α] = 1; a more complicated
one would be V [α] = ⊕{a : V [V [α]], b : 1}. When applying reflexivity, we would
like to conclude that V [A] ≡ V [B] regardless of A and B. This could be easily
established with an equality type declaration eqtype V [α] = V [β]. In order to
avoid this syntactic overhead for the programmer, we determine for each pa-
rameter α of each type name V whether its definition is nonvariant in α. This
information is recorded in the signature and used when applying the reflexivity
rule by ignoring nonvariant arguments.

6 Formal Language Description

In this section, we present the program constructs we have designed to real-
ize nested polymorphism which have also been integrated with the Rast lan-
guage [16,17,18] to support general-purpose programming. The underlying base
system of session types is derived from a Curry-Howard interpretation [7,8] of
intuitionistic linear logic [24]. The key idea is that an intuitionistic linear sequent
A1 A2 . . . An ⊢ A is interpreted as the interface to a process P . We label each
of the antecedents with a channel name xi and the succedent with channel name
z. The xi’s are channels used by P and z is the channel provided by P .

(x1 : A1) (x2 : A2) . . . (xn : An) ⊢ P :: (z : C)

The resulting judgment formally states that process P provides a service of ses-
sion type C along channel z, while using the services of session types A1, . . . , An

provided along channels x1, . . . , xn respectively. All these channels must be dis-
tinct. We abbreviate the antecedent of the sequent by ∆.

Due to the presence of type variables, the formal typing judgment is extended
with V and written as
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Type Cont. Process Term Cont. Description

c : ⊕{ℓ : Aℓ}ℓ∈L c : Ak c.k ; P P send label k on c
case c (ℓ⇒ Qℓ)ℓ∈L Qk receive label k on c

c : N{ℓ : Aℓ}ℓ∈L c : Ak case c (ℓ⇒ Pℓ)ℓ∈L Pk receive label k on c
c.k ; Q Q send label k on c

c : A⊗B c : B send c w ; P P send channel w : A on c
y ← recv c ; Qy Qy[w/y] receive channel w : A on c

c : A ⊸ B c : B y ← recv c ; Py Py[w/y] receive channel w : A on c
send c w ; Q Q send channel w : A on c

c : ∃α.A c : A[B/α] send c [B] ; P P send type B on c
[α]← recv c ; Qα Qα[B/α] receive type B on c

c : ∀α.A c : A [α]← recv c ; Pα Pα[B/α] receive type B on c
send c [B] ; Q Q send type B on c

c : 1 — close c — send close on c
wait c ; Q Q receive close on c

Table 1: Session types with operational description

V ; ∆ ⊢Σ P :: (x : A)

where V stores the type variables α, ∆ represents the linear antecedents xi : Ai,
P is the process expression and x : A is the linear succedent. We propose and
maintain that all free type variables in ∆,P , and A are contained in V . Finally,
Σ is a fixed valid signature containing type and process definitions. Table 1
overviews the session types, their associated process terms, their continuation
(both in types and terms) and operational description. For each type, the first
line describes the provider’s viewpoint, while the second line describes the client’s
matching but dual viewpoint.

We formalize the operational semantics as a system of multiset rewriting
rules [9]. We introduce semantic objects proc(c, P ) and msg(c,M) which mean
that process P or message M provide along channel c. A process configuration
is a multiset of such objects, where any two provided channels are distinct.

6.1 Basic Session Types

We briefly review the structural types already existing in the Rast language,
focusing on explicit quantifier operators that we introduce.

Structural Types The internal choice type constructor ⊕{ℓ : Aℓ}ℓ∈L is an
n-ary labeled generalization of the additive disjunction A ⊕ B. Operationally,
it requires the provider of x : ⊕{ℓ : Aℓ}ℓ∈L to send a label label k ∈ L on
channel x and continue to provide type Ak. The corresponding process term is
written as (x.k ; P ) where the continuation P provides type x : Ak. Dually,
the client must branch based on the label received on x using the process term
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case x (ℓ⇒ Qℓ)ℓ∈L where Qℓ is the continuation in the ℓ-th branch.

(k ∈ L) V ; ∆ ⊢ P :: (x : Ak)

V ; ∆ ⊢ (x.k ; P ) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕R

(∀ℓ ∈ L) V ; ∆, (x : Aℓ) ⊢ Qℓ :: (z : C)

V ; ∆, (x : ⊕{ℓ : Aℓ}ℓ∈L) ⊢ case x (ℓ⇒ Qℓ)ℓ∈L :: (z : C)
⊕L

Communication is asynchronous, so that the client (c.k ; Q) sends a message
k along c and continues as Q without waiting for it to be received. As a technical
device to ensure that consecutive messages on a channel arrive in order, the
sender also creates a fresh continuation channel c′ so that the message k is
actually represented as (c.k ; c ↔ c′) (read: send k along c and continue along
c′). When the message k is received along c, we select branch k and also substitute
the continuation channel c′ for c.

(⊕S) : proc(c, c.k ; P ) 7→ proc(c′, P [c′/c]),msg(c, c.k ; c↔ c′)
(⊕C) : msg(c, c.k ; c↔ c′), proc(d, case c (ℓ⇒ Qℓ)ℓ∈L) 7→ proc(d,Qk[c

′/c])

The external choice constructor N{ℓ : Aℓ}ℓ∈L generalizes additive conjunc-
tion and is the dual of internal choice reversing the role of the provider and
client. Thus, the provider branches on the label k ∈ L sent by the client.

(∀ℓ ∈ L) V ; ∆ ⊢ Pℓ :: (x : Aℓ)

V ; ∆ ⊢ case x (ℓ⇒ Pℓ)ℓ∈L :: (x : N{ℓ : Aℓ}ℓ∈L)
NR

(k ∈ L) V ; ∆, (x : Ak) ⊢ Q :: (z : C)

V ; ∆, (x : N{ℓ : Aℓ}ℓ∈L) ⊢ (x.k ; Q) :: (z : C)
NL

Rules NS and NC below describe the operational behavior of the provider and
client respectively (c′ fresh).

(NS) : proc(d, c.k ; Q) 7→ msg(c′, c.k ; c′ ↔ c), proc(d,Q[c′/c])
(NC) : proc(c, case c (ℓ⇒ Pℓ)ℓ∈L),msg(c′, c.k ; c′ ↔ c) 7→ proc(c′, Pk[c

′/c])

The tensor operator A ⊗ B prescribes that the provider of x : A ⊗ B sends
a channel, say w of type A and continues to provide type B. The corresponding
process term is send x w ; P where P is the continuation. Correspondingly, its
client must receive a channel on x using the term y ← recv x ; Q, binding it to
variable y and continuing to execute Q.

V ; ∆ ⊢ P :: (x : B)

V ; ∆, (y : A) ⊢ (send x y ; P ) :: (x : A⊗B)
⊗R

V ; ∆, (y : A), (x : B) ⊢ Q :: (z : C)

V ; ∆, (x : A⊗B) ⊢ (y ← recv x ; Q) :: (z : C)
⊗L

Operationally, the provider (send c d ; P ) sends the channel d and the continua-
tion channel c′ along c as a message and continues with executing P . The client
receives the channel d and continuation channel c′ and substitutes d for x and
c′ for c.
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(⊗S) : proc(c, send c d ; P ) 7→ proc(c′, P [c′/c]),msg(c, send c d ; c↔ c′)
(⊗C) : msg(c, send c d ; c↔ c′), proc(e, x← recv c ; Q) 7→ proc(e,Q[c′, d/c, x])

The dual operator A ⊸ B allows the provider to receive a channel of type A
and continue to provide type B. The client of A ⊸ B, on the other hand, sends
the channel of type A and continues to use B using dual process terms as ⊗.

V ; ∆, (y : A) ⊢ P :: (x : B)

V ; ∆ ⊢ (y ← recv x ; P ) :: (x : A ⊸ B)
⊸R

V ; ∆, (x : B) ⊢ Q :: (z : C)

V ; ∆, (x : A ⊸ B), (y : A) ⊢ (send x y ; Q) :: (z : C)
⊸L

(⊸S) : proc(e, send c d ; Q) 7→ msg(c′, send c d ; c′ ↔ c), proc(e,Q[c′/c])
(⊸C) : proc(c, x← recv c ; P ),msg(c′, send c d ; c′ ↔ c) 7→ proc(c′, P [c′, d/c, x])

The type 1 indicates termination requiring that the provider of x : 1 send a
close message, formally written as close x followed by terminating the commu-
nication. Correspondingly, the client of x : 1 uses the term wait x ; Q to wait
for x to terminate before continuing with executing Q. Linearity enforces that
the provider does not use any channels.

V ; · ⊢ (close x) :: (x : 1)
1R

V ; ∆ ⊢ Q :: (z : C)

V ; ∆, (x : 1) ⊢ (wait x ; Q) :: (z : C)
1L

Operationally, the provider waits for the closing message, which has no contin-
uation channel since the provider terminates.

(1S) : proc(c, close c) 7→ msg(c, close c)
(1C) : msg(c, close c), proc(d,wait c ; Q) 7→ proc(d,Q)

A forwarding process x ↔ y identifies the channels x and y so that any
further communication along either x or y will be along the unified channel. Its
typing rule corresponds to the logical rule of identity.

V ; y : A ⊢ (x↔ y) :: (x : A)
id

Operationally, a process c ↔ d forwards any message M that arrives on d to c
and vice-versa. Since channels are used linearly, the forwarding process can then
terminate, ensuring proper renaming, as exemplified in the rules below.

(id+C) : msg(d′,M), proc(c, c↔ d) 7→ msg(c,M [c/d])
(id−C) : proc(c, c↔ d),msg(e,M(c)) 7→ msg(e,M(c)[d/c])

We write M(c) to indicate that c must occur in message M ensuring that M is
the sole client of c.
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Process Definitions Process definitions have the form ∆ ⊢ f [α] = P :: (x : A)
where f is the name of the process and P its definition, with ∆ being the
channels used by f and x : A being the offered channel. In addition, α is a
sequence of type variables that ∆, P and A can refer to. All definitions are
collected in the fixed global signature Σ. For a valid signature, we require that
α ; ∆ ⊢ P :: (x : A) for every definition, thereby allowing definitions to be
mutually recursive. A new instance of a defined process f can be spawned with
the expression x ← f [A] y ; Q where y is a sequence of channels matching
the antecedents ∆ and A is a sequence of types matching the type variables
α. The newly spawned process will use all variables in y and provide x to the
continuation Q.

y′ : B′ ⊢ f [α] = Pf :: (x′ : B) ∈ Σ ∆′ = (y : B′)[A/α]
V ; ∆, (x : B[A/α]) ⊢ Q :: (z : C)

V ; ∆,∆′ ⊢ (x← f [A] y ; Q) :: (z : C)
def

The declaration of f is looked up in the signature Σ (first premise), and A
is substituted for α while matching the types in ∆′ and y (second premise).
Similarly, the freshly created channel x has type A from the signature with
A substituted for α. The corresponding semantics rule also performs a similar
substitution (a fresh).

(defC) : proc(c, x← f [A] d ; Q) 7→ proc(a, Pf [a/x, d/y′, A/α]), proc(c,Q[a/x])

where y′ : B′ ⊢ f = Pf :: (x′ : B) ∈ Σ.
Sometimes a process invocation is a tail call, written without a continuation

as x← f [A] y. This is a short-hand for x′ ← f [A] y ; x↔ x′ for a fresh variable
x′, that is, we create a fresh channel and immediately identify it with x.

6.2 Type Safety

The extension of session types with nested polymorphism is proved type safe by
the standard theorems of preservation and progress, also known as session fidelity
and deadlock freedom. At runtime, a program is represented using a multiset of
semantic objects denoting processes and messages defined as a configuration.

S ::= · | S,S ′ | proc(c, P ) | msg(c,M)

We say that proc(c, P ) (or msg(c,M)) provide channel c. We stipulate that no
two distinct semantic objects in a configuration provide the same channel.

Type Preservation The key to preservation is defining the rules to type a
configuration. We define a well-typed configuration using the judgment ∆1 Σ

S :: ∆2 denoting that configuration S uses channels ∆1 and provides channels
∆2. A configuration is always typed w.r.t. a valid signatureΣ. Since the signature
Σ is fixed, we elide it from the presentation.

The rules for typing a configuration are defined in Figure 3. The emp rule
states that an empty configuration does not consume any channels provides
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∆  (·) :: ∆
emp

∆1  S1 :: ∆2 ∆2  S2 :: ∆3

∆1  (S1,S2) :: ∆3

comp

· ; ∆ ⊢ P :: (x : A)

∆  proc(x, P ) :: (x : A)
proc

· ; ∆ ⊢M :: (x : A)

∆  msg(x,M) :: (x : A)
msg

Fig. 3: Typing rules for a configuration

all channels it uses. The comp rule composes two configurations S1 and S2; S1
provides channels∆2 while S2 uses channels∆2. The rule proc creates a singleton
configuration out of a process. Since configurations are runtime objects, they do
not refer to any free variables and V is empty. The msg rule is analogous.

Global Progress To state progress, we need to define a poised process [38]. A
process proc(c, P ) is poised if it is trying to receive a message on c. Dually, a
message msg(c,M) is poised if it is sending along c. A configuration is poised if
every message or process in the configuration is poised. Intuitively, this represents
that the configuration is trying to communicate externally along one of the
channels it uses or provides.

Theorem 6 (Type Safety). For a well-typed configuration ∆1 Σ S :: ∆2,

(i) (Preservation) If S 7→ S ′, then ∆1 Σ S ′ :: ∆2

(ii) (Progress) Either S is poised, or S 7→ S ′.

Proof. Preservation is proved by case analysis on the rules of operational seman-
tics. First, we invert the derivation of the current configuration S and use the
premises to assemble a new derivation for S ′. Progress is proved by induction on
the right-to-left typing of S so that either S is empty (and therefore poised) or
S = (D, proc(c, P )) or S = (D,msg(c,M)). By the induction hypothesis, either
D 7→ D′ or D is poised. In the former case, S takes a step (since D does). In
the latter case, we analyze the cases for P and M , applying multiple steps of
inversion to show that in each case either S can take a step or is poised.

7 Relationship to Context-Free Session Types

As ordinarily formulated, session types express communication protocols that
can be described by regular languages [44]. In particular, the type structure is
necessarily tail recursive. Context-free session types (CFSTs) were introduced by
Thiemann and Vascoconcelos [44] as a way to express a class of communication
protocols that are not limited to tail recursion. CFSTs express protocols that
can be described by single-state, real-time DPDAs that use the empty stack
acceptance criterion [1,33].

Despite their name, the essence of CFSTs is not their connection to a par-
ticular subset of the (deterministic) context-free languages. Rather, the essence
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of CFSTs is that session types are enriched to admit a notion of sequential com-
position. Nested session types are strictly more expressive than CFSTs, in the
sense that there exists a proper fragment of nested session types that is closed
under a notion of sequential composition. (In keeping with process algebras like
ACP [2], we define a sequential composition to be an operation that satisfies the
laws of a right-distributive monoid.)

Consider (up to α,β,η-equivalence) the linear, tail functions from types to
types with unary type constructors only:

S, T ::= λ̂α. α | λ̂α. V [S α] | λ̂α.⊕{ℓ : Sℓ α}ℓ∈L | λ̂α.N{ℓ : Sℓ α}ℓ∈L

| λ̂α. A⊗ (S α) | λ̂α. A ⊸ (S α)

The linear, tail nature of these functions allows the type α to be thought of as
a continuation type for the session. The functions S are closed under function
composition, and the identity function, λ̂α. α, is included in this class of func-
tions. Moreover, because these functions are tail functions, composition right-
distributes over the various logical connectives in the following sense:

(λ̂α. V [S α]) ◦ T = λ̂α. V [(S ◦ T )α]

(λ̂α.⊕{ℓ : Sℓ α}ℓ∈L) ◦ T = λ̂α.⊕{ℓ : (Sℓ ◦ T )α}ℓ∈L

(λ̂α. A⊗ (S α)) ◦ T = λ̂α. A⊗ ((S ◦ T )α)

and similarly for N and ⊸. Together with the monoid laws of function com-
position, these distributive properties justify defining sequential composition as
S;T = S ◦ T .

This suggests that although many details distinguish our work from CF-
STs, nested session types cover the essence of sequential composition underlying
context-free session types. However, even stating a theorem that every CFST
process can be translated into a well-typed process in our system of nested ses-
sion types is difficult because the two type systems differ in many details: we
include ⊗ and ⊸ as session types, but CFSTs do not; CFSTs use a complex
kinding system to incorporate unrestricted session types and combine session
types with ordinary function types; the CFST system uses classical typing for
session types and a procedure of type normalization, whereas our types are in-
tuitionistic and do not rely on normalization; and the CFST typing rules are
based on natural deduction, rather than the sequent calculus. With all of these
differences, a formal translation, theorem, and proof would not be very illumi-
nating beyond the essence already described here. Empirically, we can also give
analogues of the published examples for CFSTs (see, e.g., the first two examples
of Section 9).

Finally, nested session types are strictly more expressive than CFSTs. Recall
from Section 2 the language L3 = {LnaRna ∪ LnbRnb | n > 0}, which can
be expressed using nested session types with two type parameters used in an
essential way. Moreover, Korenjak and Hopcroft [33] observe that this language
cannot be recognized by a single-state, real-time DPDA that uses empty stack
acceptance, and thus, CFSTs cannot express the language L3. More broadly,
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nested types allow for finitely many states and acceptance by empty stack or
final state, while CFSTs only allow a single state and empty stack acceptance.

8 Implementation

We have implemented a prototype for nested session types and integrated it
with the open-source Rast system [16]. Rast (Resource-aware session types) is
a programming language which implements the intuitionistic version of session
types [7] with support for arithmetic refinements [17], ergometric [15] and tem-
poral [14] types for complexity analysis. Our prototype extension is implemented
in Standard ML (8011 lines of code) containing a lexer and parser (1214 lines), a
type checker (3001 lines) and an interpreter (201 lines) and is well-documented.
The prototype is available in the Rast repository [13].

Syntax A program contains a series of mutually recursive type and process
declarations and definitions, concretely written as

type V[x1]...[xk] = A

decl f[x1]...[xk] : (c1 : A1) ... (cn : An) |- (c : A)

proc c <- f[x] c1 ... cn = P

Type V [x] is represented in concrete syntax as V[x1]...[xk]. The first line
is a type definition, where V is the type name parameterized by type vari-
ables x1, . . . , xk and A is its definition. The second line is a process declara-
tion, where f is the process name (parameterized by type variables x1, . . . , xk),
(c1 : A1) . . . (cn : An) are the used channels and corresponding types, while the
offered channel is c of type A. Finally, the last line is a process definition for the
same process f defined using the process expression P . We use a hand-written
lexer and shift-reduce parser to read an input file and generate the corresponding
abstract syntax tree of the program. The reason to use a hand-written parser
instead of a parser generator is to anticipate the most common syntax errors
that programmers make and respond with the best possible error messages.

Once the program is parsed and its abstract syntax tree is extracted, we
perform a validity check on it. This includes checking that type definitions, and
process declarations and definitions are closed w.r.t. the type variables in scope.
To simplify and improve the efficiency of the type equality algorithm, we also
assign internal names to type subexpressions parameterized over their free index
variables. These internal names are not visible to the programmer.

Type Checking and Error Messages The implementation is carefully de-
signed to produce precise error messages. To that end, we store the extent (source
location) information with the abstract syntax tree, and use it to highlight the
source of the error. We also follow a bi-directional type checking [39] algorithm
reconstructing intermediate types starting with the initial types provided in the
declaration. This helps us precisely identify the source of the error. Another
particularly helpful technique has been type compression. Whenever the type
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checker expands a type V [A] defined as V [α] = B to B[A/α] we record a re-
verse mapping from B[A/α] to V [α]. When printing types for error messages this
mapping is consulted, and complex types may be compressed to much simpler
forms, greatly aiding readability of error messages.

9 More Examples

Expression Server We adapt the example of an arithmetic expression from
prior work on context-free session types [44]. The type of the server is defined as

type bin = +{ b0 : bin, b1 : bin, $ : 1 }

type tm[K] = +{ const : bin * K,

add : tm[tm[K]],

double : tm[K] }

The type bin represents a constant binary natural number. A process providing
a binary number sends a stream of bits, b0 and b1, starting with the least
significant bit and eventually terminated by $.

An arithmetic term, parameterized by continuation type K can have one of
three forms: a constant, the sum of two terms, or the double of a term. Conse-
quently, the type tm[K] ensures that a process providing tm[K] is a well-formed
term: it either sends the const label followed by sending a constant binary
number of type bin and continues with type K; or it sends the add label and
continues with tm[tm[K]], where the two terms denote the two summands; or it
sends the double label and continues with tm[K]. In particular, the continuation
type tm[tm[K]] in the add branch enforces that the process must send exactly
two summands for sums.

As a first illustration, consider two binary constants a and b, and suppose
that we want to create the expression a + 2b. We can issue commands to the
expression server in a prefix notation to obtain a+2b, as shown in the following
exp[K] process, which is parameterized by a continuation type K.

decl exp[K] : (a : bin) (b : bin) (k : K) |- (e : tm[K])

proc e <- exp[K] a b k =

e.add ; e.const ; send e a ; % (b:bin) (k:K) |- (e : tm[K])

e.double ; e.const ; send e b ; % (k:K) |- (e : K)

e <-> k

In prefix notation, a+2b would be written + (a) (2 b), which is exactly the form
followed by the exp process: The process sends add, followed by const and the
number a, followed by double, const, and b. Finally, the process continues at
type K by forwarding k to e (intermediate typing contexts on the right).

To evaluate a term, we can define an eval process, parameterized by type K:

decl eval[K] : (t : tm[K]) |- (v : bin * K)

The eval process uses channel t : tm[K] as argument, and offers v : bin * K.
The process evaluates term t and sends its binary value along v.
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decl eval[K] : (t : tm[K]) |- (v : bin * K)

proc v <- eval[K] t =

case t (

const => % (t : bin * K) |- (v : bin * K)

n <- recv t ; % (n : bin) (t : K) |- (v : bin * K)

send v n ; v <-> t

| add => % (t : tm[tm[K]]) |- (v : bin * K)

v1 <- eval[tm[K]] t ; % (v1 : bin * tm[K]) |- (v : bin * K)

n1 <- recv v1 ; % (n1 : bin) (v1 : tm[K]) |- (v : bin * K)

v2 <- eval[K] v1 ; % (n1 : bin) (v2 : bin * K) |- (v : bin * K)

n2 <- recv v2 ; % (n1 : bin) (n2 : bin) (v2 : K) |- (v : bin * K)

n <- plus n1 n2 ; % (n : bin) (v2 : K) |- (v : bin * K)

send v n ; v <-> v2

| double => % (t : tm[K]) |- (v : bin * K)

v1 <- eval[K] t ; % (v1 : bin * K) |- (v : bin * K)

n1 <- recv v1 ; % (n1 : bin) (v1 : K) |- (v : bin * K)

n <- double n1 ; % (n : bin) (v1 : K) |- (v : bin * K)

send v n ; v <-> v1

)

Intuitively, the process evaluates term t and sends its binary value along v. If t is
a constant, then eval[K] receives the constant n, sends it along v and forwards.

The interesting case is the add branch. We evaluate the first summand by
spawning a new eval[K] process on t. Note that since the type of t (indicated
on the right) is tm[tm[K]] and hence, the recursive call to eval is at parameter
tm[K]. This is in contrast with nominal polymorphism in functional program-
ming languages, where the recursive call must also be at parameter K. We store
the value of the first summand at channel n1 : bin. Then, we continue to eval-
uate the second summand by calling eval[K] on t again and storing its value
in n2 : bin. Finally, we add n1 and n2 by calling the plus process, and send
the result bin along v. We follow a similar approach for the double branch.

Serializing binary trees Another example from [44] is serializing binary trees.
Here we adapt that example to our system. Binary trees can be described by:

type Tree[a] = +{ node : Tree[a] * a * Tree[a] , leaf : 1 }

These trees are polymorphic in the type of data stored at each internal node. A
tree is either an internal node or a leaf, with the internal nodes storing channels
that emit the left subtree, data, and right subtree. To help in creating trees, we
can define the following processes.

decl leaf[a] : . |- (t : Tree[a])

proc t <- leaf[a] =

t.leaf ; close t
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decl node[a] : (l : Tree[a]) (x : a) (r : Tree[a]) |- (t : Tree[a])

proc t <- node[a] l x r =

t.node ; send t l ; send t x ; t <-> r

Owing to the multiple channels stored at each node, these trees do not exist
in a serial form. We can, however, use a different type to represent serialized
trees:

type STree[a][K] = +{ nd : STree[a][a * STree[a][K]] , lf : K }

A serialized tree is a stream of node and leaf labels, nd and lf, parameterized by
a continuation type K. Like add in the expression server, the label nd continues
with type STree[a][a * STree[K]]: the label nd is followed by the serialized
left subtree, which itself continues by sending the data stored at the internal
node and then the serialized right subtree, which continues with type K.3

Using these types, it is relatively straightforward to implement processes that
serialize and deserialize such trees. The process serialize can be declared with:

decl serialize[a][K] : (t : Tree[a]) (k : K) |- (s : STree[a][K])

This process uses channels t and k that hold the tree and continuation, and offers
that tree’s serialization along channel s. The complete code for serialize (and
a helper process) is:

decl output[a][b] : (y : a) (x’ : b) |- (x : a * b)

proc x <- output[a][b] y x’ =

send x y ; x <-> x’

decl serialize[a][K] : (t : Tree[a]) (k : K) |- (s : STree[a][K])

proc s <- serialize[a][K] t k =

case t (

leaf => % (t:1) (k:K) |- (s:STree[a][K])

s.lf ; % (t:1) (k:K) |- (s:K)

wait t ; s <-> k

| node =>

% (t : Tree[a]*a*Tree[a]) (k:K) |- (s:STree[a][K])

l <- recv t ;

% (l:Tree[a]) (t : a*Tree[a]) (k:K) |- (s:STree[a][K])

x <- recv t ;

% (l:Tree[a]) (x:a) (t:Tree[a]) (k:K) |- (s:STree[a][K])

sr <- serialize[a][K] t k ;

% (l:Tree[a]) (x:a) (sr:STree[a][K]) |- (s:STree[a][K])

sx <- output[a][STree[a][K]] x sr ;

3 The presence of a * means that this is not a true serialization because it sends a
separate channel along which the data of type a is emitted. But there is no uniform
mechanism for serializing polymorphic data, so this is as close to a true serialization
as possible. Concrete instances of type Tree with, say, data of base type int could
be given a true serialization by “inlining” the data of type int in the serialization.
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% (l:Tree[a]) (sx : a*STree[a][K]) |- (s:STree[a][K])

s.nd ;

% (l:Tree[a]) (sx : a*STree[a][K]) |- (s:STree[a][K])

s <- serialize[a][a * STree[a][K]] l sx )

If the tree is only a leaf, then the process forwards to the continuation. Otherwise,
if the tree begins with a node, then the serialization begins with nd. A recursive
call to serialize serves to serialize the right subtree with the given continuation.
A subsequent recursive call serializes the left subtree with the data together with
the right subtree’s serialization as the new continuation.

It is also possible to implement a process for deserializing trees:

decl deserialize[a][K] : (s : STree[a][K]) |- (tk : Tree[a] * K)

proc tk <- deserialize[a][K] s =

case s (

lf =>

% (s : K) |- (tk : Tree[a] * K)

t <- leaf[a] ;

% (t : Tree[a]) (s : K) |- (tk : Tree[a] * K)

send tk t ;

% (s : K) |- (tk : K)

tk <-> s

| nd =>

% (s : STree[a][a * STree[a][K]]) |- (tk : Tree[a] * K)

lk <- deserialize[a][a * STree[a][K]] s ;

% (lk : Tree[a] * (a * STree[a][K])) |- (tk : Tree[a] * K)

l <- recv lk ;

% (l:Tree[a]) (lk : a * STree[a][K]) |- (tk : Tree[a] * K)

x <- recv lk ;

% (l:Tree[a]) (x:a) (lk:STree[a][K]) |- (tk : Tree[a] * K)

rk <- deserialize[a][K] lk ;

% (l:Tree[a]) (x:a) (rk : Tree[a] * K) |- (tk : Tree[a] * K)

r <- recv rk ;

% (l:Tree[a]) (x:a) (r:Tree[a]) (rk:K) |- (tk : Tree[a] * K)

t <- node[a] l x r ;

% (t:Tree[a]) (rk:K) |- (tk : Tree[a] * K)

send tk t ;

% (rk:K) |- (tk : K)

tk <-> rk )

Generalized tries for binary trees Using nested types in Haskell, prior
work [27] describes an implementation of generalized tries that represent map-
pings on binary trees. Our type system is expressive enough to represent such
generalized tries. We can reuse the type Tree[a] of binary trees given above.
The type Trie[a][b] describes tries that represent mappings from Tree[a] to
type b:
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type Trie[a][b] = &{ lookup_leaf : b ,

lookup_node : Trie[a][a -o Trie[a][b]] }

A process for looking up a tree in such tries can be declared by:

decl lookup_tree[a][b] : (m : Trie[a][b]) (t : Tree[a]) |- (v : b)

To lookup a tree in a trie, first determine whether that tree is a leaf or a node.
If the tree is a leaf, then sending lookup_leaf to the trie will return the value
of type b associated with that tree in the trie.

Otherwise, if the tree is a node, then sending lookup_node to the trie results
in a trie of type Trie[a][a -o Trie[a][b]] that represents a mapping from
left subtrees to type a -o Trie[a][b]. We then lookup the left subtree in this
trie, resulting in a process of type a -o Trie[a][b] to which we send the data
stored at our original tree’s root. That results in a trie of type Trie[a][b] that
represents a mapping from right subtrees to type b. Therefore, we finally lookup
the right subtree in this new trie and obtain a result of type b, as desired.

We can define a process that constructs a trie from a function on trees:

decl build_trie[a][b] : (f : Tree[a] -o b) |- (m : Trie[a][b])

Both lookup_tree and build_trie can be seen as analogues to deserialize

and serialize, respectively, converting a lower-level representation to a higher-
level representation and vice versa. These types and declarations mean that tries
represent total mappings; partial mappings are also possible, at the expense of
some additional complexity.

All our examples have been implemented and type checked in the open-
source Rast repository [13]. We have also further implemented the standard
polymorphic data structures such as lists, stacks and queues.

10 Further Related Work

To our knowledge, our work is the first proposal of polymorphic recursion using
nested type definitions in session types. Thiemann and Vasconcelos [44] use
polymorphic recursion to update the channel between successive recursive calls
but do not allow type constructors or nested types. An algorithm to check type
equivalence for the non-polymorphic fragment of context-free session types has
been proposed by Almeida et al. [1].

Other forms of polymorphic session types have also been considered in the
literature. Gay [23] studies bounded polymorphism associated with branch and
choice types in the presence of subtyping. He mentions recursive types (which
are used in some examples) as future work, but does not mention parametric
type definitions or nested types. Bono and Padovani [4,5] propose (bounded)
polymorphism to type the endpoints in copyless message-passing programs in-
spired by session types, but they do not have nested types. Following Kobayashi’s
approach [32], Dardha et al. [12] provide an encoding of session types relying
on linear and variant types and present an extension to enable parametric and
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bounded polymorphism (to which recursive types were added separately [11])
but not parametric type definitions nor nested types. Caires et al. [6] and Perez
et al. [37] provide behavioral polymorphism and a relational parametricity prin-
ciple for session types, but without recursive types or type constructors.

Nested session types bear important similarities with first-order cyclic terms,
as observed by Jančar. Jančar [29] proves that the trace equivalence problem of
first-order grammars is decidable, following the original ideas by Stirling for the
language equality problem in deterministic pushdown automata [42]. These ideas
were also reformulated by Sénizergues [40]. Henry and Sénizergues [26] proposed
the only practical algorithm to decide the language equivalence problem on de-
terministic pushdown automata that we are aware of. Preliminary experiments
show that such a generic implementation, even if complete in theory, is a poor
match for the demands made by our type checker.

11 Conclusion

Nested session types extend binary session types with parameterized type def-
initions. This extension enables us to express polymorphic data structures just
as naturally as in functional languages. The proposed types are able to capture
sequences of communication actions described by deterministic context-free lan-
guages recognized by deterministic pushdown automata with several states, that
accept by empty stack or by final state. In this setting, we show that type equal-
ity is decidable. To offset the complexity of type equality, we give a practical
type equality algorithm that is sound, efficient, but incomplete.

In the future, we are planning to explore subtyping for nested types. In
particular, since the language inclusion problem for simple languages [21] is
undecidable, we believe subtyping can be reduced to inclusion and would also
be undecidable. Despite this negative result, it would be interesting to design
an algorithm to approximate subtyping. That would significantly increase the
programs that can be type checked in the system. In another direction, since
Rast [16] supports arithmetic refinements for lightweight verification, it would
be interesting to explore how refinements interact with polymorphic type pa-
rameters, namely in the presence of subtyping. We would also like to explore
examples where the current type equality is not adequate. Finally, protocols in
distributed algorithms such as consensus or leader election (Raft, Paxos, etc.)
depend on unbounded memory and cannot usually be expressed with finite con-
trol structure. In future work, we would like to see if these protocols can be
expressed with nested session types.
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29. Jančar, P.: Short decidability proof for DPDA language equivalence
via 1st order grammar bisimilarity. CoRR abs/1010.4760 (2010),
http://arxiv.org/abs/1010.4760

30. Jancar, P.: Bisimilarity on basic process algebra is in 2-exptime (an explicit proof).
arXiv preprint arXiv:1207.2479 (2012)

31. Johann, P., Ghani, N.: Haskell programming with nested types: A principled ap-
proach. Higher-Order and Symbolic Computation 22(2), 155–189 (Jun 2009)

32. Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K.,
Maibaum, T.S.E. (eds.) Formal Methods at the Crossroads. From Panacea
to Foundational Support, 10th Anniversary Colloquium of UNU/IIST, the
International Institute for Software Technology of The United Nations
University, Lisbon, Portugal, March 18-20, 2002, Revised Papers. Lec-
ture Notes in Computer Science, vol. 2757, pp. 439–453. Springer (2002).
https://doi.org/10.1007/978-3-540-40007-3 26

33. Korenjak, A.J., Hopcroft, J.E.: Simple deterministic languages. In: 7th Annual
Symposium on Switching and Automata Theory (swat 1966). pp. 36–46. IEEE
(1966)

34. Lindley, S., Morris, J.G.: Talking bananas: Structural recursion for session types.
In: Proceedings of the 21st ACM SIGPLAN International Conference on Functional

https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.1145/3414080.3414087
http://eudml.org/doc/157013
https://doi.org/10.1016/0304-3975(76)90074-8
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1017/S0960129508006944
http://arxiv.org/abs/1010.4760
https://doi.org/10.1007/978-3-540-40007-3_26


Nested Session Types 35

Programming. p. 434–447. ICFP 2016, Association for Computing Machinery, New
York, NY, USA (2016). https://doi.org/10.1145/2951913.2951921

35. Mycroft, A.: Polymorphic type schemes and recursive definitions. In: Paul, M.,
Robinet, B. (eds.) International Symposium on Programming. pp. 217–228.
Springer Berlin Heidelberg, Berlin, Heidelberg (1984)

36. Okasaki, C.: Purely Functional Data Structures. Ph.D. thesis, Department of Com-
puter Science, Carnegie Mellon University (1996)
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