
Resource-Aware Session Types for Digital Contracts
Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, Ishani Santurkar

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract—Programming digital contracts comes with unique
challenges, which include (i) expressing and enforcing protocols
of interaction, (ii) controlling resource usage, and (iii) preventing
the duplication or deletion of a contract’s assets. This article
presents the design and type-theoretic foundation of Nomos,
a programming language for digital contracts that addresses
these challenges. To express and enforce protocols, Nomos is
based on shared binary session types. To control resource usage,
Nomos employs automatic amortized resource analysis. To prevent
the duplication or deletion of assets, Nomos uses a linear type
system. A monad integrates the effectful session-typed language
with a general-purpose functional language. Nomos’ prototype
implementation features linear-time type checking and efficient
type reconstruction that includes automatic inference of resource
bounds via off-the-shelf linear optimization. The effectiveness of
the language is evaluated with case studies on implementing com-
mon smart contracts such as auctions, elections, and currencies.
Nomos is completely formalized, including the type system, a
cost semantics, and a transactional semantics to deploy Nomos
contracts on a blockchain. The type soundness proof ensures
that protocols are followed at run-time and that types establish
sound upper bounds on the resource consumption, ruling out
re-entrancy and out-of-gas vulnerabilities.

Index Terms—smart contracts, programming languages, ses-
sion types, resource analysis

I. INTRODUCTION

Digital contracts are programs that implement and enforce
the execution of a contract. With the rise of blockchains
and cryptocurrencies such as Bitcoin [1], Ethereum [2], and
Tezos [3], digital contracts have become popular in the form of
smart contracts, which provide potentially distrusting parties
with programmable money and a distributed consensus mech-
anism. Smart contracts are used to implement auctions [4],
investment instruments [5], insurance agreements [6], supply
chain management [7], and mortgage loans [8]. They hold the
promise to lower cost, increase fairness, and expand access to
the financial infrastructure.

Many of today’s prominent smart contract languages suf-
fer from security vulnerabilities, which have severe financial
consequences. A well-known example is the attack on The
DAO [5], resulting in a $60 million theft by exploiting a
contract re-entrancy vulnerability. Smart contract languages
have been typically derived from existing general-purpose

This article is based on research supported by the National Science
Foundation under SaTC Award 1801369, CAREER Award 1845514 and
Grant No. 1718276. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not necessarily reflect the views of
the sponsoring organizations.

languages [4], [9], [10] and fail to accommodate the domain-
specific requirements of digital contracts. These requirements
are: (i) expressing and enforcing protocols of interaction, (ii)
controlling and computing resource (or gas) usage, and (iii)
preventing duplication or deletion of a contract’s assets.

This article presents the design and type-theoretic founda-
tion of Nomos, a language for digital contracts accommodat-
ing these requirements by construction.

To express and enforce the protocols underlying a contract,
Nomos is based on binary session types [11]–[17]. Session
types capture the protocols of interactions in the type, rather
than the implementation code, and type-checking guarantees
protocol adherence at run-time. Delimiting the sequences of
actions that must be executed atomically, session types also
prevent re-entrance into a contract in an inconsistent state. To
control resource usage, Nomos employs automatic amortized
resource analysis (AARA), a type-based technique for automat-
ically inferring symbolic resource bounds [18]–[22]. AARA is
parametric in the cost model, allowing instantiation to track
gas usage. As a result, Nomos contracts mitigate denial-of-
service attacks without being vulnerable to out-of-gas excep-
tions. Moreover, resource bounds are integrated with session-
typed protocols and enable precise path-sensitive descriptions
of cost that avoid gaps between worst-case and average-case
cost. To prevent duplication or deletion of assets, Nomos uses
a linear type system [23]. The effectful session-typed language,
which implements contract interfaces and contract-to-contract
communication, is integrated with a strict, general-purpose
functional language using a contextual monad.

Integrating these seemingly disparate approaches (session
types, resource analysis, linearity, and functional program-
ming) and combining them with the different roles that arise
in a digital contract (contract, asset, transaction) in a way that
the result remains consistent, presents unique challenges. For
one, both the functional as well as session-typed language
use potential annotations to bound the resource consumption,
which requires care when functional values are exchanged as
messages between processes. For another, prior work on inte-
grating shared and linear session types [24] preclude contracts
from persisting their linear assets across transactions, a feature
essential to digital contract development; a restriction that we
lift in this work. Fundamental is the use of different forms
of typing judgments for expressions and processes along with
judgmental modes to distinguish the different roles in a digital
contract. The modes are essential in ensuring type safety, as
they allow the expression of mode-indexed invariants on the

typing contexts and their enforcement by the typing rules.
Nomos is completely formalized, including the type system,

a cost semantics, and a transactional semantics to instantiate
Nomos contracts on a blockchain. A type soundness proof
ensures that protocols are followed at run-time and that types
establish sound upper bounds on the resource consumption.

The soundness guarantees are meaningful in a restricted
attacker model in which even the adversary cannot execute
ill-typed code. Such a model is justified in a decentralized
consensus setting such as a blockchain, where transactions
and contracts are publicly type checked, thwarting attacks
from adversaries intending to damage the blockchain state
by submitting malformed code. In this setting, transaction
validation and thus type checking are part of the attack surface
and can be used by an adversary for denial-of-service attacks.
To mitigate such attacks, we have carefully designed the
Nomos type system that integrates its various features in a way
that type checking is linear-time in the size of the program.

To evaluate Nomos, we implemented a publicly available
open-source prototype [25] and conducted 8 case studies
implementing common smart contracts such as auctions,
elections, and currencies. Our experiments show that type-
checking overhead is less than 0.7 ms for each contract and
bound inference (can be performed off-chain) takes less than
10 ms. Moreover, gas bounds are tight for most contracts. To
the best of our knowledge, this is the first implementation to
integrate shared binary session types into a functional language
with support for resource analysis.

To simplify programming and make Nomos accessible to
digital contract developers, we (i) developed an intuitive
surface syntax particularly related to the contextual monad
integrating session types into a functional core; (ii) used a bi-
directional type checker with a particular focus on improving
the quality of error messages to guide the programmer to locate
the source of the error; (iii) used an off-the-shelf LP solver to
automatically infer channel modes and potential annotations so
that the burden of inference does not fall on the programmer.

Our main technical contributions are:
• design of Nomos, a language that addresses the domain-

specific requirements of digital contracts by construction;
• a fine-tuned system of typing judgments (Section IV) that

uses modes to orchestrate the sound integration of session
types (Section III), functions (Section V), and resource
analysis (Section VI);

• extension of shared session types to store linear assets;
• resource cost amortization by allowing gas storage in

internal data structures (Section VI);
• type safety proof of Nomos using a novel asynchronous

cost semantics (Section VII);
• a prototype implementation and case study of prominent

blockchain applications (Section VIII);
• a transactional semantics to deploy and execute Nomos

contracts and transactions on a blockchain (Section IX).
In addition, the technical report [26] details the technical

development, provides additional explanations and the full
implementation of the blockchain applications.

II. NOMOS BY EXAMPLE

This section provides an overview of the main features of
Nomos based on a simple auction contract.

Explicit Protocols of Interaction: Digital contracts,
like traditional contracts, follow a predefined protocol. For
instance, an auction contract distinguishes a bidding phase,
where bidders submit their bids, possibly multiple times,
from a subsequent collection phase, where the highest bidder
receives the lot while all other bidders receive their bids back.
In Solidity [4], the bidding phase of an auction is typically
implemented as the bid function below. This function receives
a bid (msg.value) from a bidder (msg.sender) and adds it to
the bidder’s total previous bids (bidValue).
function bid() public payable {
require (status == running);
bidder = msg.sender;
bid = msg.value;
bidValue[bidder] = bidValue[bidder] + bid; }

To guarantee that a bid can only be placed in the bidding
phase, the contract uses the state variable status to track the
different phases of a contract. The require statement tests
whether the auction is still running and thus accepts bids. It is
checked at run-time and aborts the execution if the condition
is not met. It is the responsibility of the programmer to define
state variables, update them, and introduce guards.

Rather than burying the contract’s interaction protocol in
implementation code by means of state variables and run-
time checks, Nomos allows the explicit expression and static
enforcement of protocols with session types. The auction’s
protocol amounts to the following recursive session type:

stype auction =
↑SL/22 ⊕ {running : N{bid : id→ money(↓SLauction,

cancel : .21↓SLauction},
ended : N{collect : id→ ⊕{won : lot⊗ ↓SLauction,

lost : money ⊗ .7↓SLauction},
cancel : .21↓SLauction}}

We first focus on how the session type defines the main
interactions of a contract with a bidder and ignore the operators
↑SL, ↓SL, /, and . for now. To distinguish the two main phases
an auction can be in, the session type uses an internal choice
(⊕), leading the contract to either send the label running or
ended, depending on whether the auction still accepts bids
or not, respectively. Dual to an internal choice is an external
choice (N), which leaves the choice to the client (i.e., bidder)
rather than the provider (i.e., contract). For example, in case
the auction is running, the client can choose between placing
a bid (label bid) or backing out (cancel). In the former case,
the client indicates their identifier (type id), followed by a
payment (type money). Nomos session types allow transfer
of both non-linear (e.g., id) and linear assets (e.g., money),
using the operators arrow (→) and ((), respectively. Should
the auction have ended, the client can choose to check their
outcome (label collect) or back out (cancel). In the case of
collect, the auction will answer with either won or lost. In

the former case, the auction will send the lot, in the latter
case, it will return the client’s bid. The linear product (⊗) is
dual to (and denotes the transfer of a linear value from the
contract to the client. The auction type guarantees that a client
cannot collect during the running phase, while they cannot
bid during the ended phase.

Nomos uses shared session types [24] to guarantee that
bidders interact with the auction in mutual exclusion from
each other and that the sequences of actions are executed
atomically. To demarcate the parts of the protocol that become
a critical section, the above session type uses the ↑SL and ↓SL
modalities. The ↑SL modality denotes the beginning of a critical
section, the ↓SL modality denotes its end. Programmatically, ↑SL
translates into an acquire of the auction session and ↓SL into
its release, which is only sound if the protocol behaves like
an auction afterwards (equi-synchronizing type).

Contracts are implemented by processes, revealing the con-
current, message-passing nature of session-typed languages.
The process run below implements the auction’s running
phase. Line 3 gives the process’ signature, indicating that
it offers a shared session of type auction along the channel
sa and uses a linear hash map b : hashmap〈id, bid〉 of bids
indexed by id and a linear lot l. Line 5 onward list the
process body. Lines 1,2 define session types bid and bids,
respectively.

1: stype bid = N{addr : id ∧ bid,val : money}
2: stype bids = hashmap〈id, bid〉
3: (b : bids), (l : lot) ` run :: (sa : auction)
4: sa← run← b l =
5: la← accept sa ;
6: la.running ;
7: case la (bid⇒ r ← recv la ;
8: m← recv la ;
9: sa← detach la ;

10: b′ ← addbid r ← b m ;
11: sa← check← b′ l
12: | cancel⇒ sa← detach la ;
13: sa← run← b l)

The contract process first accepts an acquire request by a
bidder (line 5) and then sends the message running (line 6),
indicating the auction status and waiting for the bidder’s
choice. Should the bidder choose to make a bid, the process
waits to receive the bidder’s identifier (line 7) followed by
money equivalent to the bidder’s bid (line 8). Internally, the
process stores the pair of the bidder’s identifier and bid in
the data structure bids (line 10). After this linear exchange,
the process leaves the critical section by issuing a detach
(line 9), matching the bidder’s release request, and tail calls the
check process (line 11) that compares the number of bidders
with a threshold. If the threshold is exceeded, the contract
transitions to the ended phase implemented by a different
process, otherwise the run process is called again.

Linear Assets: Nomos integrates a linear type system
that tracks the assets stored in a process. The type system
enforces that assets are never duplicated, but only exchanged
between processes. Moreover, the type system prevents a
process from terminating while it holds linear assets. For

example, the auction contract treats money and lot as linear
assets, which is witnessed by the use of the linear operators
(and ⊗ for their exchange. In contrast, no provisions to
handle assets linearly exist in Solidity, allowing such assets
to be created out of thin air, duplicated, or discarded. In the
above bid function, for instance, the language does not prevent
the programmer from writing bidValue[bidder] = bid instead,
losing the bidder’s previous bid.

Re-Entrancy Vulnerabilities: A contract function is re-
entrant if, once called by a user, it can potentially be called
again before the previous call has completed. As an illustra-
tion, consider the below collect function of the auction contract
in Solidity where the funds are transferred to the bidder before
the hash map is updated to reflect this change.
1 function collect() public payable {
2 require (status == ended);
3 bidder = msg.sender;
4 bid = bidValue[bidder];
5 bidder.send(bid);
6 bidValue[bidder] = 0; }
7
8 function () payable {
9 auction.collect(); }

A bidder can now cause re-entrancy by creating a dummy
contract with an unnamed fallback function (line 9) that calls
the auction’s collect function. This call is triggered when
collect calls send (line 5), leading to an infinite recursive
call to collect, depleting all funds from the auction. The
message-passing framework of session types eliminates this
vulnerability. While session types provide multiple clients
access to a contract, the acquire-release discipline ensures
that clients interact with the contract in mutual exclusion. To
attempt re-entrancy, a bidder will need to acquire the auction
contract twice without releasing it, but the second acquire
would fail to execute.

Resource Cost: Another important aspect of digital con-
tracts is their resource usage. On a blockchain, executing
a contract function, or transaction, requires new blocks to
be added to the blockchain. In existing blockchains like
Ethereum, this is done by miners who charge a fee based
on the gas usage of the transaction, indicating the cost of its
execution. Precisely computing this cost is important because
the sender of a transaction must pay this fee to the miners. If
the sender does not pay a sufficient amount, the transaction
will be aborted by the miners and the sender’s fee is lost!

Nomos uses resource-aware session types [27] to statically
analyze the resource cost of a transaction. They operate by
assigning an initial potential to each process. This potential
is consumed by each operation that the process executes or
can be transferred between processes to share and amortize
cost. The cost of each operation is defined by a cost model. If
the cost model assigns a cost to each operation equivalent to
their gas cost during execution, the potential consumed during
a transaction reflects an upper bound on the gas usage.

Resource-aware session types express the potential as part
of the session type using the operators / and .. The / operator

prescribes that the client must send potential to the contract,
with the amount of potential indicated as a superscript. Dually,
. prescribes that the contract must send potential to the client.
In case of the auction contract, we require the client to pay
potential for the operations that the contract must execute,
both while placing and collecting their bids. If the cost model
assigns a cost of 1 to each contract operation, then the
maximum cost of an auction session is 22 (taking the max
number of operations in all branches). Thus, we require the
client to send 22 units of potential at the start of the auction
session type using /22. In the lost branch of the auction type,
on the other hand, the contract returns 7 units of potential to
the client using .7. This mirrors gas usage in smart contracts,
where the sender initiates a transaction with some initial gas,
and the leftover gas at the end of the transaction is returned to
the sender. In contrast to existing smart contract languages like
Solidity, which provide no support for analyzing the cost of a
transaction, Nomos’ type checker has automatically inferred
these potential annotations and guarantees that well-typed
transactions cannot run out of gas. Thus, Nomos enforces static
gas bounds on transactions without burdening the programmer
to infer them.

Bringing It All Together: Combining all these features
soundly in one language is challenging. In Nomos, we achieve
this by using different typing judgments and channel modes,
identifying the role of the process offered along that channel.
The mode R denotes purely linear processes for linear assets
or private data structures, such as b and l in the auction. The
modes S and L denote sharable processes, i.e., contracts, that
are either in their shared or linear phase such as sa and la,
respectively. The mode T denotes a transaction process that
can refer to shared and linear processes and is issued by a
user, such as bidder in the auction. Modes are assigned to
each channel and are carried over into the process typing
judgments imposing invariants (Definition 1) that are key
to type safety. To simplify programming, Nomos’ inference
engine automatically infers the channel modes, thus relieving
the programmer from the burden of annotating each channel
with its respective mode.

III. BASE SYSTEM OF SESSION TYPES

Nomos builds on linear session types for message-passing
concurrency [11]–[14], [17] and, in particular, on the line of
works that have a logical foundation due to the existence of a
Curry-Howard correspondence between linear logic [23] and
the session-typed π-calculus [14], [17]. Linear propositions
can be viewed as resources that must be used exactly once
in a proof. Under the Curry-Howard correspondence, an intu-
itionistic linear sequent A1, A2, . . . , An ` C can be interpreted
as the offer of a session C by a process P using the sessions
A1, A2, . . . , An

(x1 : A1), (x2 : A2), . . . , (xn : An) ` P :: (z : C)

We label each antecedent as well as the conclusion with the
name of the channel along which the session is provided. The
xi’s correspond to channels used by P , and z is the channel

provided by P . As is standard, we use the linear context ∆ to
combine multiple assumptions.

For the typing of processes in Nomos, we extend the above
judgment with two additional contexts (Ψ and Γ), a resource
annotation q, and a mode m of the offered channel:

Ψ ; Γ ; ∆ `q P :: (xm : A)

We will gradually introduce each concept in the remainder
of this article. For future reference, we show the complete
typing rules, with additional contexts, resource annotations,
and modes henceforth, but highlight the parts that will be
discussed in later sections in blue.

The Curry-Howard correspondence gives each linear logic
connective an interpretation as a session type:

A,B ::= ⊕{` : A}`∈K | N{` : A}`∈K
| A(m B | A⊗m B | 1

Each type prescribes the kind of message that must be sent
or received along a channel of that type and at which type
the session continues after the exchange. Types are defined
mutually recursively in a global signature.

Following previous work on session types [15], [16], the
process expressions of Nomos are defined as follows.

P ::= x.l ; P | case x (`⇒ P)`∈K | x← y | close x
| wait x ; P | send x w ; P | y ← recv x ; P

Because we adopt the intuitionistic version of linear logic,
session types are expressed from the point of view of the
provider. Table I provides the viewpoint of the provider in
the first line, and that of the client in the second line for
each connective. Columns 1 and 3 describe the session type
and process term before the interaction. Columns 2 and 4
describe the type and term after the interaction. The last
column describes the provider and client action. Figure 1
provides selected typing rules. As an illustration of the statics
and semantics, we explain the internal choice (⊕) connective.

Internal Choice: The linear logic connective A ⊕ B
has been generalized to n-ary labeled sum ⊕{` : A`}`∈K .
A process that provides x : ⊕{` : A`}`∈K can send any label
l ∈ K along x and then continues by providing x : Al. The
corresponding process term is written as (x.l ; P), where P
is the continuation. A client branches on the label received
along x using the term case x (`⇒ Q`)`∈K . The typing rules
for the provider and client are ⊕R and ⊕L, respectively, in
Figure 1.

The operational semantics is formalized as a system of
multiset rewriting rules [28]. We introduce semantic objects
proc(cm, w, P) and msg(cm, w,N) denoting process P and
message N , respectively, being provided along channel c
at mode m. The resource annotation w indicates the work
performed so far, the discussion of which we defer to Sec-
tion VI. Communication is asynchronous, allowing the sender
(cm.l ; P) to continue with P without waiting for l to be
received. As a technical device to ensure that consecutive
messages arrive in the order they were sent, the sender also
creates a fresh continuation channel c+m so that the message

Session Type Continuation Process Term Continuation Description

c : ⊕{` : A`}`∈L c : Ak c.k ; P P provider sends label k along c
case c (`⇒ Q`)`∈L Qk client receives label k along c

c : N{` : A`} c : Ak case c (`⇒ P`)`∈L Pk provider receives label k along c
c.k ; Q Q client sends label k along c

c : A⊗B c : B send c w ; P P provider sends channel w : A on c
y ← recv c ; Qy [w/y]Qy client receives channel w : A on c

c : A(B c : B y ← recv c ; Py [w/y]Py provider receives channel w : A on c
send c w ; Q Q client sends channel w : A on c

c : 1 − close c − provider sends end along c
wait c ; Q Q client receives end along c

TABLE I: Overview of binary session types with their operational description

Ψ ; Γ ; ∆ `q P :: (xm : A)
Process P uses linear channels in
∆, and provides type A along x.

Ψ ; Γ ; ∆ `q P :: (xm : Al) (l ∈ K)

Ψ ; Γ ; ∆ `q xm.l ; P :: (xm : ⊕{` : A`}`∈K)
⊕R

Ψ ; Γ ; ∆, (xm : A`) `
q
Q` :: (zk : C) (∀` ∈ K)

Ψ ; Γ ; ∆, (xm : ⊕{` : A`}`∈K) `q case xm (`⇒ Q`) :: (zk : C)
⊕L

q = 0

Ψ ; Γ ; (ym : A) `q xm ← ym :: (xm : A)
fwd

Fig. 1: Selected typing rules for process communication

l is actually represented as (cm.l ; cm ← c+m) (read: send l
along cm and continue as c+m):

(⊕S) : proc(cm, w, cm.l ; P) 7→
proc(c+m, w, [c

+
m/cm]P),msg(cm, 0, cm.l ; cm ← c+m)

Receiving the message l corresponds to selecting branch Ql
and substituting continuation c+ for c:

(⊕C) : msg(cm, w, cm.l ; cm ← c+m), proc(dk, w
′, case cm

(`⇒ Q`)`∈K) 7→ proc(dk, w + w′, [c+m/cm]Ql)

The message msg(cm, w, cm.l ; cm ← c+m) is just a
particular form of process. Therefore, no separate typing rules
for messages are needed; they can be typed as processes [24].

Channel Passing.: Nomos allows the exchange of chan-
nels over channels, also referred to as higher-order channels.
A process providing A (n B can receive a channel of
type A at mode n and then continue with providing B. The
provider process term is (yn ← recv xm ; P), where P is
the continuation. The corresponding client sends this channel
using (send xm wn ; Q). The dual type operator A ⊗n B
requires the provider to send a channel of type A at mode
n and then continue with providing B. The client receives
this channel and continues to use B. An important distinction
from standard session types is that the (and ⊗ types are
decorated with the mode m of the channel exchanged. Since

modes distinguish the status of the channels in Nomos, this
mode decoration is necessary to ensure type safety.

Forwarding: A forwarding process xm ← ym (which
provides channel x) identifies channels x and y (both at mode
m) so that any further communication along x or y occurs on
the unified channel. The typing rule fwd is given in Figure 1
and corresponds to the logical rule of identity.

(id+C) : msg(dm, w
′, N), proc(cm, w, cm ← dm) 7→

msg(cm, w + w′, [cm/dm]N)
(id−C) : proc(cm, w, cm ← dm),msg(ek, w

′, N(cm)) 7→
msg(ek, w + w′, N(dm))

Operationally, a process c ← d forwards any message N
that arrives along d to c and vice versa. Since linearity ensures
that every process has a unique client, forwarding results in
terminating the forwarding process and corresponding renam-
ing of the channel in the client process.

Process and Type Definitions: Process definitions have
the form Ψ ; Γ ; ∆ `q f = P :: (xm : A) where f is the name
of the process and P its definition. All definitions are collected
in a fixed global signature Σ. We require well-typedness,
i.e., Ψ ; Γ ; ∆ `q f = P :: (xm : A) for every definition,
which allows the definitions to be mutually recursive. For
readability of the examples, we break a definition into two
declarations, one providing the type (top) and the other the
process definition (bottom) binding the variables xm and those
in Ψ, Γ and ∆ (omitting their types):

Ψ ; Γ ; ∆ `q f = P :: (xm : A)
xm ← f Ψ← Γ ; ∆ = P

A new instance of a defined process f can be spawned with
the expression xm ← f y1 ← y2 ; Q where y1 is a sequence
of functional variables matching the antecedents Ψ and y2
is a sequence of channels matching the antecedents Γ ; ∆.
The newly spawned process will use all variables in y1 and
channels in y2 and provide xm to the continuation Q. The
operational semantics is defined by

(defC) : proc(ck, w, xm ← f d← e ; Q) 7→
proc(am, 0, [am/xm, d/Ψ, e/Γ ∆]P),

proc(ck, w, [am/xm]Q)

where am is a fresh channel. Here we write [d/Ψ] and [e/Γ ∆]
to denote substitution of the variables in d and e for the
corresponding variables in Ψ and Γ ; ∆ respectively in that
order. Sometimes a process invocation is a tail call, written
without a continuation as xm ← f y1 ← y2. This is a short-
hand for x′m ← f y1 ← y2 ; xm ← x′m for a fresh variable
x′m, that is, we create a fresh channel and immediately identify
it with xm (although it is implemented more efficiently).

Session types can be naturally extended to include recursive
types. For this purpose we allow (possibly mutually recursive)
type definitions X = A in the signature, where we require A
to be contractive [29]. This means here that A should not
itself be a type name. Our type definitions are equi-recursive
so we can silently replace X by A during type checking, and
no explicit rules for recursive types are needed.

IV. SHARING CONTRACTS

Multi-user support is fundamental to digital contract de-
velopment. Linear session types, as defined in Section III,
unfortunately preclude such sharing because they restrict pro-
cesses to exactly one client; only one bidder for the auction,
for instance (who will always win!). To support multi-user
contracts, we base Nomos on shared session types [24]. Shared
session types impose an acquire-release discipline on shared
processes to guarantee that multiple clients interact with a
contract in mutual exclusion of each other. When a client
acquires a shared contract, it obtains a private linear channel
along which it can communicate with the contract undisturbed
by any other clients. Once the client releases the contract,
it loses its private linear channel and only retains a shared
reference to the contract.

A key idea of shared session types is to lift the acquire-
release discipline to the type level. Generalizing the idea of
type stratification [16], [30], [31], session types are stratified
into a linear and shared layer with two adjoint modalities going
back and forth between them:

AS ::= ↑SL AL shared session type
AL ::= . . . | ↓SL AS linear session types

The ↑SL type modality translates into an acquire, while the dual
↓SL type modality into a release. Whereas mutual exclusion is
one key ingredient to guarantee type preservation for shared
session types, the other key ingredient is the requirement that
a session type is equi-synchronizing. A session type is equi-
synchronizing if it imposes the invariant on a process to be
released back to the same type at which the process was
previously acquired. This is the key behind eliminating re-
entrancy attacks since it prevents a user from interrupting an
ongoing session in the middle and initiating a new one. In the
Nomos typing judgment Ψ ; Γ ; ∆ `q P :: (xm : A), the
contexts Γ and ∆ store the shared and linear channels that
P can refer to, respectively. The stratification of channels into
layers arises from a difference in structural properties that exist
for types at a mode. Shared propositions exhibit weakening,

AR ::= ⊕{` : AR}`∈L | N{` : AR}`∈L | Am(m AR

| Am ⊗m AR | τ → AR | τ ∧AR | 1
AL ::= ⊕{` : AL}`∈L | N{` : AL}`∈L | Am(m AL

| Am ⊗m AL | τ → AL | τ ∧AL | 1 | ↓SL AS

AS ::= ↑SL AL

AT ::= AR

Fig. 2: Grammar for shared session types

contraction and exchange, thus can be discarded or duplicated,
while linear propositions only exhibit exchange.

Allowing Contracts to Rely on Linear Assets: As
exemplified by the auction contract, a digital contract typically
amounts to a process that is shared at the outset, but oscillates
between shared and linear to interact with clients, one at a
time. Crucial for this pattern is the ability of a contract to
maintain its linear assets (e.g., money or lot for the auction)
regardless of its mode. Unfortunately, current shared session
types [24] do not allow a shared process to rely on any linear
channels, requiring any linear assets to be consumed before
becoming shared. This precaution was logically motivated [32]
and also crucial for type preservation.

A key novelty of our work is to lift this restriction while
maintaining type preservation. To this end, we factorize the
process typing judgment according to the three roles that
arise in digital contract programs: contracts, transactions, and
linear assets. Since contracts oscillate between shared and
linear modes (due to acquire/release), we get 4 sub-judgments
for typing processes, each characterized by the mode of the
channel being offered.

Definition 1 (Process Typing). The judgment Ψ ; Γ ; ∆ `q
P :: (xm : A) is categorized according to mode m imposing
certain invariants on the judgment. L(A) denotes the language
generated by the grammar of A.

1) If m = R, then (i) Γ is empty, (ii) for all dk ∈ ∆ =⇒
k = R, and (iii) A ∈ L(AR).

2) If m = S, then (i) for all dk ∈ ∆ =⇒ k = R, and (ii)
A ∈ L(AS).

3) If m = L, then (i) for all dk ∈ ∆ =⇒ k = R ∨ k = L,
and (ii) A ∈ L(AL).

4) If m = T, then A ∈ L(AT).

Figure 2 shows the session type grammar in Nomos. The
first sub-judgment in Definition 1 is for typing linear assets.
These type a purely linear process P using a purely linear
context ∆ (channels at mode R and types belonging to gram-
mar AR in Figure 2) and offering a purely linear type A along
channel xR. The mode R of the channel indicates that a purely
linear session is offered. The second and third sub-judgments
are for typing contracts. The second sub-judgment shows the
type of a contract process P using a shared context Γ and a
purely linear channel context ∆ and offering shared type A on
the shared channel xS. Once this shared channel is acquired by
a user, the shared process transitions to its linear phase, whose

Ψ ; Γ ; ∆ `q P :: (xm : A)
Process P uses shared channels in
Γ and offers A along x.

Ψ ; Γ ; ∆, (xL : AL) `q Q :: (zm : C)

Ψ ; Γ, (xS :↑SL AL) ; ∆ `q xL ← acquire xS ; Q :: (zm : C)
↑SL L

∆ purelin Ψ ; Γ ; ∆ `q P :: (xL : AL)

Ψ ; Γ ; ∆ `q xL ← accept xS ; P :: (xS :↑SL AL)
↑SL R

Fig. 3: Typing rules corresponding to the shared layer.

typing is governed by the third sub-judgment. The offered
channel transitions to linear mode L, while the linear context
may now contain channels at modes R or L. Finally, the fourth
typing judgment types a linear process, corresponding to a
transaction holding access to shared channels Γ and linear
channels ∆, and offering at mode T.

This novel factorization upholds preservation while allow-
ing shared contract processes to rely on linear resources. The
modes impose the ordering R < S < L < T among the
channels in the configuration. A process (offering a channel)
at a certain mode is allowed to rely only on processes at the
same or lower mode. These are exactly the conditions imposed
by Definition 1. This introduces an implicit ordering among
the linear processes depending on their mode, ensuring that no
cyclic dependencies can arise among processes and imposing
a tree structure on the process configuration. Relatedly, shared
processes can only refer to shared channels (at mode S) or
purely linear channels (at mode R) as exemplified by the
judgment ∆ purelin in Figure 3. Formally, ∆ purelin denotes
that for all dk ∈ ∆ =⇒ k = R. This ensures that a shared
contract must release all processes it has acquired before itself
being released. This further enforces an ordering in which the
channels are acquired and released, thus allowing contracts to
interact with other contracts without compromising type safety.

Shared session types introduce new typing rules into our
system, concerning the acquire-release constructs (see Figure
3). An acquire is applied to the shared channel xS along
which the shared process offers and yields a linear channel
xL when successful. A contract process can accept an acquire
request along its offering shared channel xS. After the accept is
successful, the shared contract process transitions to its linear
phase, now offering along the linear channel xL. To accept
an acquire request, the contract must only contain channels
at mode R (indicated by ∆ purelin), in accordance with
Definition 1. This premise is crucial to type preservation, since
it ensures that a contract has not acquired another contract
while it is accepting an acquire request itself. Implicitly, this
imposes an order on the acquire of contracts, and the inverse
order is followed for their release. The dual to acquire-accept is
release-detach. A client can release linear access to a contract
process, while the contract process detaches from the client.

V. ADDING A FUNCTIONAL LAYER

To support general-purpose programming patterns, Nomos
combines linear channels with conventional data structures,

such as integers, lists, or dictionaries. To reflect and track
different classes of data in the type system, we take inspiration
from prior work [15], [16] and incorporate processes into a
functional core via a linear contextual monad that isolates
session-based concurrency. To this end, we introduce a sepa-
rate functional context to the typing of a process. The linear
contextual monad encapsulates open concurrent computations,
which can be passed in functional computations but also
transferred between processes in the form of higher-order
processes, providing a uniform integration of higher-order
functions and processes.

The types are separated into a functional and concurrent
part, mutually dependent on each other. The functional types
τ are given by the type grammar below.

τ ::= τ → τ | τ + τ | τ × τ | int | bool | Lq(τ)
| {AR ← AR}R | {AS ← AS ; AR}S | {AT ← AS ; A}T

The types are standard, except for the potential annotation
q ∈ N in list type Lq(τ), which we explain in Section VI, and
the contextual monadic types in the last line, which are the
topic of this section. The expressivity of the types and terms
in the functional layer are not important for the development
in this paper. Thus, we do not formally define functional
terms M but assume that they have the expected term formers
such as function abstraction and application, type constructors,
and pattern matching. We define a standard judgment for the
functional part of the language.

Ψ p M : τ term M has type τ in functional context Ψ

Contextual Monad: The main novelty in the functional
types are the three type formers for contextual monads, denot-
ing the type of a process expression. The type {AR ← AR}R
denotes a process offering a purely linear session type AR and
using the purely linear vector of types AR. The corresponding
introduction form in the functional language is the monadic
value constructor {cR ← P ← dR}, denoting a runnable
process offering along channel cR that uses channels dR, all
at mode R. The corresponding typing rule for the monad is
{}IR in Figure 4 (ignore the blue portions).

The monadic bind operation implements process compo-
sition and acts as the elimination form for values of type
{AR ← AR}R. The bind operation, written as cR ← M ←
dR ; Qc, composes the process underlying the monadic term
M , which offers along channel cR and uses channels dR, with
Qc, which uses cR. The typing rule for the monadic bind is
rule {}ERR in Figure 4. The context ∆ is split between the
monad M and continuation Q, enforcing linearity. Similarly,
the potential in the functional context is split using the sharing
judgment (.), explained in Section VI. The shared context
Γ is empty in accordance with the invariants established in
Definition 1 (i), since the mode of offered channel z is R.
The effect of executing a bind is the spawn of the purely
linear process corresponding to the monad M , and the parent
process continuing with Q.

(↑SL C) : proc(dR, w, xR ← {x′R ← Px′
R
,y ← y} ← a ; Q) 7→

proc(cR, 0, PcR,a), proc(dR, w, [cR/xR]Q)

Ψ ; Γ ; ∆ `q P :: (xm : A)
Process P uses functional values
in Ψ, and provides A along x.

∆ = dR : D Ψ ; · ; ∆ `q P :: (xR : A)

Ψ q {xR ← P ← dR} : {A← D}R
{}IR

r = p+ q ∆ = dR : D Ψ . (Ψ1,Ψ2)
Ψ1

p
M : {A← D} Ψ2 ; · ; ∆′, (xR : A) `q Q :: (zR : C)

Ψ ; · ; ∆,∆′ `r xR ←M ← dR ; Q :: (zR : C)
{}ERR

Ψ, (y : τ) ; Γ ; ∆ `q P :: (xm : A)

Ψ ; Γ ; ∆ `q y ← recv xm ; P :: (xm : τ → A)
→ R

r = p+ q Ψ . (Ψ1,Ψ2) Ψ1
p
M : τ

Ψ2 ; Γ ; ∆, (xm : A) `q Q :: (zk : C)

Ψ ; Γ ; ∆, (xm : τ → A) `r send xm M ; Q :: (zk : C)
→ L

Fig. 4: Typing rules corresponding to the functional layer.

The above rule spawns the process P offering along a
globally fresh channel cR, and using channels a. The con-
tinuation process Q acts as a client for this fresh channel
cR. The other two monadic types correspond to spawning a
shared process {AS ← AS ; AR}S and a transaction process
{AT ← AS ; A}T at mode S and T, respectively. Their
rules are analogous to {}IR and {}ERR and described in the
technical report [26].

Value Communication: Communicating a value of the
functional fragment along a channel is expressed at the type
level by adding the following two session types.

A ::= . . . | τ → A | τ ∧A

The type τ → A prescribes receiving a value of type τ with
continuation type A, while its dual τ ∧A prescribes sending a
value of type τ with continuation A. The corresponding typing
rules for arrow (→ R,→ L) are given in Figure 4 (rules for ∧
are inverse). As indicated in the → R rule, receiving a value
y : τ on a channel x : τ → A adds it to the functional context
Ψ. On the other hand, sending M on channel x : τ → A
requires that M has type τ (third premise).

Tracking Linear Assets: As an illustration, consider the
type money introduced in the auction example (Section II).
The type is an abstraction over funds stored in a process and
is described as

stype money =
N{value : int ∧money,

add : money(R money,
subtract : int→ ⊕{sufficient : money ⊗R money,

insufficient : money}
coins : listcoin}

The type supports querying for value, and addition and sub-
traction. The type also expresses insufficiency of funds in
the case of subtraction. The provider process only supplies
money to the client if the requested amount is less than the
current balance, as depicted in the sufficient label. The type
is implemented by a wallet process that internally stores a

linear list of coins and an integer representing its value. The
technical report [26] contains its code and explanation.

VI. TRACKING RESOURCE USAGE

The predominant approach for tracking resource cost on
blockchains like Ethereum is to introduce a cost model that
defines the gas consumption of low level operations. A trans-
action needs to be executed and validated before adding it to
the global distributed ledger, i.e., blockchain. This validation
is performed by miners, who charge fees based on the gas
consumption of the transaction. This fee has to be estimated
and provided by the sender prior to the transaction.

It is not trivial to decide on the right amount for the fee
since the gas cost of the contract does not only depend on the
requested transaction but also on the (a priori unknown) state
of the blockchain. Thus, precise and static estimation of gas
cost facilitates transactions and reduces risks. We discuss our
approach of tracking resource usage, both at the functional and
process layer. Our technique is parametric in the cost model
applied by the programmer, thus making it directly applicable
for gas cost analysis. The programmer only needs to specify
the gas cost of each primitive operation, and our type system
infers the corresponding gas bound of a transaction.

Functional Layer: Numerous techniques have been pro-
posed to statically derive resource bounds for functional pro-
grams [33]–[37]. In Nomos, we adapt the work on automatic
amortized resource analysis (AARA) [18], [20] that has been
implemented in Resource Aware ML (RaML) [21]. RaML can
automatically derive worst-case resource bounds for higher-
order polymorphic programs with user-defined inductive types.
The derived bounds are multivariate resource polynomials of
the size parameters of the arguments.

As an illustration, consider the function apply that iterates
over a list of balances and applies interest on each element,
multiplying them by a constant c. We use tick annotations to
define the resource usage of an expression in this article. One
tick operation realizes a cost of 1. We have annotated the code
to count the number of multiplications. The resource usage of
an evaluation of apply b is len(b).

let rec apply balances =
match balances with
| [] -> []
| hd::tl -> tick(1); (c*hd)::(apply tl)

The idea of AARA is to decorate base types with potential
annotations that define a potential function as in amortized
analysis. The typing rules ensure that the potential before
evaluating an expression is sufficient to cover the cost of the
evaluation and the potential defined by the return type. This
posterior potential can then be used to pay for resource usage
in the continuation of the program. For example, we can derive
the following resource-annotated type.

apply : L1(int) −−−→0/0 L0(int)

The type L1(int) denotes a list of integers assigning a unit
potential to each element in the list. The return value, on the
other hand, has no potential. The annotation on the function

arrow indicates that we do not need any potential to call the
function and that no constant potential is left after the function
call has returned. These annotations need not be provided
by the programmer and can be inferred automatically by an
off-the-shelf LP solver, even if the potential functions are
polynomial [20], [21].

In Nomos, we simply adopt the standard typing judgment
of AARA for functional programs: Ψ q M : τ . It states
that under the resource-annotated functional context Ψ, with
constant potential q, the expression M has the resource-aware
type τ . The operational cost semantics is defined by M ⇓ V |
µ which states that the closed expression M evaluates to the
value V with cost µ. More details about AARA can be found
in the literature [18], [21] and the technical report [26].

Process Layer: To bound the resource usage of a pro-
cess, Nomos features resource-aware session types [27] for
work analysis. Resource-aware session types describe resource
contracts for inter-process communication. The type system
supports amortized analysis by assigning potential to both
messages and processes. As an illustration, consider the fol-
lowing resource-aware list interface from prior work [27].

listA = ⊕{nil0 : 10, cons1 : A
0
⊗ listA}

The type prescribes that the provider of listA must send one
unit of potential with every cons message that it sends. Dually,
a client of this list will receive a unit potential with every cons
message. All other type constructors are marked with potential
0, and exchanging the corresponding messages does not lead
to transfer of potential.

While resource-aware session types in Nomos are equivalent
to the existing formulation [27], our version is simpler and
more streamlined. Instead of requiring every message to carry
a potential (and potentially tagging several messages with
0 potential), we introduce two new type constructors for
exchanging potential.

A ::= . . . | .rA | /rA

The type .rA requires the provider to pay r units of potential
which are transferred to the client. Dually, the type /rA
requires the client to pay r units of potential that are received
by the provider. Thus, the reformulated list type becomes

listA = ⊕{nil : 1, cons : .1 A⊗ listA}

With all aspects introduced, the process typing judgment

Ψ ; Γ ; ∆ `q P :: (xm : A)

denotes a process P accessing functional variables in Ψ,
shared channels in Γ, linear channels in ∆, offers service of
type A along channel x at mode m and stores a non-negative
constant potential q. The expressing typing judgment

Ψ p M : τ

denotes that expression M has type τ in the presence of
functional context Ψ and potential p.

Figure 5 shows the rules that interact with the potential
annotations. In the rule /R, process P storing potential q

Ψ ; Γ ; ∆ `q P :: (xm : A)
Process P has potential q and pro-
vides type A along channel x.

p = q + r Ψ ; Γ ; ∆ `p P :: (xm : A)

Ψ ; Γ ; ∆ `q get xm {r} ; P :: (xm : /rA)
/R

q = p+ r Ψ ; Γ ; ∆, (xm : A) `p P :: (zk : C)

Ψ ; Γ ; ∆, (xm : /rA) `q pay xm {r} ; P :: (zk : C)
/L

q = p+ r Ψ ; Γ ; ∆ `p P :: (xm : A)

Ψ ; Γ ; ∆ `q tick (r) ; P :: (xm : A)
tick

Fig. 5: Selected typing rules corresponding to potential.

receives r units along the offered channel xm : /rA using the
get construct and the continuation executes with p = q+r units
of potential. In the dual rule /L, a process storing potential
q = p+r sends r units along the channel xm : /rA in ∆ using
the pay construct, and the continuation remains with p units
of potential. The typing rules for the dual constructor .rA
are the exact inverse. Finally, executing the tick (r) construct
consumes r potential from the stored process potential q, and
the continuation remains with p = q− r units, as described in
the tick rule.

The tick construct is used to simulate a cost model in
Nomos. If an operation (e.g., sending a message, calling a
function, etc.) has a cost of r, this cost is simulated by inserting
tick (r) just before the operation. Then, the tick operations
are the only ones that cost potential, thus simplifying the type
system. These tick operations are automatically inserted by
the Nomos type checker, using a predefined cost model that
assigns a constant cost to each operation. The programmer is
not allowed to insert their own tick operations, and cannot ma-
liciously change the gas cost. In addition, our implementation
provides some standard cost models that, for instance, assign
a unit cost to each operation.

Integration: Since both AARA for functional programs
and resource-aware session types are based on the integra-
tion of the potential method into their type systems, their
combination is natural. The two points of integration of the
functional and process layer are (i) spawning a process, and (ii)
sending/receiving a value from the functional layer. Recall the
spawn rule {}ERR from Figure 4. A process storing potential
r = p+ q can spawn a process corresponding to the monadic
value M , if M needs p units of potential to evaluate, while the
continuation needs q units of potential to execute. Moreover,
the functional context Ψ is shared in the two premises as Ψ1

and Ψ2 using the judgment Ψ . (Ψ1,Ψ2). This judgment,
explored in prior work [21] describes that the base types in Ψ
are copied to both Ψ1 and Ψ2, but the potential is split up. For
instance, Lq1+q2(τ) . (Lq1(τ), Lq2(τ)). The rule→L follows
a similar pattern. Thus, the combination of the two type
systems is smooth, assigning a uniform meaning to potential,
both for the functional and process layer. Remarkably, this
technical device of exchanging functional values can be used
to exchange non-constant potential with messages.

Operational Cost Semantics: The resource usage of
a process (or message) is tracked in semantic objects
proc(c, w, P) and msg(c, w,N) using the local counters w.
This signifies that the process P (or message N) has per-
formed work w so far. The rules of that explicitly affect the
work counter are

M ⇓ V | µ
proc(cm, w, P [M]) 7→ proc(cm, w + µ, P [V])

internal

This rule describes that if an expression M evaluates to V
with cost µ, then the process P [M] depending on monadic
expression M steps to P [V], while the work counter incre-
ments by µ, denoting the total number of internal steps taken
by the process. At the process layer, the work increments on
executing a tick operation.

proc(cm, w, tick (µ) ; P) 7→ proc(cm, w + µ, P)

A new process (or message) is spawned with w = 0, and
a terminating process transfers its work to the corresponding
message it interacts with before termination, thus preserving
the total work performed by the system.

VII. TYPE SOUNDNESS

The main theorems that exhibit the connections between
our type system and the operational cost semantics are the
usual type preservation and progress. First, Definition 1 asserts
certain invariants on process typing judgment depending on
the mode of the channel offered by a process. This mode,
remains invariant, as the process evolves. This is ensured by
the process typing rules, which remarkably preserve these
invariants despite being parametric in the mode.

Lemma 1 (Invariants). The typing rules on the judgment
Ψ ; Γ ; ∆ `q (xm : A) preserve the invariants outlined in
Definition 1, i.e., if the conclusion satisfies the invariant, so
do all the premises.

Configuration Typing: At run-time, a program evolves
into a number of processes and messages, represented by proc
and msg predicates. This multiset of predicates is referred to
as a configuration (abbreviated as Ω).

Ω ::= · | Ω, proc(c, w, P) | Ω,msg(c, w,N)

A key question is how to type these configurations because a
configuration both uses and provides a number of channels.
The solution is to have the typing impose a partial order
among the processes and messages, requiring the provider of
a channel to appear before its client. We stipulate that no two
distinct processes or messages in a well-formed configuration
provide the same channel c.

The typing judgment for configurations has the form

Σ ; Γ0

E

� Ω :: (Γ ; ∆) defining a configuration Ω providing
shared channels in Γ and linear channels in ∆. Additionally,
we need to track the mapping between the shared channels
and their linear counterparts offered by a contract process,
switching back and forth between them when the channel is
acquired or released respectively. This mapping, along with

the type of the shared channels, is stored in Γ0. E is a natural
number and stores the sum of the total potential and work
as recorded in each process and message. We call E the
energy of the configuration. The technical report [26] details
the configuration typing rules.

Finally, Σ denotes a signature storing the type and func-
tion definitions. A signature is well-formed if (i) every type
definition V = AV is contractive [29] (AV cannot be a type
name) allowing an equi-recursive treatment [38] and (ii) every
function definition f = M : τ is well-typed according to the
expression typing judgment Σ ; · p M : τ . The signature does
not contain process definitions; every process is encapsulated
inside a function using the contextual monad.

Theorem 1 (Type Preservation).
• If a closed well-typed expression · q M : τ evaluates to a

value, i.e., M ⇓ V | µ, then q ≥ µ and · q−µ V : τ .
• Consider a closed well-formed and well-typed configuration

Ω such that Σ ; Γ0

E

� Ω :: (Γ ; ∆). If the configuration
takes a step, i.e. Ω 7→ Ω′, then there exist Γ′0,Γ

′ such that

Σ ; Γ′0
E

� Ω′ :: (Γ′ ; ∆), i.e., the resulting configuration is
well-typed. Additionally, Γ0 ⊆ Γ′0 and Γ ⊆ Γ′.

The preservation theorem is standard for expressions [21].
For processes, we proceed by induction on the operational
cost semantics and inversion on the configuration and process
typing judgment.

To state progress, we need the notion of a poised pro-
cess [16]. A process proc(cm, w, P) is poised if it is trying to
receive a message on cm. Dually, a message msg(cm, w,N)
is poised if it is sending along cm. A configuration is poised
if every message or process in the configuration is poised.
Intuitively, this means that the configuration is trying to
interact with the outside world along a channel in Γ or ∆.
Additionally, a process can be blocked [24] if it is trying to
acquire a contract process that has already been acquired by
some process. This can lead to the possibility of deadlocks.

Theorem 2 (Progress). Consider a closed well-formed and

well-typed configuration Ω such that Γ0

E

� Ω :: (Γ ; ∆).
Either Ω is poised, or it can take a step, i.e., Ω 7→ Ω′, or some
process in Ω is blocked along aS for some shared channel aS
and there is a process proc(aL, w, P) ∈ Ω.

The progress theorem is weaker than that for binary linear
session types, where progress guarantees deadlock freedom.

VIII. IMPLEMENTATION AND EVALUATION

We have developed an open-source prototype implementa-
tion [25] of Nomos in OCaml. This prototype contains a lexer
and parser (929 lines of code), a type checker (2388 lines
of code), a pretty printer (451 lines of code), an LP solver
interface (915 lines of code) and an interpreter (1286 lines of
code) for implementing, type checking and executing Nomos
programs. We also describe our efforts to simplify program-
ming and improve accessiblity of Nomos to developers.

Syntax: The lexer and parser for Nomos have been
implemented in Menhir [39], an LR(1) parser generator for
OCaml. A Nomos program is a list of mutually recursive type
and process definitions. To visually separate out functional
variables from session-typed channels, we require that shared
channels are prefixed by #, while linear channels are prefixed
by $. This avoids confusion between the two, both for the
programmer and the parser. We also require the programmer to
indicate the mode of the process being defined: asset, contract
or transaction, assigning the respective modes R, S and T
to the offered channel. The modes for all other channels are
inferred automatically (explained later). The initial potential
{q} of a process is marked on the turnstile in the declaration.
The syntax for definitions is
stype v = A
proc <mode> f :
(x1 : T), ($c2 : A), ... |{q}- ($c : A) = M

In the context, T is the functional type for variable x1, while
A is the session type for channel $c2 and M is a functional
expression implementing the process. We add syntactic sugar,
such as the forms let x = M; P and if M then P1 else P2, to
the process layer to ease programming. Finally, a functional
expression can enter the session type monad using {}, i.e.,
M = {P} where P is a session-typed expression.

Type Checking: We implemented a bi-directional [40]
type checker with a specific focus on the quality of error
messages, which include, for example, extent (source code
location) information for each definition and expression. The
programmer provides the initial type of each variable and
channel in the declaration and the definition is checked against
it, while reconstructing the intermediate types. This helps
localize the source of a type error as the point where type
reconstruction fails. Type equality is restricted to reflexivity
(constant time), although we have also implemented the stan-
dard co-inductive algorithm [29] which is quadratic in the size
of type definitions. For all our examples, the reflexive notion of
equality was sufficient. Type checking is linear time in the size
of the program, which is important in the blockchain domain
where type checking can be part of the attack surface.

Potential and Mode Inference: The potential and mode
annotations are the most interesting aspects of the Nomos type
system. Since modes are associated with each channel, they
are tedious to write. Similarly, the exact potential annotations
depend on the cost assigned to each operation and is difficult
to predict statically. Thus, we implemented an automatic
inference algorithm for both these annotations by relying on
an off-the-shelf LP solver.

Using ideas from existing techniques for type inference for
AARA [18], [21], we reduce the reconstruction of potential
annotations to linear optimization. To this end, Nomos’ infer-
ence engine uses the Coin-Or LP solver. In a Nomos program,
the programmer can indicate unknown potential using ∗. Thus,
resource-aware session types can be marked with .∗ and /∗,
list types can be marked as L∗(τ) and process definitions can
be marked with |{∗}− on the turnstile. The mode of all the
channels is marked as ‘unknown’ while parsing.

The inference engine iterates over the program and sub-
stitutes the star annotations with potential variables and ‘un-
known’ with mode variables. Then, the bidirectional typing
rules are applied, approximately checking the program (mod-
ulo potential and mode annotations) while also generating
linear constraints for potential annotations (see Figure 4).
and mode annotations (see Definition 1 and Figure 3). Fi-
nally, these constraints are shipped to the LP solver, which
minimizes the value of the potential annotations to achieve
tight bounds. The LP solver either returns that the constraints
are infeasible, or returns a satisfying assignment, which is
then substituted into the program. The final program is pretty
printed for the programmer to view and verify the potential
and mode annotations.

A. Case Studies

We evaluate the design of Nomos by implementing several
smart contract applications and discussing the typical issues
that arise. All the contracts are implemented and type checked
in the prototype implementation and the potential and mode
annotations are derived automatically by the inference engine.
The cost model used for these examples assigns 1 unit of
cost to every atomic internal computation and sending of a
message. We show the contract types from the implementation
with the following ASCII format: i) /\ for ↑SL, ii) \/ for ↓SL,
iii) <{q}| for /q , iv) |{q}> for .q , v) ˆ for ∧, vi) *[m] for
⊗m, vii) −o[m] for (m.

ERC-20 Token Standard: ERC-20 [41] is a technical
standard for smart contracts on the Ethereum blockchain that
defines a common list of standard functions that a token
contract has to implement. The majority of tokens on the
Ethereum blockchain are ERC-20 compliant.

The ERC-20 token contract implements the following ses-
sion type in Nomos:
stype erc20token = /\ <{11}| &{
totalSupply : int ˆ |{9}> \/ erc20token,
balanceOf : id -> int ˆ |{8}> \/ erc20token,
transfer : id -> id -> int -> |{0}> \/ erc20token,
approve : id -> id -> int -> |{6}> \/ erc20token,
allowance : id -> id -> int ˆ |{6}> \/ erc20token }

The type ensures that the token implements the protocol
underlying the ERC-20 standard. To query the total number
of tokens in supply, a client sends the totalSupply label, and
the contract sends back an integer. If the contract receives
the balanceOf label followed by the owner’s identifier, it
sends back an integer corresponding to the owner’s balance. A
balance transfer can be initiated by sending the transfer label
to the contract followed by sender’s and receiver’s identifier,
and the amount to be transferred. If the contract receives
approve, it receives the two identifiers and the value, and
updates the allowance internally. Finally, this allowance can
be checked by issuing the allowance label, and sending the
owner’s and spender’s identifier.

The design of Nomos is orthogonal to the concrete repre-
sentation of money or currency in the language. The Nomos
implementation provides a simple built-in abstract coin type
of a unit value. Our implementation of the erc20token session

type relies on these abstract coins used exclusively for ex-
changes among the private accounts. Coins are treated linearly
as no operations are allowed on primitive types. As a result,
coins cannot be created or discarded.

It is straightforward to add features by using more sophis-
ticated abstract coin types or by providing built-in operations
that are executed by the runtime system. For example, we
can add coins with unique identifiers or coins of different
denominations by changing the underlying session type of
coins. Similarly, we can add operations for minting (creating)
or burning (discarding) coins if users have the respective priv-
ileges. Such operations could be, for instance, implemented in
an abstract contract that is an interface to the runtime system.
Finally, there can be operations for exchanging coins and gas
at rates that are fixed when type-checking transactions.

It is also possible to allow programmers to define their
own abstract types with their individual introduction and
elimination forms to use them in an implementation of a
session type like erc20token.

Hacker Gold (HKG) Token: The HKG token is one
particular implementation of the ERC-20 token specification.
Recently, a vulnerability was discovered in the HKG token
smart contract based on a typographical error leading to a re-
issuance of the entire token [42]. When updating the receiver’s
balance during a transfer, instead of writing balance+=value,
the programmer mistakenly wrote balance=+value (semanti-
cally meaning balance=value). Nomos’ type system would
have caught the linearity violation in the latter statement that
drops the existing balance in the recipient’s account.

Puzzle Contract: This contract, taken from prior
work [43] rewards users who solve a computational puzzle
and submit the solution. The contract allows two functions, one
that allows the owner to update the reward, and the other that
allows a user to submit their solution and collect the reward.

In Nomos, this contract is implemented to offer the type
stype puzzle = /\ <{14}| &{
update : id -> money -o[R] |{0}> \/ puzzle,
submit : int ˆ &{
success : int -> money *[R] |{5}> \/ puzzle,
failure : |{9}> \/ puzzle } }

The contract still supports the two transactions. To update the
reward, it receives the update label and an identifier, verifies
that the sender is the owner, receives money from the sender,
and acts like a puzzle again. The transaction to submit a
solution has a guard associated with it. First, the contract sends
an integer corresponding to the reward amount, the user then
verifies that the reward matches the expected reward (the guard
condition). If this check succeeds, the user sends the success
label, followed by the solution, receives the winnings, and
the session terminates. If the guard fails, the user issues the
failure label and immediately terminates the session. Thus, the
contract implementation guarantees that the user submitting
the solution receives their expected winnings.

Voting: The voting contract provides a ballot type.
stype ballot = /\ <{16}| +{
open : id -> +{ vote : id -> |{0}> \/ ballot,

novote : |{9}> \/ ballot },

closed : id ˆ |{13}> \/ ballot }

This contract allows voting when the election is open by
sending the candidate’s id, and prevents double voting by
checking if the voter has already voted (the novote label).
Once the election closes, the contract can be acquired to check
the winner. We use two implementations for the contract: the
first stores a counter for each candidate that is updated after
each vote is cast (voting in Table II); the second does not use a
counter but stores potential inside the vote list that is consumed
for counting the votes at the end (voting-aa in Table II). This
stored potential is provided by the voter to amortize the cost
of counting. The type above shows the potential annotations
corresponding to the latter.

Insurance: Nomos has been carefully designed to al-
low inter-contract communication without compromising type
safety. We illustrate this feature using an insurance contract
that processes flight delay insurance claims after verifying
them with a trusted third party. The insurer and third party
verifier are implemented as separate contracts providing the
following session types.
stype insurer = /\ <{6}| &{
submit : claim -> +{
success : money *[R] |{0}> \/ insurer,
failure : |{1}> \/ insurer } }

stype verifier = /\ <{3}| &{
verify : claim -> +{
valid : |{0}> \/ verifier,
invalid : |{0}> \/ verifier } }

The insurer type provides the option to submit a claim by
receiving it and responds with success or failure depending
upon verification of the claim. If the claim is successful, the
insurer sends over the reimbursement in the form of money.
The verifier type provides the option to verify a claim by
receiving it and responding with valid or invalid depending
on the validity of the claim.

The insurer, upon receiving a claim, acquires the verifier
and sends it the claim details. If the claim is valid, then it
responds with success, sends the money and detaches from
its client. If the claim is invalid, it responds with failure and
immediately detaches from its client.

Experimental Evaluation: We describe the 8 case studies
we implemented in Nomos. We have already discussed auction
(Section II), ERC 20, puzzle, voting, and insurance. The other
case studies are:
• A bank account that allows users to register, make de-

posits and withdrawals and check the balance.
• An escrow to exchange bonds between two parties.
• A wallet allowing users to store money on the blockchain.

Table II contains a compilation of our experiments with the
case studies and the prototype implementation. The experi-
ments were run on an Intel Core i5 2.7 GHz processor with
16 GB 1867 MHz DDR3 memory. It presents the contract
name, its lines of code (LOC), the type checking time (T (ms)),
number of potential and mode variables introduced (Vars),
number of potential and mode constraints that were generated
while type checking (Cons) and the time the LP solver took

Contract LOC T(ms) Vars Cons I(ms) Gap

auction 176 0.558 229 730 5.225 3
ERC 20 136 0.579 161 561 4.317 6
puzzle 108 0.410 126 389 8.994 8
voting 101 0.324 109 351 3.664 0
voting-aa 101 0.346 140 457 3.926 0
escrow 85 0.404 95 321 3.816 3
insurance 56 0.299 76 224 8.289 0
bank 147 0.663 173 561 4.549 0
wallet 30 0.231 32 102 3.224 0

TABLE II: Evaluation of Nomos with Case Studies. LOC
= lines of code; T (ms) = the type checking time in ms;
Vars = #variables generated during type inference; Cons =
#constraints generated during type inference; I (ms) = type
inference time in ms; Gap = maximal gas bound gap.

to infer their values (I (ms)). The last column describes the
maximal gap between the static gas bound inferred and the
actual runtime gas cost. It accounts for the difference in the
gas cost in different program paths. However, this waste is
clearly marked in the program by explicit tick instructions so
the programmer is aware of this runtime gap, based on the
program path executed.

The evaluation shows that the type-checking overhead is
less than a millisecond for case studies. This indicates that
Nomos is applicable to settings like distributed blockchains in
which type checking could add significant overhead and could
be part of the attack surface. Type inference is also efficient
but an order of magnitude slower than type checking. This
is acceptable since inference is only performed once during
deployment and can be carried out off-chain. Gas bounds
are tight in most cases. Loose gas bounds are caused by
conditional branches with different gas cost. In practice, this
is not a major concern since the Nomos semantics tracks
the exact gas cost, and a user will not be overcharged for
their transaction. However, Nomos’ type system can be easily
modified to only allow contracts with tight bounds.

Our implementation experience revealed that describing the
session type of a contract crystallizes the important aspects of
its protocol. Often, subtle aspects of a contract are revealed
while defining the protocol as a session type. Once the type is
defined, the implementation simply follows the type protocol.
The error messages from the type checker were helpful in
ensuring linearity of assets and adherence to the protocol.
Using ∗ for potential annotations meant we could remain
unaware of the exact gas cost of operations. The syntactic
sugar constructs reduced the programming overhead and the
size of the contract implementations.

IX. BLOCKCHAIN INTEGRATION

To integrate Nomos with a blockchain, we need a mecha-
nism to (i) represent contracts and their addresses in the current
blockchain state, (ii) create and execute transactions, and (iii)
construct the global distributed ledger.

Nomos on a Blockchain: We assume a blockchain like
Ethereum that contains a set of Nomos contracts C1, . . . , Cn
together with their type information · ; Γi ; ∆i

R `
qi Ci :: (xiS :

AiS). The shared context Γi types the shared contracts that
Ci refers to, and the linear context ∆i

R types the contract’s
linear assets. The channel name xiS of a contract is its address
and has to be globally unique. We allow contracts to carry
potential given by the annotation qi and the potential defined
by the annotations in ∆i

R but the type system could easily be
altered to suppress the potential.

These contracts form a stuck configuration (a valid virtual
blockchain state) typed as

Γ
E

� proc(x1S, w1, C1) . . . proc(xnS , wn, Cn) :: (Γ ; ·)

where Γ = (x1S : A1
S), . . . , (xnS : AnS) and E = Σni=1qi + wi

is the total energy, that is, the sum of the stored potential and
previously performed work. To perform a transaction with a
contract, a user submits a transaction script Q (a process) that
is well-typed with respect to the existing contracts:

· ; Γ ; · `q Q :: (xT : 1)

We mandate that the transaction offers along a channel of type
1 and terminates by sending a close message on its offered
channel. This enforces that the transaction, at termination,
leaves the blockchain in a well-formed state. This script
process is added to the set of contracts and the new (closed)
configuration is typed as

Γ
E+q

� proc(x1S, w1, C1) . . . proc(xT, 0, Q) :: (Γ ; (xT : 1))

This configuration then steps according to the Nomos seman-
tics, ending with the termination of the script Q, leaving the
configuration in a stuck state again to start a new transaction. If
type checking were too costly here, that can lead to yet another
source of denial-of-service attacks. In Nomos however, type
checking is linear time in the size of the script.

A transaction can either create new contracts, or update the
state of existing contracts. In the former case, new contracts
are added to the blockchain state, making them visible in
the type of the configuration for subsequent transactions to
access. In the latter case, it acquires the contracts it wishes to
interact with, followed by an update in the contracts’ internal
state and releases them. Since the contract types are equi-
synchronizing, they remain unchanged at the end of transaction
execution. This ensures that the subsequent transactions can
access the same contracts at the same type. In the future we
plan to allow sub-synchronizing types that enable a client to
release a contract channel not at the same type, but a subtype.
The subtype can then describe the phase of the contract. For
instance, the ended phase of auction contract will be a subtype
of the running phase. The technical report [26] details the
technique for serialized execution of transactions.

Deterministic Execution: Since blockchains rely on con-
sensus among the miners, it is important to ensure determin-
istic execution of transactions. However, Nomos semantics
has one source of non-determinism: the acquire-accept rule

where an accepting contract latches on to any acquiring
transaction. Our approach to resolve this non-determinism is
to determinize the process scheduler based on some heuristics.
Another promising approach is record-and-replay [44], [45].
The miner records the order in which the contracts are acquired
in the ledger, which is then replayed by others to compute the
current blockchain state.

Interpreter: The Nomos implementation provides two
functionalities: (i) inference: takes a program as input, infers
the potential and mode annotations and outputs a well-typed
program (discussed in Section VIII), and (ii) execution: which
takes a well-typed transaction program and a valid blockchain
state as input, executes the transaction against the state and
outputs a valid blockchain state. Internally, the blockchain
state is represented as a configuration, i.e. set of contracts and
linear assets stored inside them. Our implementation serializes
the configuration using OCaml S-expressions so that their
snapshots can be written to and read from a file. This makes
the blockchain state persistent through transactions.

Attacker Model: Our blockchain model requires that all
code submitted for execution is well-typed. The soundness
theorem of Nomos (Theorem 1) then guarantees that execution
of well-typed code cannot damage the blockchain state, or
render it unusable. Thus, we capitalize on the restriction
requiring adversarial code to be type correct. Furthemore, the
Nomos type checker is carefully implemented to be linear-time
in the size of the program. Thus, an adversary cannot cause
denial-of-service by submitting programs that take too long to
typecheck!

Deadlocks: The only language specific reason a transac-
tion can fail is a deadlock in the transaction code. Our progress
theorem accounts for this possibility of deadlocks. Since a
valid blockchain state represents a stuck configuration of a
particular form (only shared contracts in the configuration),
we verify at the end of the transaction execution if the new
configuration has this form. If not, we conclude that a dead-
lock occurred during the execution, and we simply abort the
whole transaction. We maintain snapshots of the configuration
after every transaction execution, so we simply revert to the
previous valid blockchain state. It is the user’s responsibility to
issue a new transaction that does not deadlock. In the future,
we also plan to employ deadlock prevention techniques [46]
to statically rule out deadlocks.

X. OTHER RELATED WORK

We classify the related work into 3 categories - i) new
programming languages for smart contracts, ii) static anal-
ysis techniques for existing languages and bytecode, and
iii) session-typed and type-based resource analysis systems
technically related to Nomos.

Smart Contract Languages: Existing smart contracts on
Ethereum are predominantly implemented in Solidity [4], a
statically typed object-oriented language influenced by Python
and JavaScript. Languages like Vyper [47] address resource
usage by disallowing recursion and infinite-length loops, thus
making estimation of gas usage decidable. However, both

languages still suffer from re-entrancy vulnerabilities. Bam-
boo [48], on the other hand, makes state transitions explicit
and avoids re-entrance by design. In contrast to our work,
none of these languages use linear type systems to track assets
stored in a contract.

Domain specific languages have also been designed for
other blockchains apart from Ethereum. Typecoin [49] uses
affine logic to solve the peer-to-peer affine commitment prob-
lem using a generalization of Bitcoin where transactions deal
in types rather than numbers. Although Typecoin does not pro-
vide a mechanism for expressing protocols, it also uses a linear
type system to prevent resources from being discarded or du-
plicated. Rholang [50] is formally modeled by the ρ-calculus,
a reflective higher-order extension of the π-calculus. Michel-
son [51] is a purely functional stack-based language that has
no side effects. However, none of these languages describe
and enforce communication protocols statically. Scilla [52] is
an intermediate-level language where contracts are structured
as communicating automata providing a continuation-passing
style computational model to the language semantics. Scilla
does not use session types or linearity but features static gas
bounds. A difference is that Nomos’ bounds are not asymptotic
and are proved sound with respect to a cost semantics. The
Move programming language [53] is a flexible language based
on Rust [54] to implement contracts on the Libra blockchain.
Similar to Nomos, it provides the ability to define custom
linear types to represent assets. However, it does not provide
support to express contract protocols or gas usage.

Static Analysis: Analysis of smart contracts has re-
ceived substantial attention [55], [56] recently due to their
security vulnerabilities [57], [58]. KEVM [59] creates a pro-
gram verifier based on reachability logic that given an EVM
program and specification, tries to automatically prove the
corresponding reachability theorems. However, the verifier
requires significant manual intervention, both in specification
and proof construction. Oyente [43] is a symbolic execution
tool that checks for 4 kinds of security bugs in smart contracts,
transaction-order dependence, timestamp dependence, mishan-
dled exceptions and re-entrancy vulnerabilities. MadMax [60]
automatically detects gas-focused vulnerabilities with high
confidence. The analysis is based on a decompiler that extracts
control and data flow information from EVM bytecode, and
a logic-based analysis specification that produces a high-
level program model. Ethereum contracts are also translated
to F* [61] to prove runtime safety and functional correct-
ness, although they do not support all syntactic features.
VERISOL [62] is a highly-automated formal verifier for So-
lidity that can produce proofs as well as counterexamples
and proves semantic conformance of smart contracts against
a state machine model with access-control policy. However,
in contrast to Nomos, where guarantees are proved by a
soundness proof of the type system, static analysis techniques
often do not explore all program paths, can report false
positives that need to be manually filtered, and miss bugs due
to timeouts and other sources of incompleteness.

Session types and Resource analysis: Session types
were introduced by Honda [11] as a typed formalism for
inter-process dyadic interaction. They have been integrated
into a functional language in prior work [15]. However, this
integration does not account for resource usage or sharing.
Sharing in session types has also been explored in prior
work [24], but with the strong restriction that shared processes
cannot rely on linear resources that we lift in Nomos. Shared
session types were also never integrated with a functional
layer or tracked for resource usage. While we consider binary
session types that express local interactions, global protocols
can be expressed using multi-party session types [13], [63].
Automatic amortized resource analysis (AARA) has been in-
troduced as a type system to derive linear [18] and polynomial
bounds [21] for functional programming languages. Resource
usage has also previously been explored separately for the
purely linear process layer [27], but were never combined with
shared session types or integrated with the functional layer.

XI. CONCLUSION

We have described the programming language Nomos, its
type-theoretic foundation, a prototype implementation and
evaluated its feasibility on several real world smart contract
applications. Nomos builds on linear logic, shared session
types, and automatic amortized resource analysis to address the
challenges that programmers are faced with when implement-
ing digital contracts. Our main contributions are the design
and implementation of Nomos’ multi-layered resource-aware
type system and its type soundness proof.

In future work, we plan to explore refinement session
types [64], [65] for expressing and verifying functional cor-
rectness of contracts against their specifications and to tar-
get open questions regarding a blockchain integration. These
include the exact cost model, fluctuation of gas prices, and
potential compilation to a lower-level language. Since Nomos
has a concurrent semantics, we also plan to support parallel
execution of transactions using speculation techniques [66].

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” http:
//bitcoin.org/bitcoin.pdf, 2008.

[2] G. Wood, “Ethereum: A secure decentralized transaction ledger,” http:
//gavwood.com/paper.pdf, 2014.

[3] L. Goodman, “Tezos — a self-amending crypto-ledger,” https://tezos.
com/static/papers/white paper.pdf, 2014.

[4] C. Dannen, Introducing Ethereum and Solidity: Foundations of Cryp-
tocurrency and Blockchain Programming for Beginners, 1st ed. USA:
Apress, 2017.

[5] D. Siegel, “Understanding the dao hack
for journalists,” https://medium.com/@pullnews/
understanding-the-dao-hack-for-journalists-2312dd43e993, Jun. 2016.

[6] B. I. I. Initiative, “B3i,” 2008.
[7] A. Law, “Smart contracts and their application in supply chain manage-

ment,” Ph.D. dissertation, Massachusetts Institute of Technology, 2017.
[8] V. Morabito, “Smart contracts and licensing,” in Business Innovation

Through Blockchain. Springer, 2017, pp. 101–124.
[9] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in

Workshop on Distributed Cryptocurrencies and Consensus Ledgers, vol.
310, 2016.

[10] “Welcome to liquidity’s documentation!” http://www.liquidity-lang.org/
doc/index.html, Aug. 2018, accessed: 2018-11-04.

[11] K. Honda, “Types for dyadic interaction,” in 4th International Confer-
ence on Concurrency Theory (CONCUR). Springer, 1993, pp. 509–523.

[12] K. Honda, V. T. Vasconcelos, and M. Kubo, “Language primitives and
type discipline for structured communication-based programming,” in
7th European Symposium on Programming (ESOP). Springer, 1998,
pp. 122–138.

[13] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asynchronous ses-
sion types,” in 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). ACM, 2008, pp. 273–284.

[14] L. Caires and F. Pfenning, “Session types as intuitionistic linear
propositions,” in 21st International Conference on Concurrency Theory
(CONCUR). Springer, 2010, pp. 222–236.

[15] B. Toninho, L. Caires, and F. Pfenning, “Higher-order processes,
functions, and sessions: a monadic integration,” in 22nd European
Symposium on Programming (ESOP). Springer, 2013, pp. 350–369.

[16] F. Pfenning and D. Griffith, “Polarized substructural session types,” in
18th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS). Springer, 2015, pp. 3–22.

[17] P. Wadler, “Propositions as sessions,” in 17th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP). ACM, 2012,
pp. 273–286.

[18] M. Hofmann and S. Jost, “Static Prediction of Heap Space Usage for
First-Order Functional Programs,” in 30th ACM Symp. on Principles of
Prog. Langs. (POPL’03), 2003.

[19] S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann, “Static Determi-
nation of Quantitative Resource Usage for Higher-Order Programs,” in
37th ACM Symp. on Principles of Prog. Langs. (POPL’10), 2010.

[20] J. Hoffmann, K. Aehlig, and M. Hofmann, “Multivariate Amortized
Resource Analysis,” in 38th Symposium on Principles of Programming
Languages (POPL’11), 2011.

[21] J. Hoffmann, A. Das, and S.-C. Weng, “Towards Automatic Resource
Bound Analysis for OCaml,” in 44th Symposium on Principles of
Programming Languages (POPL’17), 2017.

[22] Q. Carbonneaux, J. Hoffmann, T. Reps, and Z. Shao, “Automated
Resource Analysis with Coq Proof Objects,” in 29th International
Conference on Computer-Aided Verification (CAV’17), 2017.

[23] J.-Y. Girard, “Linear logic,” Theoretical Computer Science, vol. 50, pp.
1–102, 1987.

[24] S. Balzer and F. Pfenning, “Manifest sharing with session types,”
Proceedings of the ACM on Programming Languages (PACMPL), vol. 1,
no. ICFP, pp. 37:1–37:29, 2017.

[25] “Nomos implementation,” https://github.com/ankushdas/Nomos, 2019,
accessed: 2019-11-11.

[26] A. Das, S. Balzer, J. Hoffmann, F. Pfenning, and I. Santurkar, “Resource-
aware session types for digital contracts,” CoRR, vol. abs/1902.06056,
2019. [Online]. Available: http://arxiv.org/abs/1902.06056

[27] A. Das, J. Hoffmann, and F. Pfenning, “Work analysis with resource-
aware session types,” in 33rd ACM/IEEE Symposium on Logic in
Computer Science (LICS’18), 2018.

[28] I. Cervesato and A. Scedrov, “Relating state-based and process-based
concurrency through linear logic (full-version),” Information and
Computation, vol. 207, no. 10, pp. 1044 – 1077, 2009, special issue:
13th Workshop on Logic, Language, Information and Computation
(WoLLIC 2006). [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S089054010900100X

[29] S. Gay and M. Hole, “Subtyping for session types in the pi calculus,”
Acta Informatica, vol. 42, no. 2, pp. 191–225, Nov 2005. [Online].
Available: https://doi.org/10.1007/s00236-005-0177-z

[30] P. N. Benton, “A mixed linear and non-linear logic: Proofs, terms and
models,” in 8th International Workshop on Computer Science Logic
(CSL), ser. Lecture Notes in Computer Science, vol. 933. Springer,
1994, pp. 121–135, an extended version appeared as Technical Report
UCAM-CL-TR-352, University of Cambridge.

[31] J. Reed, “A judgmental deconstruction of modal logic,” January 2009,
unpublished manuscript. [Online]. Available: http://www.cs.cmu.edu/
∼jcreed/papers/jdml.pdf

[32] K. Pruiksma, W. Chargin, F. Pfenning, and J. Reed, “Adjoint logic,”
Carnegie Mellon University, Tech. Rep., April 2018.

[33] U. D. Lago and M. Gaboardi, “Linear Dependent Types and Relative
Completeness,” in 26th IEEE Symp. on Logic in Computer Science
(LICS’11), 2011.

[34] M. Avanzini, U. Dal Lago, and G. Moser, “Analysing the complexity
of functional programs: Higher-order meets first-order,” in Proceedings
of the 20th ACM SIGPLAN International Conference on Functional

Programming, ser. ICFP 2015. New York, NY, USA: ACM, 2015,
pp. 152–164. [Online]. Available: http://doi.acm.org/10.1145/2784731.
2784753

[35] N. Danner, D. R. Licata, and R. Ramyaa, “Denotational cost semantics
for functional languages with inductive types,” in Proceedings of
the 20th ACM SIGPLAN International Conference on Functional
Programming, ser. ICFP 2015. New York, NY, USA: ACM, 2015,
pp. 140–151. [Online]. Available: http://doi.acm.org/10.1145/2784731.
2784749

[36] E. Cicek, G. Barthe, M. Gaboardi, D. Garg, and J. Hoffmann, “Relational
Cost Analysis,” in 44th Symposium on Principles of Programming
Languages (POPL’17), 2017.

[37] I. Radiček, G. Barthe, M. Gaboardi, D. Garg, and F. Zuleger, “Monadic
Refinements for Relational Cost Analysis,” Proc. ACM Program. Lang.,
vol. 2, no. POPL, 2017.

[38] K. Crary, R. Harper, and S. Puri, “What is a recursive module?” in
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 1999, pp. 50–63.

[39] F. Pottier and Y. Régis-Gianas, Menhir Reference Manual, 2019.
[40] B. C. Pierce and D. N. Turner, “Local type inference,” ACM Trans.

Program. Lang. Syst., vol. 22, no. 1, pp. 1–44, Jan. 2000. [Online].
Available: http://doi.acm.org/10.1145/345099.345100

[41] “Erc20 token standard,” https://theethereum.wiki/w/index.php/ERC20
Token Standard, december 2018, accessed: 2018-02-027.

[42] “Ether.camp’s hkg token has a bug and
needs to be reissued,” https://www.ethnews.com/
ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued, January
2017, accessed: 2019-02-25.

[43] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: ACM, 2016, pp. 254–269. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978309

[44] M. Ronsse and K. De Bosschere, “Recplay: A fully integrated practical
record/replay system,” ACM Trans. Comput. Syst., vol. 17, no. 2, pp.
133–152, May 1999. [Online]. Available: http://doi.acm.org/10.1145/
312203.312214

[45] C. Lidbury and A. F. Donaldson, “Sparse record and replay with
controlled scheduling,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI 2019. New York, NY, USA: ACM, 2019, pp. 576–593.
[Online]. Available: http://doi.acm.org/10.1145/3314221.3314635

[46] S. Balzer, B. Toninho, and F. Pfenning, “Manifest deadlock-freedom
for shared session types,” in Programming Languages and Systems,
L. Caires, Ed. Cham: Springer International Publishing, 2019, pp.
611–639.

[47] “Vyper,” https://vyper.readthedocs.io/en/latest/index.html, Aug. 2018,
accessed: 2018-11-04.

[48] “Bamboo,” https://github.com/cornellblockchain/bamboo, Aug. 2018,
accessed: 2018-11-04.

[49] K. Crary and M. J. Sullivan, “Peer-to-peer affine commitment using
bitcoin,” in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’15.
New York, NY, USA: ACM, 2015, pp. 479–488. [Online]. Available:
http://doi.acm.org/10.1145/2737924.2737997

[50] “Rholang,” https://github.com/rchain/Rholang, Aug. 2018, accessed:
2018-11-04.

[51] “The michelson language,” https://www.michelson-lang.com/, Aug.
2018, accessed: 2018-11-04.

[52] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov, and K. C. G.
Hao, “Safer smart contract programming with scilla,” Proc. ACM
Program. Lang., vol. 3, no. OOPSLA, pp. 185:1–185:30, Oct. 2019.
[Online]. Available: http://doi.acm.org/10.1145/3360611

[53] S. Blackshear, D. L. Dill, S. Qadeer, C. W. Barrett, J. C. Mitchell,
O. Padon, and Y. Zohar, “Resources: A safe language abstraction for
money,” 2020.

[54] S. Klabnik and C. Nichols, The Rust Programming Language. USA:
No Starch Press, 2018.

[55] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in 2018 IEEE/ACM 1st International Work-
shop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), May 2018, pp. 9–16.

[56] I. Grishchenko, M. Maffei, and C. Schneidewind, “Foundations and tools
for the static analysis of ethereum smart contracts,” in Computer Aided
Verification, H. Chockler and G. Weissenbacher, Eds. Cham: Springer
International Publishing, 2018, pp. 51–78.

[57] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 67–82. [Online].
Available: https://doi.org/10.1145/3243734.3243780

[58] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts (sok),” in Principles of Security and Trust -
6th International Conference, POST 2017, 2017, pp. 164–186. [Online].
Available: https://doi.org/10.1007/978-3-662-54455-6\ 8

[59] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth,
B. Moore, Y. Zhang, D. Park, A. Stefănescu, and G. Rosu, “Kevm: A
complete semantics of the ethereum virtual machine,” in 2018 IEEE 31st
Computer Security Foundations Symposium. IEEE, 2018, pp. 204–217.

[60] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and
Y. Smaragdakis, “Madmax: Surviving out-of-gas conditions in
ethereum smart contracts,” Proc. ACM Program. Lang., vol. 2,
no. OOPSLA, pp. 116:1–116:27, Oct. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3276486

[61] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Zanella-Béguelin, “Formal verification of smart
contracts: Short paper,” in Proceedings of the 2016 ACM Workshop
on Programming Languages and Analysis for Security, ser. PLAS ’16.
New York, NY, USA: ACM, 2016, pp. 91–96. [Online]. Available:
http://doi.acm.org/10.1145/2993600.2993611

[62] S. K. Lahiri, S. Chen, Y. Wang, and I. Dillig, “Formal specification
and verification of smart contracts for azure blockchain,” CoRR, vol.
abs/1812.08829, 2018. [Online]. Available: http://arxiv.org/abs/1812.
08829

[63] A. Scalas and N. Yoshida, “Less is more: Multiparty session types
revisited,” Proc. ACM Program. Lang., vol. 3, no. POPL, pp. 30:1–30:29,
Jan. 2019. [Online]. Available: http://doi.acm.org/10.1145/3290343

[64] A. Das and F. Pfenning, “Rast: Resource-Aware Session Types with
Arithmetic Refinements (System Description),” in 5th International
Conference on Formal Structures for Computation and Deduction
(FSCD 2020), ser. Leibniz International Proceedings in Informatics
(LIPIcs), Z. M. Ariola, Ed., vol. 167. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 33:1–33:17.
[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2020/12355

[65] ——, “Session types with arithmetic refinements,” in 31st International
Conference on Concurrency Theory (CONCUR 2020), ser. Leibniz
International Proceedings in Informatics (LIPIcs), I. Konnov and
L. Kovács, Eds., vol. 171. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2020, pp. 13:1–13:18. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2020/12825

[66] V. Saraph and M. Herlihy, “An empirical study of speculative
concurrency in ethereum smart contracts,” CoRR, vol. abs/1901.01376,
2019. [Online]. Available: http://arxiv.org/abs/1901.01376

