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Abstract
We investigate the decidability of termination, reachability, coverability and deadlock-freeness of
Petri nets endowed with a hierarchy of places, and with inhibitor arcs, reset arcs and transfer
arcs that respect this hierarchy. We also investigate what happens when we have a mix of these
special arcs, some of which respect the hierarchy, while others do not. We settle the decidability
status of the above four problems for all combinations of hierarchy, inhibitor, reset and transfer
arcs, except the termination problem for two combinations. For both these combinations, we
show that the termination problem is as hard as deciding positivity — a long-standing open
problem in linear recurrences.
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1 Introduction

Petri nets are an important and versatile mathematical modeling formalism for distributed
and concurrent systems. Thanks to their intuitive visual representation, precise execution
semantics, well-developed mathematical theory and availability of tools for reasoning about
them, Petri nets are used for modeling in varied contexts, viz. computational, chemical,
biological, workflow-related etc. Several extensions to Petri nets have been proposed in the
literature to augment their modeling power. From a theoretical perspective, these provide rich
and interesting models of computation that warrant investigation of their expressive powers,
and decidability and/or complexity of various decision problems. From a practitioner’s
perspective, they enable new classes of systems to be modeled and reasoned about.

In this paper, we focus on an important class of extensions proposed earlier for Petri nets,
pertaining to the addition of three types of special arcs, namely inhibitor, reset and transfer
arcs from places to transitions. We investigate how different combinations of these extensions
affect the decidability of four key decision problems: reachability, coverability, termination,
and deadlock-freeness. To start with, an inhibitor-arc effectively models a zero test, and
hence with two inhibitor arcs one can model two-counter machines, leading to undecidability
of all of the above decision problems. However, Reinhardt [19] showed that if we impose
a hierarchy among places with inhibitor arcs (a single inhibitor arc being a sub-case), we
recover decidability of reachability. Recently [4] simplified this proof using techniques of
Leroux [13] and also showed that termination and coverability are decidable for Petri nets
with heirarchical inhibitor arcs. With reset arcs (which remove all tokens from a pre-place)
and transfer arcs (which transfer all tokens from a pre-place to a post-place), reachability
and deadlock-freeness are known to be undecidable [8], athough termination and coverability
are decidable [10].

Our interest in this paper lies in asking what happens when hierarchy is introduced
among all combinations of special arcs. Thus, we specify a hierarchy, or total ordering,

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 On Petri Nets with Hierarchical Special Arcs

among the places and say that the special arcs respect the hierarchy if whenever there is
a special arc from a place p to a transition t, there are also special arcs from every place
lower than p in the hierarchy to t. The study of Petri nets extended with hierarchical and
non-hierarchical special arcs provides a generic framework that subsumes several existing
questions and throws up new ones. While some of these classes and questions have been
studied earlier, there are still several classes where nothing seems to be known about the
decidability of the above decision problems.

There are only a handful of results in the literature where hierarchical special arcs
have been shown to play an important role. Decidability of reachability for Petri nets
with hierarchical inhibitor arcs was shown in [19, 3], while decidability of termination,
coverability and boundedness was shown in [4]. Further, in [1] it was shown that Petri nets
with hierarchical zero tests are equivalent to Petri nets with a stack encoding restricted
context-free languages. Finally a specific subclass, namely Petri nets with a single inhibitor
arc, has received a lot of attention, with results showing decidability of boundededness and
termination [9], place-boundedness [5], and LTL model checking [6]. However, in [6], the
authors remark that it would not be easy to extend their technique for the last two problems
to handle hierarchical arcs. To the best of our knowledge, none of the earlier papers address
the mixing of reset and transfer arcs within the hierarchy of inhibitor arcs, leaving several
interesting questions unanswered. Our primary goal in this paper is to comprehensively fill
these gaps. Before we delve into theoretical investigations of these models, we present two
examples that illustrate why these models are interesting from a practical point of view too.

Our first example is a prioritized job-shop environment in which work stations with
possibly different resources are available for servicing jobs. Each job comes with a priority
and with a requirement of the count of resources it needs. For simplicity, assume that all
resources are identical, and that there is at most one job with any given priority. A work
station can service multiple jobs simultaneously subject to availability of resources; however,
a job cannot be split across multiple work stations. Additionally, we require that a job with
a lower priority must not be scheduled on any work station as long as a job with higher
priority is waiting to be scheduled. Once a job gets done, it can either terminate or generate
additional jobs with different priorities based on some rules. An example of such a rule
could be that a job with prioriy k and resource requirement m can only generate a new job
with priority ≤ k and resource requirement ≤ m. Given such a system, there are several
interesting questions one might ask. For example, can too many jobs (above a specified
threshold) of the lowest priority be left waiting for a work station? Or, can the system
reach a deadlocked state from where no progress can be made? A possible approach to
answering these questions is to model the system as a Petri net with appropriate extensions,
and reduce the questions to decision problems (such as coverability or deadlockfree-ness) for
the corresponding nets. Indeed, it can be shown that the prioritized job-shop environment
can be modeled as a Petri net with hierarchical inhibitor arcs and additional transfer/reset
arcs that do not necessarily respect the hierarchy.

Our second example builds on work reported in the literature on modeling integer programs
with loops using Petri nets [2]. Questions pertaining to termination of such programs can
be reduced to decision problems (termination or deadlockfree-ness) of the corresponding
Petri net model. In Section 6.2, we describe a new reduction of the termination question
for integer linear loop programs to the termination problem for Petri nets with hierarchical
inhibitor and transfer arcs. This is one of the main technical contributions of this paper, and
underlines the importance of studying decision problems for these extensions of Petri nets.

Our other main contribution is a comprehensive investigation into Petri nets extended
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with a mix of these special arcs, some of which respect the hierarchy, while others do
not. We settle the decidability status of the four decisions problems for all combinations
of hierarchy, inhibitor, reset and transfer arcs, except the termination problem for two
combinations. For these cases, we show a reduction from the positivity problem [17, 18], a
long-standing open problem on linear recurrences. We summarize these results in Section 3,
after introducing appropriate notations in Section 2. Interestingly, several of the results use
distinct constructions and proof techniques, as detailed in Sections 4–6.

2 Preliminaries

We begin by recalling some key definitions and fixing notations. A Petri net, denoted PN, is
defined as (P, T, F,M0), where P is a set of places, T is a set of transitions, M0 : P → N is
the initial marking and F : (P × T )∪ (T ×P )→ N is the flow relation. For every x ∈ P ∪ T ,
we define Pre(x) = {y ∈ P ∪ T | F (y, x) > 0}, Post(x) = {y ∈ P ∪ T | F (x, y) > 0}. For
every t ∈ T , we use the following terminology: every p ∈ Pre(t) is a pre-place of t, every
q ∈ Post(t) is a post-place of t, every arc (p, t) such that F (p, t) > 0 is a pre-arc of t, and
every arc (t, p) such that F (t, p) > 0 is a post-arc of t.

A marking M : P → N is a function from the set of places to non-negative integers. We say
that a transition t is firable at marking M , denoted by M t−→, if ∀p ∈ Pre(t),M(p) ≥ F (p, t).
If t is firable atM1, we say that firing t gives the markingM2, where ∀p ∈ P,M2(p) = M1(p)−
F (p, t) + F (t, p). This is also denoted as M1

t−→M2. We define the sequence of transitions
ρ = t1t2t3...tn to be a run from markingM0, if there exist markingsM1,M2, ...,Mn, such that
for all i, ti is firable atMi−1 andMi−1

ti−→Mi. Finally, we abuse notation and use ≤ to denote
the component-wise ordering over markings. Thus, M1 ≤M2 iff ∀p ∈ P,M1(p) ≤M2(p). A
detailed account on Petri nets can be found in [16].

We now define some classical decision problems in the study of Petri nets.

I Definition 2.1. Given a Petri net N = (P, T, F,M0),
Termination (or Term): Does there exist an infinite run from marking M0?
Reachability (or Reach): Given a marking M , is there a run from M0 which reaches M?
Coverability (or Cover): Given a marking M , is there a marking M ′ ≥ M which is
reachable from M0?
Deadlock-freeness (or DLFree): Does there exist a marking M reachable from M0, such
that no transition is firable at M?

Since Petri nets are well-structured transition systems (WSTS), the decidability of cover-
ability and termination for Petri nets follows from the corresponding results for WSTS [10].
The decidability of reachability was shown in [12]. Subsequently, there have been several
alternative proofs of the same result, viz. [13]. Finally, since deadlockfreeness reduces to
reachability in Petri nets [7], all the four decision problems are decidable for Petri nets. In
the remainder of the paper, we concern ourselves with these decision problems for Petri nets
extended with the following special arcs:

An Inhibitor arc from place p to transition t signifies t is firable only if p has zero tokens.
A Reset arc from place p to transition t signifies that p contains zero tokens after t fires.
A Transfer arc from place p1 through transition t to place p2 signifies that on firing
transition t, all tokens from p1 get transferred to p2.

For Petri nets with special arcs, we redefine the flow relation as F : (P × T ) ∪ (T × P )→
N ∪ {I,R} ∪ {Sp | p ∈ P}, where F (p, t) = I (resp. F (p, t) = R) signifies the presence of an
inhibitor arc (resp. reset arc) from place p to transition t. Similarly, if F (p, t) = Sp′ , then
there is a transfer arc from place p to place p′ through transition t.
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3 Problem statements and main results

We now formally define the various extensions of Petri nets studied in this paper. We also
briefly review the current status (with respect to decidability) of the four decision problems
for these extensions of Petri nets, and summarize our contributions.

We use PN to denote standard Petri nets, and I-PN, R-PN, T-PN to denote Petri nets
with inhibitor, reset and transfer arcs, respectively. The following definition subsumes several
additional extensions studied in this paper.

I Definition 3.1. A Petri net with hierarchical special arcs is defined to be a 5-tuple
(P, T, F,v,M0), where P is a set of places, T is a set of transitions, v is a total ordering
over P encoding the hierarchy, M0 : P → N is the initial marking, and F : (P × T ) ∪ (T ×
P ) → N ∪ {I,R} ∪ {Sp | p ∈ P} is a flow relation satisfying
∀(t, p) ∈ T × P, F (t, p) ∈ N, and
∀(p, t) ∈ P × T, F (p, t) 6∈ N =⇒ (∀q v p, F (q, t) 6∈ N)

Thus, all arcs (or edges) from transitions to places are as in standard Petri nets. However, we
may have special arcs from places to transitions. These can be inhibitor arcs (F (p, t) = I),
reset arcs (F (p, t) = R), or transfer arcs (F (p, t) = Sp′ , where p and p′ are places in the Petri
net). Note that all special arcs respect the hierarchy specified by v. In other words, if there
is a special arc from a place p to a transition t, there must also be special arcs from every
place p′ to t, where p′ v p. Depending on the subset of special arcs that are present, we
can define sub-classes of Petri nets with hierarchical special arcs as follows. In the following,
Range(F ) denotes the range of the flow relation F .

I Definition 3.2. The class of Petri nets with hierarchical special arcs, where Range(F ) \ N
is a subset of {I}, {T} or {R} is called HIPN, HTPN or HRPN respectively. Similarly, it
is called HITPN, HIRPN or HTRPN if Range(F ) \ N is a subset of {I, T}, {I,R} or {T,R}
respectively. Finally, if Range(F ) \N is a subset of {I,R, T}, we call the corresponding class
of nets HIRTPN.

We also study generalizations, in which extra inhibitor, reset and/or transfer arcs that do not
respect the hierarchy specified by v, are added to Petri nets with hierarchical special arcs.

I Definition 3.3. Let N be a class of Petri nets with hierarchical special arcs as in Defi-
nition 3.2, and let M be a subset of {I, T,R}. We use M-N to denote the class of nets
obtained by adding unrestricted special arcs of typeM to an underlying net in the class N .

For example, R-HIPN is the class of Petri nets with hierarchical inhibitor arcs extended with
reset arcs that need not respect the heirarchy. Clearly, if the special arcs in every net N ∈ N
are fromM, the classM-N is simply the class of Petri nets with unrestricted (no hierarchy)
arcs of typeM. Hence we avoid discussing such extensions in the remainder of the paper.

As we show later, all four decision problems of interest to us are either undecidable or
not known to be decidable for HIRTPN. A slightly constrained version of HIRTPN, however,
turns out to be much better behaved, motivating the following definition.

I Definition 3.4. The sub-class HIRcTPN is defined to be HIRTPN with the added restriction
that ∀(p, t, p′) ∈ P × T × P, F (p, t) = Sp′ =⇒ (∀t′ ∈ T, F (p′, t′) ∈ N).

Status of decision problems and our contributions:
Table 1 summarizes the decidability status of the four decision problems for some classes

of Petri net extensions. A 3 denotes decidability of the corresponding problem, while 7

denotes undecidability of the problem. The shaded cells present results (and corresponding
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citations) already known prior to the current work, while the unshaded cells show results
(and corresponding theorems) arising from this paper. Note that the table doesn’t list all
extensions of Petri nets that were defined above. This has been done deliberately and carefully
to improve readability. Specifically, for every Petri net extension that is not represented in
the table, e.g., R-HITPN, the status of all four decision problems are inferable from others
shown in the table. These are explicitly listed out in Appendix A.7, where we also depict the
relative expressiveness of these classes. Thus, our work comprehensively addresses the four
decision problems for all classes of Petri net extensions considered above.

Term Cover Reach DLFree
PN 3 [10] 3 [10] 3 [14, 13] 3 [7, 11]

R/T-PN 3 [10] 3 [10] 7 [8] 7 [Red. from [8]]
I-PN 7 [15] 7 [15] 7 [15] 7 [15]
HIPN 3 [19, 4] 3 [19, 4] 3 [19, 4] 3 [Thm 4.3]
HTPN 3 [10] 3 [10] 7 [Thm 6.1] 7 [Thm 6.1]
HIRPN 3 [Thm 4.2] 3 [Thm 4.2] 3 [Thm 4.2] 3 [Thm 4.3]
HITPN Positivity-Hard [Thm 6.5] 7 [Cor. 6.2] 7 [Thm 6.1] 7 [Thm 6.1]

HIRcTPN 3 [Thm 4.2] 3 [Thm 4.2] 3 [Thm 4.2] 3 [Thm 4.3]
R-HIPN 3[Thm 5.1] 7[Thm 5.6] 7[[8], App. A.3] 7[Red.frm [8], A.3]
T-HIPN Positivity-Hard [Thm 6.5] 7[Thm 5.6] 7[[8], App. A.3] 7[Red.frm [8], A.3]

R-HIRPN 3[Thm 5.1, Thm 4.2] 7[Thm 5.6] 7[[8], App. A.3] 7[Red.frm [8], A.3]
Table 1 Summary of key results; results for all other extensions are subsumed by these results

Interestingly, several of the results use distinct constructions and proof techniques. We now
point out the salient features of our six main results.

We include reset arcs in the hierarchy of inhibitors in HIPN in Section 4. In Theorem 4.2,
we show that we can model reset arcs by inhibitors, while crucially preserving hierarchy.
This immediately gives decidability of all problems except DLFree. As the reduction
may introduce deadlocks, we need a different proof for DLFree, which we show in
our second main and more technically involved result in Theorem 4.3. Note that this
immediately also proves decidability of deadlock-freeness for HIPN, which to the best of
our knowledge was not known before.
We add reset arcs outside the hierarchy of inhibitor arcs in Section 5. Somewhat counter-
intuitively, this class does not contain HIPN and is incomparable to it, since here all
inhibitor arcs must follow the hierarchy, while in HIPN some of the inhibitor arcs can
be replaced by resets. Using a new and surprisingly simple construction of an extended
finite reachability tree (FRT) which keeps track of the hierarchical inhibitor information
and modifies the subsumption condition, in Theorem 5.1, we show that termination is
decidable. This result has many consequences. In particular, it implies an arguably
simple proof for the very special case of a single inhibitor arc which was solved in [9]
(using a different method of extending FRTs). In Theorem 5.6, we use a two counter
machine reduction to show that coverability is undecidable even with 2 reset arcs and an
inhibitor arc in the absence of hierarchy.
Finally, we consider transfer arcs in and outside the hierarchy in Section 6. In Theorem 6.1,
we show that, unlike for reset arcs, including transfer arcs in the hierarchy of inhibitors
does not give us decidability. For both HITPN and T-HIPN, while coverability, reachability
and deadlock-freeness are undecidable, we are unable to show such a result for termination.
Instead, in Theorem 6.5, we show that we can reduce a long-standing open problem on
linear recurrences to this problem.
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pS pI pR

p

t

Reset

Rest of Net

pS p∗

p∗t

tS Rest of Net

pRpI

p

tR

tI

Figure 1 Transformation from N ∈ HIRPNk (left) to N ′ ∈ HIRPNk−1 (right)

4 Adding Reset Arcs with Hierarchy to HIPN

In this section, we extend hierarchical inhibitor nets [19] with reset arcs respecting the hierar-
chy. Subsection 4.1 presents a reduction from HIRPN to HIPN that settles the decidability of
termination, coverability and reachability for HIRPN. Unfortunately, this reduction does not
work for deadlock-freeness since it introduces new deadlocked markings. We therefore present
a separate reduction from deadlock-freeness to reachability for HIRPN in subsection 4.2.
These two results establish the decidability of all four decision problems for HIRPN.

4.1 Reduction from HIRPN to HIPN
Let HIRPNk be the sub-class of Petri nets in HIRPN with at most k transitions having one or
more reset pre-arcs. We first show that termination, reachability and coverability for HIRPNk
can be reduced to the corresponding problems for HIRPNk−1, for all k > 0. This effectively
reduces these problems for HIRPN to the corresponding problems for HIRPN0 (or HIPN),
which are known to be decidable [19, 4]. In the following, we use Markings(N) to denote the
set of all markings of a net N .

I Lemma 4.1. For every net N in HIRPNk, there is a net N ′ in HIRPNk−1 and a mapping
f : Markings(N)→ Markings(N ′) that satisfy the following:

For every M1,M2 ∈ Markings(N) such that M2 is reachable from M1 in N , the marking
f(M2) is reachable from f(M1) in N ′.
For every M ′1,M

′
2 ∈ Markings(N ′) such that M ′1 = f(M1), M ′2 = f(M2) and M ′2 is

reachable from M ′1 in N ′, the marking M2 is reachable from M1 in N .

Proof sketch: To see how N ′ is constructed, consider an arbitrary transition, say t, in N
with one or more reset pre-arcs. We replace t by a gadget in N ′ with no reset arcs, as shown
in Figure 1. The gadget has two new places labeled p∗ and p∗t , with every transition in
“Rest of Net” having a simple pre-arc from and a post-arc to p∗, as shown by the dotted
arrows in Figure 1. The gadget also has a new transition tS with simple pre-arcs from p∗

and from every place pS that has a simple arc to t in N . It also has a new transition labeled
tR for every reset arc from a place pR to t in N . Thus, if there are n reset pre-arcs of t in
N , the gadget will have n transitions tR1 , . . . tRn . As shown in Figure 1, each such tRi has
simple pre-arcs from pRi and p∗t and a post-arc to p∗t . Finally, the gadget has a new transition
labeled tI with a simple pre-arc from p∗t and inhibitor pre-arcs from all places pI that have
inhibitor arcs to t in N .
The ordering v′ of places in N ′ is obtained by extending the ordering v of N as follows:
for each place p in N , we have p v′ p∗t v′ p∗. Clearly, N ′ ∈ HIRPNk−1, since it has one less
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transition (i.e. t) with reset pre-arcs compared to N . It is easy to check that if the reset and
inhibitor arcs in N respect v, then the reset and inhibitor arcs in N ′ respect v′.
The mapping function f : Markings(N)→ Markings(M ′) is defined as follows: for every place
p in N , f(M)(p) = M(p) if p is in N ; otherwise, f(M)(p∗) = 1 and f(M)(p∗t ) = 0. The
initial marking of N ′ is given by f(M0), where M0 is the initial marking of N . Given a run
in N , it is now easy to see that every occurrence of t in the run can be replaced by the
sequence tS(tR)∗tI (the tR transitions fire until the corresponding place pR is emptied) and
vice-versa. Further details of the construction are given in Appendix A.1, where it is also
shown that N can reach M2 from M1 iff N ′ can reach f(M2) from f(M1).
In fact, the above construction can be easily adapted for HIRcTPN as well. Specifically, if we
have a transfer arc from place px to place py through t, we add a new transtion tTx,y with
simple pre-arcs from p∗t and px, and with simple post-arcs to p∗t and py to the gadget shown
in Figure 1. Furthermore, we add an inhibitor arc from px to tI , like the arc from pR to tI
in Figure 1. This allows us to obtain a net in HIRcTPN with at least one less transition with
reset pre-arcs or transfer arcs, such that the reachability guarantees in Lemma 4.1 hold. This
immediately gives the following result.

I Theorem 4.2. Termination, reachability and coverability for HIRPN and HIRcTPN are
decidable.

The proof follows by repeatedly applying Lemma 4.1 to reduce the decision problems to
those for HIRPN0 (or HIPN), and from the decidability of these problems for HIPN.

4.2 Reducing Deadlock-freeness to Reachability in HIRPN
The overall idea behind our reduction is to add transitions that check whether the net is
deadlocked, and to put a token in a special place, say p∗, if this is indeed the case. Note that
for a net to be deadlocked, the firing of each of its transitions must be disabled. Intuitively,
if M denotes a marking of a net and if T denotes the set of transitions of the net, then
Deadlock(M) =

∧
ti∈T NotFirei(M), where Deadlock(M) is a predicate indicating if the net

is deadlocked in M , and NotFirei(M) is a formula representing the enabled-ness of transition
ti in M .
For a transition t to be disabled, atleast one of its pre-places p must fail the condition on
that place for t to fire. There are three cases to consider here.

F (p, t) ∈ N: For t to be disabled, we must have M(p) < F (p, t)
F (p, t) = I: For t to be disabled, we must have M(p) > 0.
F (p, t) = R: Place p cannot disable t

Suppose we define Exactj(p) ≡ (M(p) = j) and AtLeast(p) ≡ (M(p) > 0). Clearly,
NotFirei(M) =

∨
(p,t)∈F Check(p), where Check(p) = AtLeast(p) if F (p, t) = I, and

Check(p) =
∨
j<k Exactl(p) if F (p, t) = k ∈ N. The formula for Deadlock(M) (in CNF

above) can now be converted into DNF by distributing conjunctions over disjunctions. Given
a HIRPN net, we now transform the net, preserving hierarchy, so as to reduce checking
Deadlock(M) in DNF in the original net to a reachability problem in the transformed HIRPN
net.
Every conjunctive clause in the DNF of Deadlock(M) is a conjunction of literals of the form
AtLeast(p) and Exactj(p). Let SC be the set of all literals in a conjunctive clause C, and let P
be the set of all places in the net. Define BCi = {p ∈ P | Exacti(p) ∈ SC} and AC = {p ∈ P |
AtLeast(p) ∈ SC}\

⋃
i≥1 B

C
i . We only need to consider conjunctive clauses where the sets BCi

are pairwise disjoint (other clauses can never be true). Similarly, we only need to consider con-
junctive clauses where BC0 and AC are disjoint. We add a transition for each conjunctive clause
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that satisfies the above two properties. By definition, AC and BCi are disjoint for all i ≥ 1.
Thus, the sets AC and BCi (i ≥ 0) are pairwise disjoint for every conjunctive clause we consider.

p2

t2

p2∗

tC

t2∗

p∗

p1

r1

p1∗

i

pC

p∗∗

qC

p3

s3

Given the original HIRPN net, for each conjunc-
tive clause considered, we perform the construc-
tion as shown in the above figure. For every
place pa ∈ AC , we add a construction as for p2
in above diagram. For every place pi ∈ BCi , we
add a construction as for p1 in above diagram.
For all places p 6∈ AC ∪

⋃
iB

C
i , we add a con-

struction as for p3 in above diagram. We call the
transition tC in the above diagram as the "Check
Transition", and refer to the set of transitions
ri, si, ti, ti∗, tC (excluding qC) as transitions for
clause C. Note that for any pi ∈ P , exactly one of ri, si, ti exist since the sets AC and the
sets BCi are all pairwise disjoint.
Our construction also adds two new places, pC and p∗∗, and one new transition qC such that

there is a pre-arc and a post-arc of weight 1 from p∗∗ to every transition in the original
net. Thus, transitions in original net can fire only p∗∗ has a token.
there is a pre-arc of weight 1 from pc to every transition for clause C (within dotted box).
there is a post-arc of weight 1 to pc from every transition for clause C (within dotted
box), except from tC to pC .

Note that hierarchy is preserved in the transformed net, since the only new transitions which
have inhibitor/reset arcs are the check transitions, which have inhibitor arcs from all places
in the original net.
LetN be the original net in HIRPN with P being its set of places, and letN ′ be the transformed
net, also in HIRPN, obtained above. Define a mapping f : Markings(N)→ Markings(N ′) as
follows: f(M)(p) = M(p) if p ∈ P ; f(M)(p∗∗) = 1 and f(M)(p) = 0 in all other cases. If
M0 is the initial marking in N , define M ′0 = f(M0) to be the initial marking in N ′.
I Claim 4.1. The markingM ′? of N ′, defined asM ′?(p) = 1 if p = p∗ andM ′?(p) = 0 otherwise,
is reachable from M ′0 in N ′ iff there exists a deadlocked marking reachable from M0 in N .
See Appendix A.2 for proof of this claim.

I Theorem 4.3. Deadlock-freeness for HIRPN is decidable.

This follows from the above reduction and from the decidability of reachability for HIRPN. A
detailed proof can be found in A.2.

5 Adding Reset Arcs without Hierarchy

The previous section dealt with extension of Petri nets where reset arcs were added within
the hierarchy of the inhibitor arcs. This section discusses the decidability results when we
add reset arcs outside the hierarchy of inhibitor arcs. It turns out that termination remains
decidable for this set of petri nets too.

5.1 Termination in R-HIPN
Our main idea here is to use a modified finite reachability tree (FRT) construction to provide
an algorithm for termination in R-HIPN. The usual FRT construction [10] for Petri nets does
not extend to even Petri nets with a single (hence hierarchical) inhibitor arc.
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In this section, we provide a construction that tackles termination in PNs with heirarchical
inhibitor arcs, even in the presence of additional reset arcs:

I Theorem 5.1. Termination is decidable for R-HIPN.

Consider a R-HIPN net (P, T, F,v,M0). We start by introducing a few definitions. For any
place p ∈ P , we define the index of the place p (Index(p)) as the number of places q ∈ P
such that q v p. The definition of Index over places induces an Index among transitions
too: For any transition t ∈ T , its index is defined as Index(t) = maxF (p,t)=I Index(p)
By convention, if there is no such place, then Index(t) = 0. Given markings M1 and
M2 and i ∈ N, we say that M1 and M2 are i-Compatible (denoted Compati(M1,M2)) if
∀p ∈ P Index(p) ≤ i =⇒ M1(p) = M2(p).

I Definition 5.2. Consider a run M2
ρ−→M1. Let t∗ = argmaxt∈ρ Index(t). We define

Subsume(M2,M1, ρ) = M2 ≤M1 ∧
(
CompatIndex(t∗)(M1,M2)

)
To understand this definition note that if ρ can be fired at M2 and reaches M1 and if
Subsume(M2,M1, ρ) is true, then at M1, ρ can be fired again. Note that in classical Petri
nets without inhibitor arcs, Subsume(M2,M1, ρ) = M2 ≤M1, and hence this is the classical
monotonicity condition. But in the presence of even a single inhibitor arc, this may differ.
Given R-HIPN N = (P, T, F,v,M0), we define the Extended Reachability Tree ERT (N) as
a directed unordered tree where the nodes are labelled by markings M : P → N, rooted at
n0 : M0 (initial marking). If M1

t−→M2 for some markings M1 and M2 and transition t ∈ T ,
then a node marked by n′ : M2 is a child of the node n : M1. Consider any node labelled M1.
If along the path from root n0 : M0 to n : M1, there is a marking n′ : M2 (n 6= n′), such that
the path from n′ : M2 to n : M1 corresponds to run ρ and Subsume(M2,M1, ρ) is true, then
M1 is made a leaf node (which we call a subsumed leaf node. Note that leaf nodes in this
tree are of two types: either leaf nodes caused by subsumption as above or leaf nodes due to
deadlock, where no transition is fireable.

I Lemma 5.3. For any R-HIPN N = (P, T, F,v,M0), ERT (N) is finite.

Proof. Assume the contrary. By Konig’s Lemma, there is an infinite path. Let the infinite
path correspond to a run ρ = M0

t1−→M1
t2−→M2 . . .

ti−→Mi . . . .
Let t ∈ T be the transition which has maximum index among the transitions which are fired
infinitely often in run ρ. Thus all transitions having higher index than Index(t) fire only
finitely many times. Let b be chosen such that ∀i ≥ b Index(ti) ≤ Index(t) (i.e b is chosen
after the last position where any transition with higher index than Index(t) fires). This exists
by the definition of t. Since t is fired infinitely often, the sequence {Mi|i > b ∧ ti+1 = t} is
an infinite sequence. As ≤ over markings is a well-quasi ordering, there exist two markings
Mi and Mj , such that both belong to the above sequence (i.e. ti+1 = tj+1 = t), Mi ≤ Mj

and i < j. Now, since ti+1 = tj+1 = t,

∀p ∈ P, Index(p) ≤ Index(t) =⇒ Mi(p) = Mj(p) = 0

for t to fire at Mi and Mj . Thus, CompatIndex(t)(Mi,Mj) is true. Note that t is the
maximum index transition fired in the run from Mi to Mj , since no higher index transition
fires after position b and j > i > b. Hence, Subsume(Mi,Mj , ρ

′) is true, where ρ′ is the run
from Mi to Mj . But then, the path would end at Mj . Contradiction. J

Thus, we have shown that the ERT is always finite. Next, we will show a crucial property of
Compati, which will allow us to check for a non-terminating run.
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I Lemma 5.4. Consider markings M1 and M2 such that M1 ≤ M2. Let i ∈ N be such
that we have Compati(M1,M2). Then for any run ρ over the set of transitions Ti = {t|t ∈
T ∧ Index(t) ≤ i}, if M1

ρ−→M ′1, then M2
ρ−→M ′2, where M ′1 ≤M ′2 and Compati(M ′1,M ′2).

Proof. We can prove this by induction. The inductive argument is provided here. We first
prove that t is firable at M2. If F (p, t) ∈ N, then M2(p) ≥ M1(p) ≥ F (p, t). If F (p, t) = I,
i.e., it is an inhibitor arc, then Index(p) ≤ Index(t) ≤ i. But now, since Compati(M1,M2)
holds and t is firable at M1, we obtain M2(p) = M1(p) = 0. Finally, if F (p, t) = R, i.e., it is
a reset arc, then there is no condition on M2(p) for t to be firable. Hence, t is firable at M2.
Now let M2

t−→M ′2. Then, for all p ∈ P , M ′2(p) = M2(p) − F (p, t) + F (t, p) and M ′1(p) =
M1(p)−F (p, t) +F (t, p). Since F (t, p) is constant and F (p, t) can depend only on number of
tokens in place p (so, if M1(p) and M2(p) were equal before firing, they remain equal now),
we obtain that Compati(M ′1,M ′2) and M ′1 ≤M ′2. J

I Lemma 5.5. R-HIPN N has a non-terminating run iff ERT (N) has a subsumed leaf node.

Proof. (i) If R-HIPN N has a non-terminating run, then ERT (N) has a subsumed leaf node.
Consider a non-terminating run. This run has a finite prefix in ERT (N). This prefix ends in
a leaf that is not a deadlock (as some transition is firable). Thus it is a subsumed leaf node.
(ii) If ERT (N) has a subsumed leaf node, then N has a non-terminating run. To see this,
consider any subsumed leaf node labelled by marking M2. Let M1 be the marking along
the path M0 to M2, and ρ be the run from M1 to M2, such that Subsume(M2,M1, ρ) is
true. Hence, we have M1

ρ−→M2. Take t∗ = argmaxt∈ρIndex(t) and i = Index(t∗). Since
Subsume(M1,M2, ρ) is true, we have M1 ≤M2 and Compati(M1,M2) is true. We also have
ρ is a run over Ti = {t|t ∈ T ∧ Index(t) ≤ i}(by definition of i).
Thus, by Lemma 5.4, we have M2

ρ−→M3, where M2 ≤ M3 and Compati(M2,M3) is true.
Thus, ρ can again be fired at M3 and so on, resulting in a non-terminating run. J

Finally, we observe that if checking Subsume(M2,M1, ρ) is also easily doable. Thus, for
any R-HIPN net, one can draw its extended reachability tree and decide the termination
problem using the ERT. This completes the proof of the theorem. We observe here that this
construction cannot be immediately lifted to checking boundedness due to the presence of
reset arcs. However, we can lift this to check for termination in HIRPN and R-HIRPN as
well as to check boundedness in HIPN.

5.2 Coverability in R-HIPN
While termination turned out to be decidable, reachability is undecidable for R-HIPN nets in
general (since it subsumes reset Petri nets). Indeed [8] show that reachability is undecidable
for Petri nets with 2 reset arcs. Using a similar strategy, in Appendix A.3, we tighten the
undecidability result to show that reachability in Petri nets with one inhibitor arc and one
reset arc is undecidable. Further, we can modify the construction presented, to show that
Deadlockfreeness in Petri nets with one reset arc and one inhibitor arc is undecidable too.
Next we turn our attention to coverability problem and show that,

I Theorem 5.6. Coverability is undecidable for Petri nets with two reset/transfer arcs and
an inhibitor arc.

The rest of this section proves the above theorem. To do this, we construct a Petri net with
two reset arcs, one inhibitor arc that simulates the two counter Minsky Machine. The Minsky
Machine M is defined as follows - It has a finite set of instructions qi, 0 ≤ i ≤ n, q0 is the
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initial state and qn is the final instruction i.e. there are no transition rules from qn. There
are two counters C1 and C2 in the machine. There are two kind of transitions.
1. INC(r,z) - Increase Cr, by 1, Go to qj . r can be 1 or 2.
2. JZDEC(r,z,l) - If Cr is zero, Go to ql, else decrease Cr by 1 and go to qj . r can be 1 or 2.

It is well known that reachability of qn in a Minsky Machine is undecidable.

qi Cr

S

qj

t0

1

1

1

1

Figure 2 Increment

We encode M into Petri net P as follows - we use places
qi, 0 ≤ i ≤ n to encode each instruction. The place qi gets a
token when we simulate instruction i in the Minsky Machine.
We use two places C1 and C2 to store the number of tokens
corresponding to the counter values in C1 and C2 in the counter
machine. We use special place S which stores the sum of C1
and C2. The adjoining figure shows construction for increment.
When qi gets a token, the transition is fired, Cr and S are
incremented by 1 and qj gets the token to proceed.
Next, to simulate decrement (along with zero check), i.e., if
Cr = 0, then q`, else qj), we introduce non-determinism in the Petri net. The gadget for
this is shown in figure 3. When we reach a decrement with zero check instruction, we
guess whether Cr is zero, and if so, fire t11 and then t3. Else we decrement it Cr by 1
and fire t2. We have two cases: Case - 1 : If Cr is actually zero, it runs correctly as t2
would not fire. The transition t3 fires and Cr remains zero. And ql gets the token. Case
- 2 : If Cr has non-zero tokens, both transitions can fire. But the runs in which t3 fires
are “wrong” runs. We call such transitions as Incorrect transitions. The crucial point is
that in runs with incorrect transitions, S is not decremented where as Cr is decremented.
Hence M(S) 6= M(C1) + M(C2) in markings reached by runs with incorrect transitions.

qi

S qi1 Cr

Sr1

qj ql

Sr2

t1

t2

t3

t11

1

1 1

1

Reset

1

1

1

1

1

1

1

1

1

Figure 3 Decrement along with zero check

Note that in any run of P , qi and only qi in
the Petri net gets a token when the instruc-
tion numbered i is being simulated. Now,
we have the following lemma which proves
the correctness of the reduction.

I Lemma 5.7. In any run of P reaching
marking M , M(S) ≥ M(C1) +M(C2) and
M(S) = M(C1) + M(C2) iff there are no
incorrect transitions.

If the Minsky Machine reaches instruction
qn, we reach the place qn state in Petri net.
But, if the Minsky Machine doesn’t reach qn,
there is a chance that we reach qn in Petri
net because of incorrect transitions. By the
above lemma, to check if there had been any incorrect transitions along the run, we just
check at the end (at qn) if M(S) = M(C1) +M(C2), which we can do using an inhibitor arc.
Thus qn+1 gets tokens iff the Minsky Machine reaches the instruction qn. Hence reaching
instruction qn in Minsky Machine is equivalent to asking if we can cover the marking in
which all places except qn+1 have 0 tokens and qn+1 has 1 token. We also note that the
above proof holds for undecidability of coverability in Petri nets with 2 transfer arcs and an
inhibitor arc. The proof of the above lemmas, the inhibitor arc construction and extension
to transfer arcs are presented in Appendix A.4. Finally, the problem of coverability in Petri
nets with 1 inhibitor arc and 1 reset arc is open.
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I Problem 1. Is coverability in Petri nets with 1 reset arc and 1 inhibitor arc decidable ?

6 Adding Transfer Arcs within and without Hierarchy

6.1 Reachability and deadlock-freeness in HTPN
We show a reduction from Petri nets with 2 (non-hierarchical) transfer arcs to HTPN
preserving reachability and deadlock-freeness. Since reachability and deadlock-freeness in
Petri nets with 2 transfer arcs are undecidable [8], they are undecidable in HTPN too.

I Theorem 6.1. Reachability and deadlock-freeness are undecidable in HTPN.

Proof. Given a Petri net with 2 transfer arcs, we will construct a HTPN such that reachability
of markings and deadlock-freeness is preserved. Let N be such a net as shown in the figure
below, with two transfer arcs, one from p1 to p3 via t1 and another from p2 to p4 via t2. t3
and t4 are representative of any other transitions to and from p1. Wlog., we assume that
there is no arc from p1 to t2. If this is not the case, we can add a place and transition in
between to create an equivalent net (while adding no deadlocked reachable marking), see
Appendix A.5. Now, the construction is shown in the diagram below.

p1

p3

t1 t3 t4

tf

p2p4

t2

tf

p1

p3

t1 t3 t4

tf

p2p4

p∗

t2

tf

p′1

t′1 t′3 t′4
tf

p′∗

t′2

tf

Six transfer arcs have not been shown in the construction above. These are the following:
From p1 to p3 through t′1.
From p1 to p′1 through t2.
From p1 to p′1 through t′2.

From p′1 to p3 through t1.
From p′1 to p1 through t2.
From p′1 to p1 through t′2.

These transfer arcs ensure hierarchy among the transfer arcs with the ordering p1 < p′1 < p2.
The dotted arc from p∗ to the upper dotted box represents a pre-arc from p∗ to every
transition in the box. Similarly, we have an arc from every transition in the box to p∗.
Similarly, we have arcs for the lower dotted box and p′∗ also. The intuitive idea behind the
construction is to represent the place p1 in the original net by two places p1 and p′1 in the
modified net. At every marking, p1 of original net is represented by one of the two places p1
or p′1 in the modified net. p′∗ and p∗ are used to keep track of which place represents p1
in current marking. Everytime transition t2 fires, the representative place swaps. Let the
original net be (P, T, F ) and the constructed net be (P ′, T ′, F ′). The initial marking M ′0 is
given by M ′0(p∗) = 1, M ′0(p′∗) = M ′0(p′1) = 0, and M ′0(p) = M0(p) for all other p ∈ P . Now,
given marking M of original net, let us define the set Sext = {AM , BM}, where,

AM (p) =


M(p) p 6∈ {p1, p

′
1, p
′
∗, p∗}

1 p = p∗

0 p ∈ {p′∗, p′1}
M(p1) p = p1

BM (p) =


M(p) p 6∈ {p1, p

′
1, p
′
∗, p∗}

1 p = p′∗

0 p ∈ {p∗, p1}
M(p1) p = p′1
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I Claim 6.1. Marking AM or BM is reachable from M ′0 in the constructed net iff marking
M is reachable from M0 in the original net.
From this claim (proof in Appendix A.5), we obtain the proof of the theorem. J

I Corollary 6.2. Coverability is undecidable in HITPN.

Proof. From Theorem 5.6, coverability is undecidable in Petri nets with two transfer arcs
and one inhibitor arc. Given such a net N , we can perform a construction similar to above,
to reduce the coverability problem in N to coverability problem in a HITPN net. J

6.2 Hardness of Termination in HITPN
Termination in HIcTPN is decidable as shown in Section 5.1. Termination in HTPN is
also decidable, as it’s known that termination in transfer Petri nets is decidable. However,
termination in HITPN which subsumes the above two problems is as hard as positivity
problem which is a long standing open problem about linear recurrent sequences([18],[17]).
We prove this by reducing positivity problem to termination in HITPN.

I Definition 6.3 (Positivity Problem). Given a matrix M ∈ Zn×n and a vector v0 ∈ Zn, is
Mkv0 ≥ 0 for all k ∈ N?

Given matrix M ∈ Zn×n and vector v0 ∈ Zn, we construct a net N ∈ HITPN such that
N terminates iff Mkv0 ≥ 0 for all k ∈ N. Consider the following while loop program
v = v0; while (v >= 0) v = Mv. Clearly, this program is non-terminating iff Mkv0 ≥ 0 for
all k. We construct a net N which simulates this linear program. N contains two phases, a
forward phase that has the effect of multiplying v by M , and a backward phase that takes
the role of assignment, i.e. assigning the new vector Mv computed in the forward phase
back to v. We also check for non-negativity in the backward phase, and design the net N to
terminate if any component goes negative.
Forward Phase:The construction of the forward phase petri net for a general matrix is ex-
plained below. An example of the construction is shown in Figure 4 for the adjoining matrixM :

M =

 1 −4 7
2 −5 −8
−3 −6 9

We have n places, u1, u2, . . . , un, corresponding to the n components
of vector v. Each place ui is connected to a transition ti with a pre-
arc weight of 1. Each ti also has a post-arc to a new place uij for
1 ≤ i, j ≤ n with a weight |Mji|, i.e. the absolute value of the (j, i)th entry of matrix
M , corresponding to vi’s contribution to the new value of vj . Finally, we have places
u′1, u

′
2, . . . , u

′
n, corresponding to the n components of the new value of vector v. Each place

u′j is connected to place uij by a transition tij , with both the arcs weighted 1. If Mji ≥ 0,
then uij has a pre-arc to tij and tij has a post-arc to u′j . This has the effect of adding the
value of uij to u′j . On the other hand, if Mji < 0, then both uij and u′j have pre-arcs to tij ,
which has the effect of subtracting value of uij from u′j .
This simulates the forward phase, in effect multiplying the vector v, represented by ui’s in
Figure 4 by M and storing the new components in u′i’s. To simulate the while loop program,
we need to copy back each u′i to ui, while performing the check that each u′i is non-negative.
Backward phase : The copy back in backward phase (Fig. 5) is demonstrated by a
transfer arc from u′i to ui via transition tR. To ensure that the backward phase starts only
after the forward phase completes, (else, partially computed values would be copied back),
we introduce a new place G. G stores as many tokens as the total number of times each
transition tij will fire and has a pre-arc weighted 1 to each transition tij . The emptiness of
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u1

u2

u3

t1

t2

t3

u11

u12

u13

u21

u22

u23

u31

u32

u33

t11

t12

t13

t21

t22

t23

t31

t32

t33

u′1

u′2

u′3

G′G
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1

1
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1
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1

1

1

1

1

1

1

1
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1

1

1

1

1

1

1

1
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15
24
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1
1
1
1
1
1
1
1

1

G1 G2 G3

Figure 4 Forward phase

u1

u2

u3

u′1

u′2

u′3

G′ G

tR

Figure 5 Backward phase: Arc from G to tR

is an inhibitor arc, rest are transfer arcs

G ensures that each tij has completed its firings in the current loop iteration. An inhibitor
arc from G to tR ensures that the forward phase completes before tR fires. We introduce
a place G′ which computes the initial value of G for next loop. G′ has an arc connected
to tij with weight

∑n
k=1 |Mkj |. If u′j has a pre-arc to tij , then G′ has a pre-arc to tij while

if tij has a post-arc to u′j , then it also has a post-arc to G′. Finally, there is a transfer
arc from G′ to G via tR. Once the forward phase finishes, the place G is empty, hence,
the only transition that can fire is tR, which completes the backward phase in one firing.
Combining the forward and backward phases, we obtain a net N which simulates the while
loop program. The initial marking assigns (v0)i, i.e. the i-th component of vector v0 to place
ui, and

∑
1≤i≤n(

∑
1≤j≤n |Mji|)(v0)i tokens to G, while all other places are assigned 0 tokens.

The below lemma (see appendix A.6) relates termination of N with the Positivity problem.

I Lemma 6.4. There exists a non-terminating run in N iff Mkv0 ≥ 0 for all k ∈ N.

From the above lemma, we derive the following theorem. Note that as we have only one
transition with inhibitor and transfer arcs, N is a T-HIPN as well as HITPN.

I Theorem 6.5. Termination in HITPN as well as T-HIPN is as hard as positivity problem.

7 Conclusion

In this paper, we investigate the effect of hierarchy on Petri nets extended with not only
inhibitor arcs (as classically considered), but also reset and transfer arcs. For four of the
standard decision problems, we settled the decidability for almost all these extensions using
different reductions and proof techniques. As future work, we are interested in questions of
boundedness and place-boundedness in these extended classes. We would also like to explore
further links to problems on linear recurrences. We leave open one technical question of
coverability for Petri nets with 1 reset and 1 inhibitor arc (without hierarchy).
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A Appendix

A.1 Reduction from HIRPN to HIPN
We present a detailed proof of Lemma 4.1 and Theorem 1.8.

I Lemma 1.1. The net N ′ constructed in the proof of Lemma 4.1 is in the class HIRPNk−1.

Proof. Since the reset arc from pR to t in N does not exist in the net N ′, we have at least
one less reset arc than N in N ′. Since N ∈ HIRPNk, we get that N has at most k reset arcs.
Hence, N ′ has at most k − 1 reset arcs. We further need to establish that the hierarchy is
preserved in N ′. Consider N ′ in Figure 1. Since we only add a simple pre-arc from p∗ to the
transitions in the rest of the net, we preserve the hierarchy in the rest of the net. Also, since
tS and tR only have simple pre-arcs, the hierarchy is preserved at both these transitions.
Finally, since in the original net N , we have special arcs from pI and pR to t which maintain
the hierarchy, this hierarchy should also be maintained at transition tI which also has special
arcs only from pI and pR. J

I Lemma 1.2. For any marking M ′ reachable from M ′0 in N ′, M ′(p∗) +M ′(p∗t ) = 1.

Proof. A firing of transition tS will remove one token p∗ and add a token to p∗t , while a
firing of tI will remove a token from p∗t and add a token to p∗. Since firing tR will replenish
the removed token from p∗t and firing a transition from the rest of the net will replenish the
removed token from p∗, the sum of tokens in p∗ and p∗t will remain conserved. Since this
sum is 1 in the initial marking, M ′(p∗) +M ′(p∗t ) = 1. J

The main role of p∗ is to act as a driver for the rest of net N ′ while the role of p∗t is to act
as a driver for each transition tR that arises from a reset arc to t in the original transition.
Lemma 1.2 shows that either p∗ has 1 token, in which case the transitions in the rest of net
are firable, or p∗t has 1 token, in which case each transition tR is firable.

I Lemma 1.3. Let there be n tokens in place pR just before t fires in net N . Then, one
firing of t in N is equivalent to the firing sequence containing one firing of tS, n firings of
tR and one firing of tI in that order in the net N ′.

Proof. Let M1
t−→M2 in net N .

Since t is firable at M1, M1(pS) ≥ 1 and M1(pI) = 0. Consider M ′1 = f(M1). Clearly,
M ′1(p∗) = 1 (by definition of f). Hence, tS is firable in N ′.
Once tS fires in N , p∗ becomes empty, hence the only firable transitions are tR and tI . If
M1(pR) = n > 0, then tI cannot fire as it has an inhibitor arc from pR. Hence, the only
transition that can fire until pR is empty is tR. Essentially, the n firings of tR empty the
place pR having the same effect on it as transition t in net N .
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Figure 6 Transformation from N ∈ HIRcTPNk (left) to N ′ ∈ HIRcTPNk−1 (right)

Once pR is empty, tI is the only transition that can fire, emptying p∗t and putting 1 token
back in p∗, signaling that the transitions in rest of net can fire. Once tI fires, the marking
in N ′ is M ′2 = f(M2).

Hence, f(M1) tS ·(tR)n·tI−−−−−−−→ f(M2) in the net N ′. J

This will serve as the basis for the HIRPNk → HIRPNk−1 direction of the bisimulation.

I Lemma 1.4 (Forward Direction). For any markings M1 and M2 in N such that M1
µ−→M2,

where µ is a sequence of transitions, there exists µ′ such that f(M1) µ′−→ f(M2) in net N ′.

Proof. µ′ can be constructed from µ by replacing each occurrence of t in µ by its equivalent
sequence of transitions in N ′ as demonstrated in Lemma 1.3. J

I Lemma 1.5. Consider markingsM ′1 andM ′2 such thatM ′1
µ′−→M ′2 andM ′1(p∗) = M ′2(p∗) =

1 and M ′1(pR) = n in the net N ′. If µ′ starts with tS, then tS is followed by n firings of tR,
followed by one firing of tI in µ′.

Proof. Firing of tS places one token in p∗t guaranteeing the sequence above as argued in
Lemma 1.3. J

I Lemma 1.6 (Backward Direction). For any markings M ′1 = f(M1) and M ′2 = f(M2) in
N ′ such that M ′1

µ′−→M ′2, where µ′ is a sequence of transitions, there exists µ such that
M1

µ−→M2 in net N .

Proof. µ is constructed by replacing every occurrence of tS · (tR)n · tI by t. The existence of
this occurrence is guaranteed by Lemma 1.5. J

This concludes the proof of Lemma 4.1, establishing the relation between HIRPNk and
HIRPNk−1 by construction.

I Lemma 1.7. Reachability, coverability and termination problems in HIRPNk are reducible
to their corresponding versions in HIRPNk−1.

Finally, starting from an arbitrary net N ∈ HIRPNk. We apply Lemma 4.1 recursively for
each transition connected to a reset arc. The reduction follows from applying Lemma 1.7
successively.
The construction for constrained transfer arcs is shown in Figure 6. Note that the constrained
property of transfer arcs is required here, since if we had transfer to a place with an inhibitor
arc to the same transition, then in the constructed net, tI cannot be fired, since we would
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have added tokens through tR. Hence, we can redo the above formal proof and thus, we
obtain the following theorem.

I Theorem 1.8. Reachability, coverability and termination problems in HIRPN and HIRcTPN
are reducible to their corresponding versions in HIPN.

A.2 Deadlockfreeness in HIRPN
I Lemma 1.9. For any clause C, [∀i∀p ∈ BCi ,M(p) = i and ∀p ∈ AC ,M(p) ≥ 1] iff clause
C is true at marking M .

Proof. If Clause C is true at marking M, by definition of Exacti and AtLeast, the result
follows.
If [∀i∀p ∈ BCi ,M(p) = i and ∀p ∈ AC ,M(p) ≥ 1], then all literals of the form Exacti(p)
in SC are true by definition of BCi . For all literals of the form AtLeast(p) in SC , we have
p ∈ AC

⋃
i≥1 B

C
i by definition of AC . Hence, p ∈ AC or p ∈ BCi for some i ≥ 1. If p ∈ AC ,

then M(p) ≥ 1. If p ∈ Bi, i ≥ 1, then M(p) = i ≥ 1. Thus AtLeast(p) is true. Hence, clause
C is true at marking M . J

I Lemma 1.10. Consider any run ρ over T . ρ is a run in the original net from M0 to M ,
iff ρ is a run in the constructed net from Mext

0 to Mext

Proof. Forward direction is trivial, since the constructed net has all transitions present in
the original net unmodified.
For the backward direction, since Mext(p∗) = 0, for any clause C, transition tC was never
fired in the run, since otherwise, a token would be added in p∗ which can’t be removed
by firing any other transition. Further, no other newly added transition was fired, since
Mext(pC) = 0 and all other new transitions add a token to pC , which can be emptied only
by tC , which never fired. Hence, only transitions in the original net fired in the run. Thus,
the run is a valid run in the original net too. J

I Lemma 1.11. Let marking M be a deadlocked marking reachable from initial marking M0
in original net. Then, marking M ′, where

M ′(p) =
{

1 p = p∗

0 p 6= p∗

is reachable in constructed net.

Proof. Since M is a deadlocked marking, Deadlock(M) is true. This implies atleast one
clause in the DNF is true. Let Clause C be any one of those clauses.
Let ρ be the run from M0 to M in the original net. By Lemma 1.10, ρ is a run from Mext

0
to Mext in the constructed net. Since M satisfies Clause C, we have ∀i∀p ∈ BCi M(p) = i

and ∀p ∈ ACM(p) ≥ 1, by Lemma 1.9. By definition of Mext, ∀i∀p ∈ BCi M
ext(p) = i

and ∀p ∈ ACMext(p) ≥ 1 (since AC and Bi are subsets of P ). Let Mext qC−−→M1. Then,
∀i∀p ∈ BCi M1(p) = i and ∀p ∈ ACM1(p) ≥ 1. Consider the run defined as

ρ′ = ρ.qC . ·
∀jpi∈BC

j

(ri). ·
pi∈AC

(tM1(pi)−1
i∗ ti). ·

pi /∈AC∪
⋃

j
BC

j

(sM(pi)
i ).tC

The marking reached by ρ is Mext. The marking reached by ρqC is M1. Now, ·∀jpi∈BC
j

(ri)
removes i tokens in all places pi ∈ BCi , thus emptying the place and putting one token in pi∗.
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·pi∈AC (tM1(pi)−1
i∗ ti) removes all tokens from any place pi ∈ AC and puts one token in pi∗.

·pi /∈AC∪
⋃

j
BC

j
(sM(pi)
i ) removes all tokens from any place p 6∈ AC ∪

⋃
iB

C
i . In the resultant

marking, tC is firable. Firing tC removes all tokens in all other places, and puts one token in
p∗. Thus, ρ′ is a run in the constructed net, from Mext

0 to M ′. Hence proved. J

I Lemma 1.12. Let marking M be reachable from Mext
0 in the constructed net. Then,

M(p∗∗) +M(p∗) + Σcheck transition tCM(pC) = 1

Proof. Let ρ be the run from Mext
0 to M . We shall prove this result by induction over the

length |ρ|. If |rho| = 0, then M = Mext
0 are the result follows. Assume the statement to

be true for |rho| = k. Consider any ρ of length k + 1. Then, ρ = µt, where µ is a run of
length k and t ∈ T ′. Let Mext

0
µ−→M1

t−→M . By induction hypothesis, M1(p∗∗) +M1(p∗ +
Σcheck transition tCM1(pC) = 1.
If t = qC , then M1(p∗∗) = M(p∗∗),M1(p∗)− 1 = M(p∗) and 1 + ΣtCM1(pC) = ΣtCM(pC).
If t = tC is a check transition, 1+M1(p∗∗) = M(p∗∗),M1(p∗) = M(p∗) and −1+ΣtCM1(pC) =
ΣtCM(pC).
Otherwise, M1(p∗∗) = M(p∗∗),M1(p∗) = M(p∗) and ΣtCM1(pC) = ΣtCM(pC).
Thus for all t ∈ T ′, the summation remains constant. Hence proved. J

I Lemma 1.13. Run ρ is a run from Mext
0 to M , where M(p∗) = 1 iff ρ = µtC , where tC

is a check transition.

Proof. Consider a run ρ, such that no check transition tC is fired along ρ. We shall prove by
induction over length of ρ that if Mext

0
ρ−→M , then M(p∗) 6= 1.

If |ρ| = 0, then marking reached by ρ is Mext
0 , and by definition, Mext

0 (p∗) 6= 1.
Assume it true for all ρ of length k, such that tC is not fired in ρ for all check transitions tC .
Consider any ρ of length k + 1 such that no check transition is fired in it. Let ρ = µt,
where µ is of length k and has no tC fired in it. Hence, by induction hypothesis, if
Mext

0
µ−→M1, then M1(p∗) 6= 1. Since t 6= tC for all clauses C, hence, if M1

t−→M2, then
M2(p∗) = M1(p∗) 6= 1 (Since only check transitions have pre-arc or post-arc to p∗). But
Mext

0
µ−→M1

t−→M2 =⇒ Mext
0

ρ−→M2. Hence proved.
Hence, taking contrapositive of this statement, we get, If run ρ is a run from Mext

0 to M ,
where M(p∗) = 1, then ρ = µtCµ

′, where tC is a check transition. Now, we notice that
µ′ must be empty. This is because, if Mext

0
µtC−−→M3, then M3(p∗) = 1. By Lemma 1.12,

M3(p∗∗) = M3(pC) = 0 for all clauses C. Hence, in marking M3, no transition is firable in
the constructed net. Hence, µ′ must be the empty run. Thus, we have proved the forward
direction of the claim.
The other direction is trivial. J

I Lemma 1.14. If run ρ is a run from Mext
0 to M , where M(pC) = 1, then qC fires in run

ρ.

Proof. Consider a run ρ, such that no transition qC is fired along ρ. We shall prove by
induction over length of ρ that if Mext

0
ρ−→M , then M(pC) = 0.

If |ρ| = 0, then marking reached by ρ is Mext
0 , and by definition, Mext

0 (p∗) = 0.
Assume it true for all ρ of length k, such that qC is not fired in ρ.
Consider any ρ of length k + 1 such that transition qC is not fired in it. Let ρ = µt, where
µ is of length k and has no qC fired in it. Hence, by induction hypothesis, if Mext

0
µ−→M1,

then M1(p∗) = 0. Since t 6= qC , hence, if M1
t−→M2, then M2(p∗) = M1(p∗) = 0 (Since
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only transition qC can add tokens to pC). But Mext
0

µ−→M1
t−→M2 =⇒ Mext

0
ρ−→M2. Hence

proved.
J

I Lemma 1.15. If transition qC fires in a run ρ, then the ρ = µqCµ
′, where µ′ is a run over

Clause C Transitions and µ is a run over T .

Proof. Let Mext
0

µ−→M1
qC−−→M2

µ′−→M3.
Firstly, we shall prove by induction on length of run ρ that if ρ is a run from M2 from M ,
then M(pC) +M(p∗) = 1. If |ρ| = 0, then M = M2. Since qC has a post-arc of weight 1 to
pC , M(pC) = M2(pC) = 1 and M(p∗) = M2(p∗) = 0. Hence, the hypothesis holds.
Assume true for all |ρ| = k.
Consider µ of length k + 1. Let µ = ρt, where |ρ| = k and t ∈ T ′. By induction hypothesis,
if M2

ρ−→M4
t−→M5, then M4(pC) +M4(p∗) = 1.

If t = tC , thenM5(pC) = M4(pC)−1 andM5(pC) = M4(pC)+1 Otherwise,M5(pC) = M4(pC)
and M5(pC) = M4(pC) Hence, the sum remains same. Hence proved.
Now, consider any marking M reachable from M2. Then, M(pC) +M(p∗) = 1. If M(p∗) = 1,
by Lemma 1.12, no transition can be fired at M . Otherwise, M(pC) = 1. Then, Clause
C Transitions are firable. Hence, from any marking reachable from M2, only Clause C
Transitions can be fired. This implies µ′ must be a run over Clause C Transitions.
Now, we need to prove that µ must be a run over T . Assume that some t 6∈ T fires in µ at
marking M . Then, we must have M(pC′) = 1 for some clause C ′. Then, transition qC′ must
have fired in µ by Lemma 1.14. But, then, after qC′ fired, qC 6∈ Clause C ′ Transitions fired.
Contradiction. Hence Proved. J

I Lemma 1.16. Consider any marking M reachable from marking Mext
0 , where M(pC) = 1.

Then, for any marking M ′ reachable from M ,s.t. M ′(pC) = 1,
∀i∀pj ∈ BCi M ′(pj) + i ∗M ′(pj∗) = M(pj) + i ∗M(pj∗)
∀pi ∈ ACM ′(pi) +M ′(pi∗) ≤M(pi) +M(pi∗)

Proof. Given, M(pC) = 1. By Lemma 1.14, qC must fire in the run ρ from Mext
0 to M . By

Lemma 1.15, the run from M to M ′, say µ is over Clause C Transitions.
Since M ′(pC) = 1, tC is not fired in µ by Lemma 1.12 and Lemma 1.13. Hence, the only
transitions firing in µ are ri, si, ti, ti∗. Both the results can be proved by induction over the
length of ρ, similar to Lemma 1.12. J

I Lemma 1.17. Let marking M ′, as defined in Claim 1.11, be reachable from Mext
0 in the

constructed net. Then, there exists a marking M reachable from M0 in the original net such
that marking M satisfies Deadlock(M).

Proof. Let ρ be the run from Mext
0 to M ′ in the constructed net. Since M ′(p∗) = 1, by

Lemma 1.13, ρ = µtC for some check transition tC . Let Mext
0

µ−→M1
tC−→M ′. Then, by

definition of the constructed net, ∀pi ∈ AC ,M1(pi∗) = 1 and ∀j∀i ∈ BCj ,M1(pi∗) = 1 and
∀p ∈ P,M1(p) = 0 and M1(pC) = 1 (for tC to be firable at M1). By Lemma 1.14 and 1.15,
µ = αqCβ, where β is a word over Clause C Transitions and α is a word over T . Consider
Mext

0
α−→M2

qC−−→M3
β−→M1

tC−→M ′. We have, ∀i,M2(pi∗) = 0 since transitions t ∈ T don’t
add any tokens to pi∗. Hence, ∀i,M3(pi∗) = 0 and M3(pC) = 1. By Lemma 1.16,
∀i∀pj ∈ BCi M1(pj) + i ∗M1(pj∗) = M3(pj) + i ∗M3(pj∗)
∀pi ∈ ACM1(pi) +M1(pi∗) ≤M3(pi) +M3(pi∗)

This further implies,
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p3

t1 t2 t3

1

1

p1 p2 p′2

p3

t1 t2 t3

1 1 1 11 rt

1

∀i∀pj ∈ BCi i = M3(pj)
∀pi ∈ AC1 ≤M3(pi)

Thus, M3 satisfies clause C by Lemma 1.9. Hence, M3 satisfies Deadlock(M). This further
implies that M2 satisfies Deadlock(M) (since M3(p) = M2(p)∀p ∈ P ) Also, M2 = Mext

org for
some Morg, since M2(p∗∗) = 1. Then, by Lemma 1.10, Morg is reachable from M0 in the
original net and also satisfied Deadlock(M). Hence, Morg is a deadlocked marking reachable
from M0. Hence proved. J

This proves that Deadlockfreeness of the original HIRPN net is equivalent to reachability of
marking M ′ in the constructed HIRPN net.

A.3 Reachability in Petri nets with 1 reset arc and 1 inhibitor arc
Here, we present a reduction from Reachability in Petri Nets with two inhibitor arcs to Petri
Nets with one reset and one inhibitor arc.
The construction is shown in the diagram alongside.
In the construction, for one place (place p2 in the diagram) from which we have an inhibitor
arc, we create a copy place (place p′2 in diagram). In the initial marking, the copy place has
equal number of tokens as the original place. The copy place has the same set of arcs as the
original place, except for the inhibitor arc. Also, the inhibitor arc of original place is now
replaced by a reset arc. The intuitive idea is that the if reset arc is fired when the original
place has non-zero number of tokens, then the number of tokens in original place and copy
place will not be equal. This can be checked by reachability.
For convenience, assume that the two inhibitor arcs are, one from place p2 to transition t1,
and another, from any place to transition t4. Let the original net be (P, T, F ). Then the
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constructed net is (P ′ = P ∪ {p′2}, T, F ′). The flow function is

F ′(p, t) =



R p = p2 ∧ t = t1

0 p = p′2 ∧ t = t1

0 p = p′2 ∧ t = t4 ∧ F (p2, t4) = I (i.e. both inh. arcs from p2)
F (p2, t) p = p′2 ∧ F (p2, t) ∈ N
F (p, t) otherwise

∀p ∈ P F ′(t, p) = F (t, p)

F ′(t, p′2) = F (t, p2)

Note that by construction, ∀t ∈ T F ′(p′2, t) ∈ N, and ∀t ∈ T F ′(p′2, t) > 0 =⇒ F ′(p′2, t) =
F (p2, t).
For convenience, define for any marking M in original net, Mext is a run in the constructed
net, where

Mext(p′2) = M(p2) ∧ ∀p ∈ P Mext(p) = M(p)

The initial marking in the constructed net is Mext
0 , where M0 is the initial marking of the

original net.

I Lemma 1.18. Consider a marking M1 of the constructed net, such that M1(p2) < M1(p′2).
Then, for all markings M2 reachable from M1, M2(p2) < M2(p′2).

Proof. Let the run from M1 to M2 be ρ.
We shall prove this result by induction over length of ρ. If |ρ| = 0, then M2 = M1 and hence
M2(p2) = M1(p2) < M1(p′2) = M2(p′2). Assume the statement to be true for all runs µ of
size k.
Consider a run ρ of size k + 1. Let ρ = µt where µ is a run of length k and t ∈ T . Also, let
M1

µ−→M3
t−→M2.

By induction hypothesis, we have M3(p2) < M3(p′2).
If F ′(p2, t) ∈ N, then M2(p2) −M3(p2) = M2(p′2) −M3(p′2) = F ′(t, p2) − F ′(p2, t). Hence,
M2(p′2) > M2(p2).
If F ′(p2, t) = I, (i.e. t = t4 and both inhibitor arcs from p2 in original net), then M2(p2) =
F ′(t, p2) and M2(p′2) = M3(p′2) + F ′(t, p2) > M2(p2).
If F ′(p2, t) = R, (i.e. t = t1), then M2(p2) = F ′(t, p2) and M2(p′2) = M3(p′2) + F ′(t, p2) >
M2(p2). Thus, in all cases, we have M2(p2) ≤M2(p′2).

J

I Lemma 1.19. For all reachable markings M1, we have M1(p2) ≤M1(p′2).

Proof. The proof is similar to that of Lemma 1.18. J

I Lemma 1.20. Reachability in Inhibitor Petri Nets is reducible to Reachability in Reset
Petri Nets. Also, this reduction conserves the hierarchy in the nets.

Proof. We shall prove that reachability of a marking M in the original net is equivalent to
the reachability of marking M ′ = Mext.
Let the marking M be reachable in the original net. Let the corresponding run be ρ.
Consider the run in the constructed net. We claim that the run is valid and the marking
reached is M ′.
We shall show this by induction over length of the run.
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If |ρ| = 0, then M = M0 and hence M ′ = Mext
0 . Then ρ is a run from Mext

0 to M ′.
Assume the statement to be true for all runs µ of length k.
Consider any run ρ of length k+ 1. Let ρ = µt, where µ is a run of length k and t ∈ T . Also,
let M0

µ−→M1
t−→M .

By induction hypothesis, we have in the constructed net, Mext
0

µ−→Mext
1 . Given that

transition t fires at M1. Thus, we have, ∀p ∈ P , if F (p, t) ∈ N, then M1(p) > F (p, t), and if
F (p, t) = I, then M1(p) = 0.
Consider any p ∈ P ∪ {p′2}.
If t 6= t1, then ∀p ∈ P F ′(p, t) = F (p, t) by definition, and hence, Mext

1 (p) =
M1(p) > F (p, t) = F ′(p, t). Also, F ′(p′2, t) ∈ N by construction. If F ′(p′2, t) > 0, then
F ′(p′2, t) = F (p2, t), by construction. Now, by Lemma 1.19, Mext

1 (p′2) ≥ Mext
1 (p2) =

M1(p2) ≥ F (p2, t) = F ′(p′2, t). Hence t is firable at Mext
1 .

If t = t1, then F ′(p2, t) = R,F ′(p′2, t) = 0 and ∀p ∈ P − {p2} F ′(p, t) = F (p, t). Again, t is
firable at Mext

1 .
Hence t is firable at marking Mext

1 . Let Mext
1

t−→M ′.

We already know that M1
t−→M . We now need to prove that M ′ = Mext.

If t 6= t1:
∀p ∈ P M ′(p) = Mext

1 (p)− F ′(p, t) + F ′(t, p) = M1(p)− F (p, t) + F (t, p) = M(p)
M ′(p′2) = Mext

1 (p′2)− F ′(p′2, t) + F ′(t, p′2) = M1(p2)− F (p2, t) + F (t, p2) = M(p2)
Thus, M ′ = Mext

If t = t1:
∀p ∈ P−{p2}M ′(p) = Mext

1 (p)−F ′(p, t)+F ′(t, p) = M1(p)−F (p, t)+F (t, p) = M(p)
M1(p2) = 0 for t1 to be firable at M1
Then, M ′(p2) = F ′(t1, p2) = M1(p2) + F ′(t1, p2) = M1(p2) + F (t1, p2) = M(p2)
M ′(p2) = Mext

1 (p′2) + F ′(t1, p′2) = M1(p2) + F (t1, p2) = M(p2)
Thus, M ′ = Mext

Hence proved.

Let the marking M ′ be reachable in the modified net. Thus, there exists a run ρ

from initial marking Mext
0 to M ′.

Claim, run ρ is a valid run in the original net from M0 to M .
We prove this by induction over length of ρ.
If |ρ| = 0, then M ′ = Mext

0 , and then M = M0 and hence ρ is a run from M0 to M .
Assume the statement to be true for all runs µ of length k.
Consider any run ρ of length k + 1. Let ρ = µt for µ a run of length k, and t ∈ T . Also, let
Mext

0
µ−→M ′1

t−→Mext.
From Lemma 1.19 and 1.18, we conclude that for all p ∈ P , M ′1(p2) = M ′1(p′2). Thus,
M ′1 = Mext

1 for some marking M1. Also, if t = t1, then M1(p2) = 0. Else, the marking
reached on firing t cannot be Mext (Since Mext(p′2) 6= Mext(p2) as we lose tokens from p2
on firing t1).
By induction hypothesis, µ is a run from M0 to M1.
Also, F (p, t) = I implies M1(p) = 0 (If (p, t) = (p2, t1), then discussed above, and otherwise,
M1(p) = Mext

1 (p) = 0 since F ′(p, t) = F (p, t) = I and t is firable).
If F (p, t) ∈ N, then F ′(p, t) ≤Mext

1 (p). Therefore, F (p, t) ≤M1(p).
Hence, t can be fired at marking M1. Let M1

t−→M∗.
Now, we need only prove that M∗ = M . This is easy to see, as the flow relation is unchanged
for the the set of places P . M∗(p) = M1(p)−F (p, t)+F (t, p) = Mext

1 (p)−F ′(p, t)+F ′(t, p) =
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Mext(p) = M(p).
Hence, M∗ = M . J

This completes the proof.

I Theorem 1.21. Reachability in Petrinets with 1 inhibitor arc and 1 reset arc is undecidable

This subsection proved that reachability in undecidable in Petri nets with 1 inhibitor arc
and 1 reset arc. This fixes the decidability frontier perfectly. While reachability in Petri nets
with one inhibitor arc and Petri nets with one reset arc are decidable, reachability in Petri
nets with one inhibitor arc and one reset arc is undecidable.
We can further provide a reduction from Deadlockfreeness in Petri nets with two inhibitor
arcs (from two different places) to deadlockfreeness in Petri nets with one reset arc
and hierarchical inhibitor arcs. For this, we have two copy places, p′2 and p′′2 , instead
of one (flow relation is same for both copy places). To above construction (call it N),
we add a place p∗, which has a pre-arc and post-arc to all transitions in N. We add
another place p∗∗ and a transition t∗, with pre-place as p∗ and post-place as p∗∗ with
weight of all arcs as 1. For every transition t in N, we add a new transition t′, such that
F (t′, p2) = F (t′, p′2) = F (p2, t

′) = F (p′2, t′) = 0 ∧ ∀p 6∈ {p2, p
′
2} F (t′, p) = F (p, t′) = F (p, t)

(if F (p, t′) 6∈ N then F (t′, p) = 0). We add two more transitions, say s∗ and r∗, where s∗ has
a pre-arc from p2, p′2 and p∗∗ each of weight 1, and a post-arc of weight 1 to p∗∗. Thus,
s∗ just empties one token each from p2 and p′2 when p∗∗ has a token. Transition r∗ has a
pre-arc from p′2 and p∗∗ and post-arcs to p′2 and p∗∗.
Clearly, if a deadlocked marking is reachable in original net, then in the constructed net, one
can reach that marking, then fire t∗, and empty p′2 using s∗. Now, no transition is firable,
and we reach a deadlocked marking in the constructed net.
Conversely, if a deadlocked marking is reached in constructed net, then we must have a
token in p∗∗ and t∗ has fired in the run (say the run is µt∗µ′) (else, there is a token in p∗
and t∗ is firable). This implies that p′2 has no tokens, which means number of tokens in
p2 (which must be lesser than number of tokens in p′2 by Lemma 1.18 above), must have 0
tokens, implying that t1 was never fired when p2 had non-zero tokens (By Lemma 1.19) and
number of tokens in p′′2 and in p2 are equal before t∗ fired. Since none of the other added
transitions is firable, though number of tokens in p′′2 is equal to number of tokens in p2, the
marking reached by µ in original net is in deadlock.

A.4 Coverability in R-HIPN
I Lemma 1.22. The place qi and only qi in the Petri net gets a token when the instruction
numbered i is being simulated.

Proof. The proof of this property of the run in the Petri net is by induction on the number
of instructions simulated so far.
Base Case We start the Petri net with one token in q0 and no tokens in all other places.
So, when the first instruction is simulated, we have a single token in q0 and no tokens in any
other qi
Induction Hypothesis Assume that when we are simulating the kth instruction of two
counter machine which corresponds to instruction i and hence we have a token in qi.
Inductive Proof Now, consider the instruction number k + 1. The instruction can be of
two types.
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1. INC instruction - From our construction, only one transition can fire and when it fires, qi
becomes empty and qj gets the token.

2. JZDEC instruction - From our construction, when qi gets a token, the place Sr1 gets a
token. Now, two transitions can fire. Both of them use Sr1. Hence, only one of them can
fire. As both of them use qi1, it gets empty after the next transition. Hence, all other
places in the net stay empty.

J

I Lemma 1.23. In any reachable marking M , M(S) ≥ M(C1) + M(C2) and M(S) =
M(C1) +M(C2) iff there are no incorrect transitions fired in the run to M

Proof. Consider f = M(S) −M(C1) −M(C2). If the transition is not incorrect, then f

remains the same. Because, if S is incremented, C1 or C2 is incremented. Same is the case
for decrement operation. But, if the transition is incorrect, S is unchanged while C1 or C2
decreases. So, f increases. Initially, S, C1 and C2 are empty, f is zero. We prove that f ≥ 0

Case 1a. Cr is non empty and the token correctly goes to place qj In this case, both S
and Cr are decremented by 1. So, f remains the same.

Case 1b. Cr is non empty and the token incorrectly goes to place ql In this case, Cr is
emptied while S remains the same. Thus, f increases.

Case 2a.Cr is empty and the token goes to place qj This case is not possible as the
transition on the left (Guessing Cr is non empty) can not fire with Cr being empty.

Case 2b. Cr is empty and the token correctly goes to place ql In this case, first Sr1 gets
the token, the reset arc transition fires. Sr2 gets the token. Now, the transition that uses
it fires, thus emptying qi1. The token is present only in place ql. f doesn’t change as the
number of tokens in S and Cr remain the same.

Notice that f remains same in all the cases except in 1b where it’s increased. This proves
the lemma. J

A.4.1 Checking for Incorrect Transitions

To check if M(S) = M(C1) +M(C2), we do three steps. As a first step, We divide qn into
three places qn1, qn2 and qn3.

Step - 1 : We transfer all the tokens from C1 to C2.
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Step - 2 : Remove M(C2) number of tokens from S.

Step - 3 : Now, all that remains to be checked is whether S is empty or not. This can be
done with an inhibitor arc.

A.4.2 Transfer Arcs and Place reachability

The above proof works for 2 transfer arcs + 1 inhibitor arcs as well. We replace reset arc
with transfer arc from Cr to a dump place. Hence, Coverability in a Petri net with two
transfer arcs and one inhibitor arc is undecidable.
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Decidability of Coverability in Petri nets with 1 reset arc and 1 inhibitor arc is still open.
Similarly, deadlockfreeness in Petri nets with 1 reset arc and 1 inhibitor arc is open. In
summary, when we add reset arcs without hierarchy to HIPN, termination remains decidable,
while reachability, deadlockfreeness and coverability become undecidable.

A.5 Reachability in HTPN
The construction discussed in 6.1 requires that there is no pre-arc from p1 to t2. Even if this
is not the case, we can construct an equivalent petri net, with this property as shown in the
following construction.

p2

p1

p4

p5
t2

tf

p1
t2a p#

p$ p2 p4

p5
t2b

tf

Additionally, the place p$ has a pre-arc and post-arc to every transition other than
t2. The above two nets are equivalent, and the right net has no newly introduced deadlocked
reachable marking too.

I Lemma 1.24. For any reachable marking M , we have M(p∗) = 0 =⇒ M(p1) = 0.
Similarly, M(p′∗) = 0 =⇒ M(p′1) = 0
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Proof. This can be shown by induction over the length of run ρ to M from M ′0. J

I Lemma 1.25. If marking M is reachable from M0 in the original net, then AM or BM is
reachable from M ′0.

Proof. Let ρ be a run from M0 to M in the original net.
We shall prove by induction over the length of ρ. If |ρ| = 0, then ρ is a run in the constructed
net from M ′0 to AM .
Assume that the statement is true for all |ρ| = k.
Consider any run ρ of length k + 1. Let ρ = µt where µ is a run of length k and t ∈ T . Also,
let M0

µ−→M1
t−→M .

By induction hypothesis, either AM1 or BM1 is reachable from M ′0.
Without loss of generality, assume AM1 is reachable.
If t 6= t2, then, firstly, transition t is firable at AM1 , by definition of AM1 , since the pre-places
of t in have equal number of tokens as in the marking M1, where it is firable.
Let AM1

t−→M ′. Now, notice that M ′(p∗) = 1, M ′(p′1) = M ′(p′∗) = 0 and for all other places,
we have M ′(p) = AM1(p) − F (p, t) + F (t, p) = M1(p) − F (p, t) + F (t, p) = M(p). Hence,
M ′ = AM .
If t = t2, then, again, transition t is firable at AM1 , by definition of AM1 .
Let AM1

t−→M ′. Now, notice that M ′(p′∗) = 1, M ′(p1) = M ′(p∗) = 0 and for all other places
except p′1, we have M ′(p) = AM1(p)− F (p, t) + F (t, p) = M1(p)− F (p, t) + F (t, p) = M(p).
Also, M ′(p′1) = AM1(p1) = M1(p1) = M(p1). Hence, M ′ = BM .
Hence proved. J

I Lemma 1.26. If marking AM or BM is reachable from M ′0 in the constructed net, then
marking M is reachable from M0

Proof. We shall prove this by induction over length of the run ρ from M ′0 to AM or BM .
If |ρ| = 0, then AM = M ′0 is reached from M ′0 by ρ. Trivially, M is reachable from M0.
Assume that the statement is true for all runs µ of length equal to k.
Consider a run ρ of length k + 1. Let ρ = µt where t ∈ T ′ and µ is a run of length k. Also,
without loss of generality, let M ′0

µ−→M ′1
t−→ AM .

Then, t can be either t′2 or ti, where i 6= 2.
If t = t′2, then M ′1(p∗) = M ′1(p1) = 0, M ′1(p′∗) = 1 and M ′1(p′1) = AM (p1) = M(p1). Hence,
M ′1 = BM1 for some marking M1.
By induction hypothesis, the marking M1 is reachable from M0 in the original net.
Consider firing t2 at M1. Clearly, transition t2 is firable at M1 as t′2 is firable at BM1 . Let
M1

t2−→M∗. Then, ∀p 6= p1M
∗(p) = AM (p) = M(p). Also, M∗(p1) = M1(p1) = BM1(p′1) =

AM (p1) = M(p1). Hence, M∗ = M . Hence, marking M is reachable from M0. J

This reduction proves that reachability is undecidable in general HTPN. However, as seen in
Section 4.1, if the transfer arcs satisfy a structural condition, reachability is decidable.
Also, Deadlockfreeness in transfer petri nets (which is undecidable) is reducible to dead-
lockfreeness in HTPN by the same construction. Thus, deadlockfreeness in HTPN is also
undecidable.
NOTE: The above construction also shows that coverability in HITPN is undecidable, since
Coverability in nets with 2 transfer arcs and 1 inhibitor arc is undecidable as shown in
Section 5.2
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A.6 Hardness of Termination in HITPN
We use the same notations as in subsection 6.2. We prove a series of statements which are
finally used to prove lemma 6.4.

I Lemma 1.27. There cannot be a non-terminating run in the forward phase.

Proof. All the places in the net have been divided among three groups, namely G1,G2 and
G3. We notice that, there is no transition, with a pre-place in a larger index group and
post-place in a smaller or same index group. Thus, the tokens always move towards the
larger index groups, and hence there can never be a non-terminating run. J

In any run of N , we call the set of transitions between (i− 1)st firing of tR and ith firing of
tR as ith forward phase, i > 1. The first forward phase is defined as set of transitions before
first firing of tR. As a result of the above lemma, every run starting in ith forward phase
either terminates or goes to (i+ 1)st forward phase.
We call place uji (and transition tji) as incrementing, if Mij ≥ 0[i.e. post-arc from tji to u′i]
and decrementing if Mij < 0[i.e. pre-arc from u′i to tji].

I Lemma 1.28. Suppose that the number of tokens in places {u1, .., un} corresponds to
vector ū before starting of kth forward phase and the number of tokens in all other places
except G,G′ is zero. Then, for any marking reachable in the kth forward phase, ∀1 ≤ i ≤ n,
we have,

u′i −
uji∈Decrementing∑

j

uji +
uji∈Incrementing∑

j

uji +
∑
j

Mijuj = (Mū)i

Proof. Clearly, the equation is satisfied in the initial marking.
Assume that the equation is satisfied in marking M1, and M1

t−→M2.
Case 1: t is tj .
In this case, the number of tokens in uj decreases by 1, and the number of tokens in uji
increases by |Mij |. This would then have two sub cases:
Mij ≥ 0: Then, uji is an incrementing place. Hence,

∑
jMijuj decreases by Mij , and∑uji∈Incrementing

j uji increases by Mij , while all other terms remain same. Thus the
summation remains constant. Hence, LHS(M1) = LHS(M2).
Mij < 0: Then, uji is a decrementing place. Hence,

∑
jMijuj decreases by −Mij , and∑uji∈Decrementing

j uji decreases by −Mij , while all other terms remain same. Thus the
summation(since the terms changing have different signs in LHS) remains constant. Hence,
LHS(M1) = LHS(M2).

Case 2: t is tji
We consider two cases again :
uji is an incrementing place: Then,

∑uji∈Incrementing
j uji decreases by 1 and u′i increases

by 1, with all other terms remaining constant. Hence, the summation remains constant.
Thus, LHS(M1) = LHS(M2).
uji is a decrementing place: Then,

∑uji∈Decrementing
j uji decreases by 1 and u′i decreases

by 1, with all other terms remaining constant. Hence, the summation(since the terms
changing have different signs in LHS) remains constant. Thus, LHS(M1) = LHS(M2).

Thus, in all cases, LHS remains same for both M1 and M2. Thus, by induction on the length
of path from initial marking to any reachable marking, the given invariant holds for all
reachable markings in N . J
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I Lemma 1.29. Suppose that the number of tokens in places {u1, .., un} of marking M1
corresponds to vector ū before starting of kth forward phase, the number of tokens in G =∑

1≤i≤n(
∑

1≤j≤n |Mji|)(ū)i and the number of tokens in all other places is zero. If Mū ≥ 0,
then there exists marking M2 reachable from M1 such that M2 is starting of (k+ 1)st forward
phase, the number of tokens in places {u1, .., un} of marking M2 corresponds to vector Mū,
the number of tokens in G is

∑
1≤i≤n(

∑
1≤j≤n |Mji|)(Mv0)i and all other places have 0

tokens.

Proof. We obtain the marking M2 from M1 as follows - first, we run the transitions tj , 1 ≤
j ≤ n. Next, we run the incrementing transitions among tij followed by decrementing
ones. As Mū ≥ 0, from lemma 1.28, after the incrementing transitions are fired, we have
enough transitions in u′j , 1 ≤ j ≤ n so as to finish the decrementing ones. For each firing
of transition tij , number of tokens in G is decremented by 1. So after all the incrementing
and decrementing transitions tij are fired, G becomes empty, and hence we can fire tR. The
marking reached after firing tR is M2. Also note that before tR is fired, from lemma 1.28,
the number of tokens in u′i = (Mū)i. Thus, after tR is fired, number of tokens in u′i are
transfered to ui, which gives the fact that number of tokens in places {u1, .., un} of marking
M2 corresponds to vector Mū. From the construction of G′, before firing of tR, number
of tokens in G′ =

∑
1≤i≤n(

∑
1≤j≤n |Mji|)u′i which are transfered to G in M2. Rest of the

places have no tokens before firing of tR and continue to do so in M2. J

I Lemma 1.30. Suppose that the number of tokens in places {u1, .., un} corresponds
to vector ū before starting of kth forward phase, the number of tokens in G =∑

1≤i≤n(
∑

1≤j≤n |Mji|)(ū)i and the number of tokens in all other places is zero. If Mū ≥ 0,
then at the end of kth forward phase, the number of tokens in places {u′1, .., u′n} corresponds
to vector Mū.

Proof. In the marking at the end of kth forward phase, number of tokens in G is 0. As the
number of tokens in G at the starting of k th forward phase is equal to the number of times
tijs can fire. Thus in order to empty G, all the tij necessarily have to fire. Thus, the number
of tokens in ui, 1 ≤ i ≤ n and uij , 1 ≤ i, j ≤ n become 0. From lemma 1.28, the current
statement follows. J

Now we prove the original lemma.

I Lemma 1.31. There exists a non-terminating run in N iff Mkv0 ≥ 0 for all k ∈ N.

Proof. First, we prove the reverse direction. Suppose that Mkv0 ≥ 0 for all k ∈ N. We
apply lemma 1.29 to prove existence of a non-terminating run. Intially at the start of
1st forward phase, our initialisation of N ensures that in the current marking M1, G has∑

1≤i≤n(
∑

1≤j≤n |Mji|)(v0)i tokens and number of tokens in places {u1, .., un} corresponds
to vector v0. Thus, we reach marking M2 in which G has

∑
1≤i≤n(

∑
1≤j≤n |Mji|)(Mv0)i

tokens and number of tokens in places {u1, .., un} corresponds to vector Mv0. Now, we use
the lemma again to reach M3 and so on.
To prove the forward direction, assume that indeed there is a nonterminating run in N . From
lemma 1.27, in the nonterminating run, tR has to be fired infinitely often. Let the smallest k
such that Mkv0 � 0 is k0. From lemma 1.30, before start of k0th forward phase, the number
of tokens in places {u1, .., un} corresponds to vector Mk0−1v0 = ū and number of tokens in G
is
∑

1≤i≤n(
∑

1≤j≤n |Mji|)(ū)i. As Mū � 0, there exists i such that (Mū)i < 0. From lemma
1.28, in any marking reachable in the current forward phase,

∑uji∈Decrementing
j uji > 0. As

we cannot reach a marking in the current forward phase in which all of uij are 0, number of
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tokens in G is nonzero in all the markings reachable in the current forward phase. Thus, tR
cannot fire, contradicting the fact that tR should be fired after k0th forward phase as well,
in order to have infinite firings of tR. J

A.7 Summary

A comprehensive extension of table 1 is presented here.
HIPN Refer to table 1
HTPN Refer to table 1
HRPN Decidable - subsumed by HIRPN
HIRPN Refer to table 1
HITPN Refer to table 1
HRTPN Term,Cover: Decidable ([10]). Reach,DLFree: Undecidable - subsumes HTPN
R-HIPN Refer to table 1
R-HTPN Term,Cover: Decidable ([10]). Reach,DLFree: Undecidable - subsumes HTPN
R-HRPN Equivalent to R-PN
I-HIPN Undecidable : equivalent to I-PN
I-HTPN Undecidable : subsumes I-PN
I-HRPN Undecidable : subsumes I-PN
T-HIPN Refer to table 1
T-HTPN Equivalent to T-PN
T-HRPN Term,Cover: Decidable ([10]). Reach,DLFree: Undecidable - subsumes T-PN
R-HIRPN Refer to table 1
R-HITPN Term: Positivity hard (Thm.6.5), Others : Undecidable - from R-HIPN
R-HRTPN Term,Cover: Decidable ([10]). Reach,DLFree: Undecidable - subsumes R-PN
I-HIRPN Undecidable : subsumes I-PN
I-HITPN Undecidable : subsumes I-PN
I-HRTPN Undecidable : subsumes I-PN
T-HIRPN Term: Positivity hard (Thm.6.5), Others : Undecidable - from T-HIPN
T-HITPN Term: Positivity hard (Thm.6.5), Others : Undecidable - from T-HIPN
T-HRTPN Term,Cover: Decidable ([10]). Reach,DLFree: Undecidable - subsumes T-PN
HIRcTPN Refer to table 1

The current status of the relative expressiveness and decidability of termination, coverability,
reachability and deadlockfreeness can be visualised for various classes of nets as follows -
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R-HIRPN

R-HIPNHIRPN

1R-HIPN

HIPN

C,R,D

T

C?,¬R

¬C,¬R

¬C,¬R

X: Problem X is decidable

¬X: Problem X is undecidable

X?: Problem X is open

C: Coverability D: Deadlockfreeness

T: Termination R: Reachability

RcT-HIRcTPN

RcT-HIPNHIcTPN

HIPN

HITPN

HTPN

C,R,D

T

¬C,¬R

¬C,¬R

T:S

T,C,¬R

X: Problem X is decidable

¬X: Problem X is undecidable

X:S: Problem X is Positivity Hard

C: Coverability D: Deadlockfreeness

T: Termination R: Reachability
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