
Automated Analyses of IOT Event Monitoring
Systems

Andrew Apicelli1, Sam Bayless1[0000−0002−0909−8986], Ankush
Das1[0000−0003−2459−1258], Andrew Gacek1[0000−0003−0321−8155], Dhiva

Jaganathan1, Saswat Padhi2§, Vaibhav Sharma3[0000−0001−9877−8926], Michael
W. Whalen1[0000−0003−3824−1435], and Raveesh Yadav1

1 Amazon Web Services, Inc.
{apicea,sabayles,daankus,gacek,dhivasj,mww,raveeshy}@amazon.com

2 Google LLC
spadhi@google.com

3 Amazon.com Services LLC
svaib@amazon.com

Abstract. AWS IoT Events is an AWS service that makes it easy to
respond to events from IoT sensors and applications. Detector models in
AWS IoT Events enable customers to monitor their equipment or device
fleets for failures or changes in operation and trigger actions when such
events occur. If these models are incorrect, they may become out-of-sync
with the actual state of the equipment causing customers to be unable
to respond to events occurring on it.
Working backwards from common mistakes made when creating de-
tector models, we have created a set of automated analyzers that al-
low customers to prove their models are free from six common mis-
takes. Our analyzers have been running in the AWS IoT Events pro-
duction service since December 2021. Our analyzers check six correct-
ness properties in the production service in real time. 93% of customers
of AWS IoT Events have run our analyzers without needing to have any
knowledge of them. Our analyzers have reported property violations in
22% of submitted detector models in the production service.

1 Introduction

AWS IoT Events is a managed service for managing fleets of IoT devices. Cus-
tomers use AWS IoT Events in diverse use cases such as monitoring self-driving
wheelchairs, monitoring a device’s network connectivity, humidity, temperature,
pressure, oil level, and oil temperature sensing. Customers use AWS IoT Events by
creating a detector model that detects events occurring on IoT devices and no-
tifies an external service so that a corrective action can be taken. An example is
an industrial boiler which constantly reports its temperature to a detector. The
detector tracks the boiler’s average temperature over the past 90 minutes and
notifies a human operator when it is running too hot.

§ Work done while at Amazon Web Services, Inc.

2 A. Apicelli et al.

Each detector model is defined as a finite state machine with dynamically
typed variables and timers, where timers allow detectors to keep track of state
over time. A model processes inputs from IoT devices to update internal state
and to notify other AWS services when events are detected. Customers can use
a single detector model to instantaneously detect events in thousands of devices.
Ensuring well-formedness of a detector model is crucial as ill-formed detector
models can miss events in every monitored device.

Starting from a survey that identified sources of well-formedness problems in
customer models, we identified most common mistakes made by customers and
detect them using type- and model-checking. To use a model-checker for checking
well-formedness of a detector model, we formalize the execution semantics of a
detector model and translate this semantics into the source-language notation of
the JKind model checker [1]. Model checking [2–9] verifies desirable properties
over the behavior of a system by performing the equivalent of an exhaustive
enumeration of all the states reachable from its initial state. Most model checking
tools use symbolic encodings and some form of induction [6] to prove properties
of very large finite or even infinite state spaces.

We have implemented type-checking and model-checking as an analysis fea-
ture in the production AWS IoT Events service. Our analyzers have reported
well-formedness property violations in 22% of submitted detector models. 93%
of customers of AWS IoT Events have checked their detector models using our
analyzers. Our analyzers report property violations to customers with an average
latency of 5.6 seconds (see Section 4).

Our contributions are as follows:

1. We formalize the semantics of AWS IoT Events detector models.
2. We identify six well-formedness properties whose violations detect com-

mon customer mistakes.
3. We create fast, push-button analyzers that report property violations to

customers.

2 Overview

Consider a user of AWS IoT Events who wants to monitor the temperature of an
industrial boiler. If the industrial boiler overheats, it can cause fires and endanger
human lives. To detect an early warning of an overheating event, they want to
automatically identify two different alarming events on the boiler’s temperature.
They want their first alarm to be triggered if the boiler’s reported temperature
is outside the normal range for more than 1 minute. They want their second
alarm to be triggered if the temperature is outside the normal range for another
5 minutes after the first alarm.

A user might try to implement these requirements by creating the (flawed)
detector model shown in Figure 1. This detector receives temperature data from
the boiler and responds by sending a text message to the user. The detector
model contains four states:

Automated Analyses of IOT Event Monitoring Systems 3

Fig. 1: AWS IoT Events detector
model with two alarms (buggy
version)

Fig. 2: An action in the detector
model from Figure 1

– TempOK: starting state of the detector model. The detector stays in this
state as long as the boiler’s temperature lies in a normal range. The detec-
tor transitions from TempOK to GettingTooHot on detecting a tempera-
ture outside normal range, indicated by TempAbnormal.

– GettingTooHot: detector starts a 1 minute timer and transitions back to
TempOK if the boiler cools down. When the timer expires, it transitions
to TooHot.

– TooHot: detector first notifies the user of the 1st alarm. It then starts a
5 minute timer and transitions back to TempOK if the boiler cools down.
When the 5 minute timer expires, it transitions to StillTooHot.

– StillTooHot: detector notifies user of the 2nd alarm.

Understanding the bug: Every state in the detector model consists of actions.
An action changes the internal state of a detector or triggers an external service.
For example, the GettingTooHot state consists of an action that starts a timer.
The user can edit these actions with an interface shown in Figure 2. This action
starts a one minute timer named Wait1Min. Note that timers are accessible from
every state in the detector model. Even though the Wait1Min timer is created
in the GettingTooHot state of Figure 1, it can be checked for expiration in all
the four states of Figure 1.

The detector model in Figure 1 has a fatal flaw based on a typo. The user has
written timeout(“Wait1Min”) instead of timeout(“Wait5Min”) when transition-
ing out of TooHot. This is allowed as timers are globally referenceable. However,
it is a bug because each global timer has a unique name and the Wait1Min timer
has already been used and expired. This makes StillTooHot unreachable, mean-
ing the 2nd alarm won’t ever fire, since a timer can expire at most once.

Related Work Languages such as IOTA [10], SIFT [11], and the system from
Garcia et. al [12] use trigger-condition-action rules [13] to control the behavior of

4 A. Apicelli et al.

internet of things applications. These languages have the benefit of being largely
declarative, allowing users to specify desired actions under different environmen-
tal stimuli. Similar to our approach, SIFT [11] automatically removes common
user mistakes as well as compiles specifications into controller implementations
without user interaction, and IOTA [10] is a reasoning calculus that allows cus-
tom specifications to be written both about why something should or should not
occur. AWS IoT Events is designed explicitly for monitoring, rather than con-
trol, and our approach is imperative, rather than declarative: detector models
do not have the same inconsistencies as rule sets, as they are disambiguated
using explicit priorities on transitions. On the other hand, customers may still
construct machines that do not match their intentions, motivating the analyses
described in this paper.

3 Technique

In this section, we present a formal execution semantics of an AWS IoT Events
detector model and describe specifications for the correctness properties.

Formalization of Detector Models Defining the alphabet and the transition
relation for the state machine is perhaps the most interesting aspect of our for-
malization. Since detector models may contain global timers, timed automata [14]
might seem like an apt candidate abstraction. However, AWS IoT Events users
are not allowed to change the clock frequency of timers, nor specify arbitrary
clock constraints. These observations allow us to formalize the detector models
as a regular state machine, with timeout durations as additional state variables.

Formally, we represent the state machine for a detector model M as a tuple
⟨S,S0, I,G,T, EE , EX , EI⟩, where:

– S: finite set of states in the FSM,
– S0 ⊆ S: set of initial state(s),
– I: set of input variables assigned by the environment
– G: set of global variables assigned by the state machine
– T: set of timer variables that are reset by the model and updated as time

evolves in the environment
– EE : S→ κ list: mapping from states to a (possibly empty) list of entry

events to be performed when entering a state. κ describes an event, further
explained in the description of the grammar.

– EX : S → κ list is a mapping from states to a list of exit events to be
performed when exiting a state.

– EI : S→ (κ list×µ list): mapping from states to a list of input events,
including transitions to other states.

It is assumed that the sets I, G, and T are pairwise disjoint, and we define
the set V ≜ I ∪G to represent input and global variables in the model.

We denote by V the set of values for global (G) and input (I) variables; V
ranges over the values of primitive types: integers, decimals (rationals), booleans,

Automated Analyses of IOT Event Monitoring Systems 5

τ ::= int | dec | str | bool
ϵ ::= e0 bop e1 | uop e0 | l | v | timeout(t) | isundefined(v) | . . .
α ::= setTimer(t, e) | resetTimer(t)

| clearTimer(t) | setGlobal(g, e)
κ ::= event(e, a∗)
µ ::= transition(e, a∗, s)
ι ::= message(i, v) | timeout(t)

Fig. 3: Types, expressions, actions, and events in IoT Events Detector Models

and strings. Integers and rationals are assumed to be unbounded, and rationals
are arbitrarily precise. We use N as the domain for time and timeout values. Sets
V⊥ and N⊥ are extended with the value ⊥ to represent an uninitialized variable.

The grammar for types (τ), expressions (ϵ), actions (α), events (κ), transi-
tions (µ) and input triggers (ι) is shown in Figure 3. In the grammar, metavari-
able e stands for an expression, l stands for a literal value in V, v stands for
any variable in V, t is a timer variable in T, a is an action, and i is an in-
put in I. The unary and binary operators include standard arithmetic, Boolean,
and relational operators. The timeout expression is true at the instant timer
t expires, and the isundefined expression returns true if the variable or timer
in question has not been assigned. Actions (α) describe changes to the system
state: setTimer starts a timer and sets the periodicity of the timer, while the
resetTimer and clearTimer reset and clear a timer (without changing the pe-
riodicity of the timer). The setGlobal action assigns a global variable. Events
(κ) describe conditions under which a sequence of actions occur.

We define configurations C for the state machine as:

C ≜ S× (I→ V⊥)× (T→ (N⊥ × N⊥))× (G→ V⊥)

Each configuration C =
〈
s, i, t, g

〉
tracks the following:

– a state s ∈ S in the detector model,

– the input valuation i ∈ (I→ V⊥) containing the values of inputs,

– the timer valuation t ∈ (T → (N⊥ × N⊥)) for user-defined timers. Each
timer has both a periodicity and (if active) a time remaining, and

– the global valuation g ∈ (G → V⊥) for global variables in the detector
model.

Example 1. Consider a corrected version of our example detector model from
Figure 1 which has two timers, Wait1Min and Wait5Min, and no global variables.
Some examples of configurations for this model are:

– ⟨TempOK, {temp : ⊥}, {Wait1Min : (⊥,⊥), Wait5Min : (⊥,⊥)}, {}⟩ is the initial configura-
tion. The model contains input temp, timers Wait1Min and Wait5Min, and
no global variables. As no variables or timers have been assigned, all vari-
ables have value undefined (⊥).

6 A. Apicelli et al.

C ⊢ϵ e→ v
C ⊢α a→ C′ C ⊢α∗ al→ C′

C ⊢κ k → C′ C ⊢κ∗ kl→ C′

C ⊢µ∗ ml→ C′ C ⊢EI
EI → C′

⊢ι C
i7−→ C′

〈
s, i, t, g

〉
⊢ϵ e→ v〈

s, i, t, g
〉
⊢α setTimer(tr, e) →

⟨s, i, t[tr ← (v, v)], g⟩

t(tr) = (p, v)〈
s, i, t, g

〉
⊢α resetTimer(tr) →

⟨s, i, t[tr ← (p, p)], g⟩

t(tr) = (p, v)〈
s, i, t, g

〉
⊢α clearTimer(tr) →

⟨s, i, t[tr ← (p,⊥)], g⟩

〈
s, i, t, g

〉
⊢ϵ e→ v〈

s, i, t, g
〉
⊢α setGlobal(gv, e)

→ ⟨s, i, t, g[gv ← v]⟩
C ⊢ϵ e→ false

C ⊢κ event(e, al)→ C

C ⊢ϵ e→ true
C ⊢α∗ al→ C

′

C ⊢κ event(e, al)→ C
′

C ⊢µ∗ nil→ C

C ⊢ϵ e→ false
C ⊢µ∗ tl→ C

′

C ⊢µ∗ transition(e, al, s
′
) :: tl→ C

′

C ⊢ϵ e→ true C ⊢α∗ al→ C
′

C
′ ⊢κ∗ EX(C.s)→ C

′′

C
′′
[s← s

′
], ti ⊢κ∗ EE(s

′
)→ C

′′′

C ⊢µ∗ transition(e, al, s
′
) :: tl→ C

′′′

C ⊢κ∗ kl→ C
′

C
′ ⊢µ∗ ml→ C

′′

C ⊢EI
(kl,ml)→ C

′′

matchesEarliest(C.t, ti) ∧ subtractTimers(C, ti)→ C
′

C
′ ⊢EI

EI(C′
.s)→ C

′′ ∧ clearTimers(C
′′
)→ C

′′′

⊢ι C
timeout(ti)7−−−−−−−−→ C

′′′

⟨s, i[iv ← v], t, g⟩ ⊢EI
EI(C.s)→ C

′

⊢ι
〈
s, i, t, g

〉 message(iv,v)7−−−−−−−−−−→ C
′

Fig. 4: Rules describing behavior of the system

– ⟨TooHot, {temp : 300}, {Wait1Min : (60,⊥), Wait5Min : (300, 260)}, {}⟩ is the configura-
tion at global time t if the temperature is still beyond the normal range
and we transition to the TooHot detector model state. Note the Wait1Min
timer is no longer set whereas the Wait5Min timer has a periodicity of 300
and is set to expire at t+ 260.

To define the execution semantics, we create a structural operational seman-
tics for each of the grammar rules and for the interaction with the external
environment, as shown in Figure 4. We distinguish semantic rules by decorating
the turnstiles with the grammar type that they operate over (ϵ, α, κ, µ, EI , and
ι). The variables e, a, k,m, i stand in for elements of the appropriate syntactic
class defined by the turnstile. For lists of elements, we decorate the syntactic
class with * (e.g. ⊢α∗), and the variables with ‘l’ (e.g. al). We use the following
notation conventions: Given C = ⟨s, i, t, g⟩, we say C.s = s, and similarly with
the other components of C. We also say C[s ← s′] is equivalent to ⟨s′, i, t, g⟩,
and similarly with the other components of C.

Expressions (⊢ϵ) evaluate to values, given a configuration. We do not present
expression rules (they are simple), but illustrate the other rule types in Figure 4.
For actions (⊢α), the setTimer rule establishes the periodicity of a timer and
also starts it. The resetTimer and clearTimer rules restart an existing timer
given a periodicity p or clear it, respectively, and the setGlobal rule updates

Automated Analyses of IOT Event Monitoring Systems 7

the value of a global variable. Events (κ) are used by entry and exit events for
states. The list rules for actions (α∗) and events (κ∗) are not presented but are
straightforward: they apply the relevant rule to the head of the list and pass the
updated configuration to the remainder of the list, or return the configuration
unchanged for nil. Transition event lists (µ∗) cause the system to change state,
executing (only) the first transition from the list whose guard e evaluates to
true. Finally, the top-level rule ⊢ι describes how the system evolves according to
external stimuli.

A run of the machine is any valid sequence of configurations produced by
repeated applications of the ⊢ι rule. Timeout inputs increment the time to the
earliest active timeout as described by the matchesEarliest predicate:

matchesEarliest(t, x) ≡ ∃ti, pi.(pi, x) = t(ti)∧
∀tj , pj , y.((pj , y) = t(tj) =⇒ y = ⊥ ∨ y ≥ x)

The subtractTimers function subtracts ti from each timer in C, and the
clearTimers function, for any timers whose time remaining is equal to zero,
calls the clearTimer action4.

3.1 Well-formedness Properties

To find common issues with detector models, we surveyed (i) detector models
across customer tickets submitted to AWS IoT Events, (ii) questions posted on
internal forums like the AWS re:Post forum [15], and (iii) feedback submitted via
the web-based console for AWS IoT Events. Based on this survey, we determined
that the following correctness properties should hold over all detector models.
For more details about this survey, please refer to Appendix A.

The model does not contain type errors: The AWS IoT Events expression
language is untyped, and thus, may contain ill-typed expressions, e.g., performing
arithmetic operations on Booleans. A large class of such bugs can be readily
detected and prevented using a type inference algorithm. The algorithm follows
the standard Hindley-Milner type unification approach [16–18] and generates
(and solves) a set of type constraints or reports an error if no valid typing
is possible. We use this type inference algorithm to detect type errors in the
detector model. Every type error is reported as a warning to the customer.
When our type inference successfully infers types for expressions, we use them
to construct a well-typed abstract state machine using the formalization reported
in Section 3.

For the remaining well-formedness properties we use model checking. We
introduce one or more indicator variables in our global abstract state to track
certain kinds of updates in the state machine, and then we assert temporal
properties on these indicator variables. Because we use a model checker that

4 In the interests of space, we do not cover the batch execution mode, where all variables
used in expressions maintain their “pre-state” value until the step is completed; it
is a straightforward extension.

8 A. Apicelli et al.

checks only safety properties, in many cases we invert the property of interest
and check that its negation is falsifiable, using the same mechanism often used
for test-case generation [19].

Every Detector Model State is Reachable and Every Detector Model
Transition and Event can be Executed: For each state s ∈ S, we add a
new Boolean reachability indicator variable v s

reached to our abstract state that
is initially false and assigned true when the state is entered (similarly for
transitions and events). To encode the property in a safety property checker, we
encode the following unreachability property expressed in LTL and check it is
falsifiable. If it is provable, the tool warns the user.

Unreachable(s) ≜ □ (¬ v s
reached)

Every Variable is Set Before Use: In order to test that variables are properly
initialized, first we identify the places where variables are assigned and used. In
detector models, there are three places where variables are used: in the evaluation
of conditions for events and transitions, and in the setGlobal action (which
occurs because of an event or transition). We want to demonstrate that the
variables used within these contexts are never equal to ⊥ during evaluation. In
this case, we can reuse the reachability variables that we have created for events
and transitions to encode that variables should always have defined values when
they are used.

We first define some functions to extract the set of variables used in expres-
sions and action lists. The function V ars(e) : ϵ → v set simply extracts the
variables in the expression. For action lists, it is slightly more complex, because
variables are both defined and used:

V ars(nil) = {}
V ars(setTimer(t, e) :: tl) = V ars(e) ∪ V ars(tl)

V ars(resetTimer(t) :: tl) = V ars(tl)

V ars(clearTimer(t) :: tl) = V ars(tl)

V ars(setGlobal(g, e) :: tl) = V ars(e) ∪ (V ars(tl)− {g})
V ars(event(e, al)) = V ars(e) ∪ V ars(al)

V ars(transition(e, al, s′)) = V ars(e) ∪ V ars(al)

Every event or transition can be executed at most once during a computation
step, so we can use the execution indicator variables to determine when a variable
might be used.

∀ai, vj ∈ V ars(ai) .

SetBeforeUse(ai, vj) ≜ □ (v ai
exec =⇒ vj ̸= ⊥)

Input Read Only on Message Trigger: This property is covered in the
previous property, with one small change. To enforce it, we modify the translation
of the semantics slightly so that at the beginning of each step, prior to processing
the input message, all input variables are assigned ⊥.

Automated Analyses of IOT Event Monitoring Systems 9

Message Triggered Between Consecutive Timeouts: We conservatively
approximate a liveness property (no infinite path consisting of only timeout
events) with a safety property: the same timer should not timeout twice without
an input message occurring in between the timeouts. This formulation may flag
models that do not have infinite paths with no input events, but our customers
consider it a reasonable indicator.

We begin by defining an indicator variable for each timer ti (of type integer
rather than Boolean): vitimeout and initialize it to zero. We modify the translation
of updateTimers to increment this variable when its timer variable equals zero,
and modify the translation of the message rule to reset all vitimeout variables to
zero. The property of interest is then:

NoConsecutiveTimeouts(ti) ≜ □
(
vitimeout < 2

)
4 Experiments

In this section, we evaluate the performance of model-checking safety properties
on detector models, with a focus on model checking latency. Low analysis latency
is crucial because our tool warns customers of property violations while they are
editing their detector model. Our type inference implementation runs with an
average latency of 10 milliseconds on all the detector models in our experiments.
Since type inference is much faster than model checking and can be successfully
run on all detector models, we do not evaluate it in this section.

AWS IoT Events has a commercial feature [20] which uses the type checking
and model checking described in Section 3. The feature’s implementation first
infers types using the type inference algorithm. Next, it translates the detector
model into the Lustre language [21]. The translation of IoT Events into Lus-
tre is straightforward and directly follows from the semantics presented in Sec-
tion 3. The safety properties described in Section 3.1 are attached to the model,
along with location information. Then the feature analyzes the model using the
JKind [1] tool suite, an open-source industrial model-checker. If JKind invali-
dates a safety property, the feature decodes the location from the safety property
and includes it in the warning.

To evaluate this implementation, we randomly selected 210 detector models
previously analyzed by the commercial feature. We checked the five properties
described in Section 3.1 in parallel on a c4.8xlarge EC2 instance running Amazon
Linux 2 x86 64 using JKind version 4.4.1, with a timeout of 60 seconds.

Of the safety properties that we were able to translate to Lustre, JKind
resolved 96% within our timeout of 60 seconds, with 80% completing in less
than 10 seconds.

Table 1 shows that checking the no-unreachable-action safety property re-
quires the most time to complete. The detector models analyzed in the eval-
uation include models for monitoring self-driving wheel chairs, monitoring de-
vice connectivity, humidity, temperature, pressure, oil level, oil temperature,
doors, motion, refrigerator temperature, dough fermentation, and vehicle speed-
sensing. They consisted of between 1-7 states and from 0-14 state changes. The

10 A. Apicelli et al.

Table 1: Performance of our model-checking tool against 210 detector models

safety property
avg. latency
(milliseconds)

#
completed

translation
failed

#
timeout

no-unreachable-state 3544 176 28 6

no-unreachable-action 5586 171 28 11

var-always-set-before-use 2968 179 28 3

no-infinite-timer-expiration 2875 174 28 8

no-input-read-with-timer-expiration 5477 177 30 3

no-unreachable-action safety property is checked on every action, generating an
average of 17 safety properties per detector model, the most of any kind of safety
property. This large number of properties to be checked on every detector model
caused checking the no-unreachable-action safety property to have the highest
average latency (5.6 seconds per analysis).

Table 1 shows that about 13% of the properties could not be translated
to Lustre. In 2% of the detector models, translation failures arose due to type
errors or incorrect use of the AWS IoT Events expression language in the de-
tector model. The remaining translation failures occurred due to either: (1) use
of operations not supported by Lustre, (2) no types being inferred for inputs
or variables in the detector model, or (3) use of non-linear arithmetic, which
is unsupported in JKind. Bitwise functions, strings, and array data types are
supported in the AWS IoT Events expression language but not in Lustre. This
language gap prevented us from translating 19 of the 210 detector models. Fail-
ing to infer a type for a variable in the detector model prevented translation of
6 of the 210 detector models. JKind’s lack of support for non-linear arithmetic
prevented model-checking 2 of the 210 detector models. We are actively working
to support more functions, string and array data types, type annotations, and
non-linear arithmetic in our model-checking of detector models.

5 Conclusion

Our analyzers have been running in the AWS IoT Events production service
since December 2021. Since then, 93% of AWS IoT Events customers have used
our implementation to check their detector models for well-formedness, without
needing to have any knowledge of the underlying type checking and model check-
ing. Our analyzers successfully complete for 85% of real-world detector models
and we are actively working on improving this support as explained in Section 4.
Overall, our implementation has reported well-formedness property violations in
22% of submitted detector models in the production service, with an average
latency of 5.6 seconds. We find giving customers push-button access to fast ver-
ification without requiring any knowledge of the underlying techniques enables
adoption of automated reasoning-based tools.

Automated Analyses of IOT Event Monitoring Systems 11

References

1. A. Gacek, J. Backes, M. Whalen, L. Wagner, and E. Ghassabani, “The JKind model
checker,” in Computer Aided Verification, H. Chockler and G. Weissenbacher, Eds.
Cham: Springer International Publishing, 2018, pp. 20–27.

2. C. Y. Cho, V. D’Silva, and D. Song, “Blitz: Compositional bounded model checking
for real-world programs,” in 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2013, pp. 136–146.

3. Z. Baranová, J. Barnat, K. Kejstová, T. Kučera, H. Lauko, J. Mrázek, P. Ročkai,
and V. Štill, “Model checking of C and C++ with DIVINE 4,” in Automated
Technology for Verification and Analysis, D. D’Souza and K. Narayan Kumar,
Eds. Cham: Springer International Publishing, 2017, pp. 201–207.

4. A. Gargantini and C. Heitmeyer, “Using model checking to generate tests from
requirements specifications,” in Software Engineering — ESEC/FSE ’99, O. Nier-
strasz and M. Lemoine, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 146–162.

5. C. Karamanolis, D. Giannakopoulou, J. Magee, and S. Wheater, “Model checking
of workflow schemas,” in Proceedings Fourth International Enterprise Distributed
Objects Computing Conference. EDOC2000, 2000, pp. 170–179.

6. E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem et al., Handbook of model
checking. Springer, 2018, vol. 10.

7. E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, “Model
checking. cyber physical systems series,” 2018.

8. A. R. Bradley, “Incremental, inductive model checking,” in 2013 20th International
Symposium on Temporal Representation and Reasoning, 2013, pp. 5–6.

9. L. de Moura, H. Rueß, and M. Sorea, “Bounded model checking and induction:
From refutation to verification,” in Computer Aided Verification, W. A. Hunt and
F. Somenzi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 14–26.

10. J. L. Newcomb, S. Chandra, J.-B. Jeannin, C. Schlesinger, and M. Sridharan,
“IOTA: A calculus for internet of things automation,” in Proceedings of the
2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, ser. Onward! 2017. New York,
NY, USA: Association for Computing Machinery, 2017, p. 119–133. [Online].
Available: https://doi.org/10.1145/3133850.3133860

11. C.-J. M. Liang, B. F. Karlsson, N. D. Lane, F. Zhao, J. Zhang, Z. Pan, Z. Li,
and Y. Yu, “SIFT: Building an internet of safe things,” in Proceedings of the
14th International Conference on Information Processing in Sensor Networks, ser.
IPSN ’15. New York, NY, USA: Association for Computing Machinery, 2015, p.
298–309. [Online]. Available: https://doi.org/10.1145/2737095.2737115

12. M. Garćıa-Herranz del Olmo, P. A. Haya, and X. Alamán, “Towards a ubiquitous
end-user programming system for smart spaces,” Journal of Universal Computer
Science, 2010.

13. B. Ur, E. McManus, M. Pak Yong Ho, and M. L. Littman, “Practical
trigger-action programming in the smart home,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 803–812. [Online].
Available: https://doi.org/10.1145/2556288.2557420

14. R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer
Science, vol. 126, pp. 183–235, 1994.

12 A. Apicelli et al.

15. Amazon Web Services, Inc., “Find answers to AWS questions about AWS IoT
Events — AWS,” https://repost.aws/tags/TANsxSwnClQ Wfh-uklXi7hQ, 2021.

16. L. Damas and R. Milner, “Principal type-schemes for functional programs,” in
Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’82. New York, NY, USA: Association
for Computing Machinery, 1982, p. 207–212. [Online]. Available: https:
//doi.org/10.1145/582153.582176

17. R. Milner, “A theory of type polymorphism in programming,” Journal of
Computer and System Sciences, vol. 17, no. 3, pp. 348–375, 1978. [Online].
Available: https://www.sciencedirect.com/science/article/pii/0022000078900144

18. R. Hindley, “The principal type-scheme of an object in combinatory logic,”
Transactions of the American Mathematical Society, vol. 146, pp. 29–60, 1969.
[Online]. Available: http://www.jstor.org/stable/1995158

19. G. Gay, M. Staats, M. Whalen, and M. P. E. Heimdahl, “The risks of coverage-
directed test case generation,” IEEE Transactions on Software Engineering, vol. 41,
no. 8, pp. 803–819, 2015.

20. AWS IoT Events, “Troubleshooting a detector model by running anal-
yses,” https://docs.aws.amazon.com/iotevents/latest/developerguide/
iotevents-analyze-api.html, 2021.

21. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data flow
programming language LUSTRE,” Proceedings of the IEEE, vol. 79, no. 9, pp.
1305–1320, 1991.

Automated Analyses of IOT Event Monitoring Systems 13

A Common Issues with Detector models

Table 2: Issues seen in detector models from customer questions
Issue # of instances

1 incorrectly scaling detector model 1
2 unreachable action 2
3 infinite loop 3
4 variable-used-before-set 3
5 input read on timer expiration 3
6 insufficient logging permissions 3
7 incorrectly typed expression 5
8 incorrect cross-service setup 8
9 missing simplifications 8

36

As mentioned in Section 3.1, we surveyed customer detector models for
generic correctness problems. We present the root causes of the problems from
this study in Table 2. Incorrect scaling (#1) occurs when the customer does not
set up their detector model to be instantiated correctly for every IoT device in
their fleet. Infinite loop (#3) occurs when the detector model has an infinite
execution path involving only timeout events and no external input messages.
IoT models should be eventually quiescent if no external inputs occur.

Variable-used-before-set (#4) occurs when a variable in the detector’s state
is read from before being set to an initial value. AWS IoT Events does not require
variables in detector models to be initialized.

A step through a detector can be triggered due to both a timer expiration or
a new value being sent to the detector by the outside world. Input read on timer
expiration (#5) occurs when a step, triggered by timer expiration, causes the
detector to read from its input(s). This is a problem because customers often
do not realize that such a read will return the last value sent to the detector by
the outside world. Insufficient logging permissions (#6) occurs when a detector
is not given sufficient permissions to produce logging output. Incorrect cross-
service setup (#8) occurs when customers do not correctly set up data flow
across services in AWS IoT. While unnecessarily complex detector models (#9)
is not a correctness problem, it poses a significant difficulty to customers in
maintaining their detector models, and so, we include it in Table 2.

Of these 9 root causes, we identified that type checking and model checking
detected 5 root causes highlighted in green in Table 2. These 5 root causes were
responsible for 44% of issues in our survey. Based on Table 2, we determined
that the following correctness properties should hold over all detector models:

1. Detector models must be well-typed
2. Every detector model state must be reachable
3. Every detector model action must be executable
4. Every variable must be set before being used
5. Input reads shall not happen on timer expiration
6. Detector model must not have infinite timer expirations

We explain these properties further s in Section 3.1.

