
Precise Null Pointer Analysis Through
Global Value Numbering

Ankush Das1 and Akash Lal2

1 Carnegie Mellon University, Pittsburgh, PA, USA
2 Microsoft Research, Bangalore, India

Abstract. Precise analysis of pointer information plays an important
role in many static analysis techniques and tools today. The precision,
however, must be balanced against the scalability of the analysis. This
paper focusses on improving the precision of standard context and flow
insensitive alias analysis algorithms at a low scalability cost. In par-
ticular, we present a semantics-preserving program transformation that
drastically improves the precision of existing analyses when deciding if a
pointer can alias Null. Our program transformation is based on Global
Value Numbering, a scheme inspired from compiler optimizations liter-
ature. It allows even a flow-insensitive analysis to make use of branch
conditions such as checking if a pointer is Null and gain precision. We
perform experiments on real-world code to measure the overhead in per-
forming the transformation and the improvement in the precision of the
analysis. We show that the precision improves from 86.56% to 98.05%,
while the overhead is insignificant.
Keywords: Alias Analysis, Global Value Numbering, Static Single As-
signment, Null Pointer Analysis

1 Introduction

Null-pointer exceptions directly affect software reliability because such excep-
tions can bring down the application. Detecting and eliminating these bugs is
an important step towards developing reliable systems. Static analysis tools that
look for null-pointer exceptions typically employ techniques based on alias analy-
sis to detect possible aliasing between pointers. Two pointer-valued variables are
said to alias if they hold the same memory location during runtime. Aliasing can
be decided in two ways: (a) may-alias [1], where two pointers may-alias if they
can point to the same memory location under some possible execution, and (b)
must-alias [27], where two pointers must-alias if they always point to the same
memory location under all possible executions. Because a precise alias analysis
is undecidable [23] and even a flow-insensitive pointer analysis is NP-hard [13],
much of the research in the area plays on the precision-efficiency trade-off of alias
analysis. For example, practical algorithms for may-alias analysis lose precision
(but retain soundness) by over-approximating: a verdict that two pointer may-
alias does not imply that there is some execution in which they actually hold the
same value. Whereas, a verdict that two pointers cannot may-alias must imply
that there is no execution in which they hold the same value.

We use a sound may-alias analysis in an attempt to prove the safety of a
program with respect to null-pointer exceptions. For each pointer dereference, we
ask the analysis if the pointer can may-alias Null just before the dereference. If
the answer is that it cannot, then the pointer cannot hold a Null value under all
possible executions, hence the dereference is safe. The more precise the analysis,
the more dereferences it can prove safe. This paper demonstrates a technique
that improves the precision of may-alias analysis at little cost when answering
aliasing queries of pointers with the Null value.

The Null value is special because programmers tend to be defensive against
null-pointer exceptions. If there is doubt that a pointer, say x, can be Null or
not, the programmer uses a check “if (x 6= Null)” before dereferencing x. Exist-
ing alias analysis techniques, especially flow insensitive techniques for may-alias
analysis, ignore all branch conditions. As we demonstrate in this paper, exploit-
ing these defensive checks can significantly increase the precision of alias analysis.
Our technique is based around a semantics-preserving program transformation
and requires only a minor change to the alias analysis algorithm itself.

Program transformations have been used previously to improve the precision
for alias analysis. For instance, it is common to use a Static Single Assignment
(SSA) conversion [5] before running flow-insensitive analyses. The use of SSA
automatically adds some level of flow sensitivity to the analysis [11]. SSA, while
useful, is still limited in the amount of precision that it adds, and in particular, it
does not help with using branch conditions. We present a program transforma-
tion based on Global Value Numbering (GVN) [15] that adds significantly more
precision on top of SSA by leveraging branch conditions.

The transformation works by first inserting an assignment v := e on the then
branch of a check if (e 6= Null), where v is a fresh program variable. This gives us
the global invariant that v can never hold the Null value. However, this invariant
will be of no use unless the program uses v. Our transformation then searches
locally, in the same procedure, for program expressions e′ that are equivalent to
e, that is, at runtime they both hold the same value. The transformation then
replaces e′ with v. The search for equivalent expressions is done by adapting the
GVN algorithm (originally designed for compiler optimizations [9]).

Our transformation can be followed with a standard alias analysis to infer
the points-to set for each variable, with a slight change that the new variables in-
troduced by our transformation (such as v above) cannot be Null. This change
stops spurious propagation of Null and makes the analysis more precise. We
perform extensive experiments on real-world code. The results show that the pre-
cision of the alias analysis (measured in terms of the number of pointer derefer-
ences proved safe) goes from 86.56% to 98.05%. This work is used in Microsoft’s
Static Driver Verifier tool [21] for finding null-pointer bugs in device drivers3.

The rest of the paper is organized as follows: Section 2 provides background
on flow-insensitive alias analysis and how SSA can improve its precision. Section
3 illustrates our program transformation via an example and Section 4 presents

3 https://msdn.microsoft.com/en-us/library/windows/hardware/mt779102(v=

vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/hardware/mt779102(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/mt779102(v=vs.85).aspx

var x : int
procedure f(var y : int) returns u : int
{

var z : int
L1 :

x := y.f;
assume (x 6= Null);
goto L2;

L2 :
z.g := y;
assert (x 6= Null);
u := x;
return;

}

procedure main()
{

var a : int;
var b : int;
L1 :

a := new();
b := call f(a);
goto L2;

L2 :
return;

}

Fig. 1. An example program in our language

it formally. Section 5 presents experimental results, Section 6 describes some of
the related work in the area and Section 7 concludes. Finally, Appendix A proves
that the transformation preserves program semantics.

2 Background

2.1 Programming Language

We introduce a simplistic language to demonstrate the alias analysis and how
program transformations can be used to increase its precision. As is standard,
we concern ourselves only with statements that manipulate pointers. All other
statements are ignored (i.e., abstracted away) by the alias analysis. Our language
has assignments with one of the following forms: pointer assignments x := y,
dereferencing via field writes x.f := y and reads x := y.f, creating new memory
locations x := new(), or assigning Null as x := Null. The language also has
assume and assert statements:

– assume B checks the Boolean condition B and continues execution only if
the condition evaluates to true. The assume statement is a convenient way
of modeling branching in most existing source languages. For instance, a
branch “if (B)” can be modeled using two basic blocks, one beginning with
assume B and the other with assume ¬B.

– assert B checks the Boolean condition B and continues execution if it holds.
If B does not hold, then it raises an assertion failure and stops program
execution.

A program in our language begins with global variable declarations followed
by one or more procedures. Each procedure starts with declarations of local
variables, followed by a sequence of basic blocks. Each basic block starts with a
label, followed by a list of statements, and ends with a control transfer, which is
either a goto or a return. A goto in our language can take multiple labels. The
choice between which label to jump is non-deterministic. Finally, we disallow

Statement Constraint

i : x := new() aSi ∈ pt(x)

x := Null aS0 ∈ pt(x)

x := y pt(y) ⊆ pt(x)

x := y.f

aSi ∈ pt(y)

pt(aSi.f) ⊆ pt(x)

x.f := y

aSi ∈ pt(x)

pt(y) ⊆ pt(aSi.f)

Fig. 2. Program statements and
corresponding points-to set
constraints

Algorithm 1 Algorithm for computing
points-to sets

1: For each program variable x, let pt(x) = ∅
2: repeat
3: opt := pt
4: for all program statements st do
5: if st is i : x := new() then
6: pt(x) := pt(x) ∪ {aSi}
7: if st is x := Null then
8: pt(x) := pt(x) ∪ {aS0}
9: if st is x := y then

10: pt(x) := pt(x) ∪ pt(y)

11: if st is x := y.f then
12: for all aSi ∈ pt(y) do
13: pt(x) := pt(x) ∪ pt(aSi.f)

14: if st is x.f := y then
15: for all aSi ∈ pt(x) do
16: pt(aSi.f) := pt(aSi.f) ∪ pt(y)

17: for all tagged(x) do
18: pt(x) := pt(x)− {aS0}
19: until opt = pt

loops in the control-flow of a procedure; they can instead be encoded using
procedures with recursion. This restriction simplifies the presentation of our
algorithms. Figure 1 shows an illustrative example in our language.

2.2 Alias Analysis

This section describes Andersen’s may-alias analysis [1]. The analysis is context
and flow-insensitive, which means that it completely abstracts away control of
the program. But the analysis is field-sensitive, which means that a value can be
obtained by reading a field f only if it was previously written to the same field
f. Field-insensitive analyses, for example, also abstract away the field name.

The analysis outputs an over-approximation of the set of memory locations
each pointer can hold under all possible executions. Since a program can poten-
tially execute indefinitely (because of loops or recursion), the number of memory
locations allocated by a program can be unbounded. We consider a finite abstrac-
tion of memory locations, commonly called the allocation-site abstraction [14].
Each memory location allocated by the same new statement is represented using
the same abstract value. This abstract value is also called an allocation site. We
label each new statement with a unique number i and refer to its corresponding
allocation site as aSi. We use the special allocation site aS0 to denote Null.

We follow a description of Andersen’s analysis in terms of set constraints [25],
shown in Figure 2. The analysis outputs a points-to relation pt where pt(x)

x := new ();

assert (x 6= Null);

y := x.f;

x := Null;

x1 := new ();

assert (x1 6= Null);

y := x1.f;

x2 := Null;

Fig. 3. A program snippet before SSA (left) and after SSA (right)

represents the points-to set of a variable x, i.e. (an over-approximation of) the
set of allocation sites that x may hold under all possible executions. In addition,
it also computes pt(aSi.f), for each allocation site aSi and field f, representing
(an over-approximation of) the set of values written to the f field of an object
represented by aSi.

The analysis abstracts away program control along with assert and assume
statements. It considers a program as a bag of pointer-manipulating statements
where each statement can be executed any number of times and in any order.
For each statement, the analysis follows Figure 2 to generate a set of rules that
define constraints on the points-to solution pt. The rules can be read as follows.

– If a program has an allocation x := new() and this statement is labeled with
the unique integer i, then the solution must have aSi ∈ pt(x).

– If a program has the statement x := NULL, then it must be that aS0 ∈ pt(x).
– If the program has an assignment x := y then the solution must have pt(y) ⊆

pt(x), because x may hold any value that y can hold.
– If the program has a statement x := y.f and aSi ∈ pt(y), then it follows that

pt(aSi.f) ⊆ pt(x) because x may hold any value written to the f field of aSi.
– If the program has a statement x.f := y and aSi ∈ pt(x) then it must be that

pt(y) ⊆ pt(aSi.f).

These set constraints can be solved using a simple fix-point iteration, shown
in Algorithm 1. (Our tool uses a more efficient implementation [25].) For now,
ignore the loop on line 17. Once the solution is computed, we check all assertions
in the program. We say that an assertion assert (x 6= Null) is safe (i.e., the
assertion cannot be violated) if aS0 6∈ pt(x). We do not consider other kinds
of assertions in the program because our goal is just to show null-exception
safety. Andersen’s analysis complexity is cubic in the size of the program, and
for k-sparse programs, the worst case complexity is quadratic [26].

2.3 Static Single Assignment (SSA)

This section shows how a program transformation can improve the precision of
an alias analysis. Consider the program on the left in Figure 3. A flow-insensitive
analysis does not look at the order of statements. Under this abstraction, the
analysis cannot prove the safety of the assertion in this snippet of code because it
does not know that the assignment of Null to x only happens after the assertion.

To avoid such loss in precision, most practical implementations of alias anal-
ysis use the Single Static Assignment (SSA) form [5]. Roughly, SSA introduces
multiple copies of each original variable such that each variable in the new pro-
gram only has a single assignment. The SSA form of the snippet is shown on the

assume (x 6= Null);

y := x;

assert (x 6= Null);

z := x.f;

assume (x 6= Null);

cseTmp# := x;

y := cseTmp#;

assert (cseTmp# 6= Null);

z := cseTmp#.g;

Fig. 4. A program snippet before CSE (left) and after CSE (right)

right in Figure 3. Clearly, this program has the same semantics as the original
program. But a flow-insensitive analysis will now be able to show the safety of
the assertion in the program because the assignment of Null is to x2 whereas
the assertion is on x1.

3 Overview

This section presents an overview of our technique of using stronger program
transformations that add even more precision to the alias analysis compared to
the standard SSA. We start by using Common Subexpression Elimination [4]
and build towards using Global Value Numbering [15], which is used in our
implementation and experiments.

3.1 Common Subexpression Elimination

We demonstrate how we can leverage assume and assert statements to add pre-
cision to the analysis. Consider the program on the left in Figure 4. Once the
program control passes the assume statement, we know that x cannot point to
Null, hence the assertion is safe, irrespective of what preceded this code snip-
pet. Also, note that SSA renaming does not help prove the assertion in this case
(it is essentially a no-op for the program). We now make the case for a different
program transformation.

As a first step, we introduce a new local variable cseTmp# to the procedure
and assign it the value of x right after the assume. These new variables that we
introduce to the program will carry the tag “#” to distinguish them from other
program variables. For a tagged variable w#, we say that tagged(w#) is true.
These tagged variables carry the special invariant that they cannot be Null;
their only assignment will be after an assume statement that prunes away the
Null value. (The same reasoning applies to assert statements too, i.e. once
control passes a statement assert(x 6= Null), x cannot point to Null.)

After introducing the variable cseTmp#, we make use of a technique similar
to Common Subexpression Elimination (CSE) to replace all expressions that
are equivalent to cseTmp# with the variable itself, resulting in the program on
the right in Figure 4. This snippet is clearly equivalent to the original one. We
perform the alias analysis on this snippet as usual, but enforce that pt(cseTmp#)
cannot have aS0 because it cannot be Null. (See the loop on line 17 of Algorithm
1.) The analysis can now prove that the assertion is safe.

The process of finding equivalent expressions is not trivial. For instance,
consider the following program where we have introduced the variable cseTmp#.

assume (x.f 6= Null);

cseTmp# := x.f;

y.f := z;

z := x.f;

In the last assignment, x.f cannot be substituted by cseTmp#, because there is
an assignment to the field f in the previous statement. As there is no aliasing
information present at this point, we have to conservatively assume that y and x
could be aliases, thus, the assignment y.f := z can potentially change the value
of x.f, breaking its equivalence to cseTmp#.

3.2 Global Value Numbering

We improve upon the previous transformation by using a stronger method of
determining expression equalities. The methodology remains the same: we intro-
duce temporary variables that cannot be Null and use them to replace syntacti-
cally equivalent expressions. But this time we adapt the Global Value Numbering
(GVN) scheme to detect equivalent expressions. Consider the following program.
(For now, ignore the right-hand side of the figure after the =⇒.)

1 y := x.f.g; =⇒ t1 ← x, t2 ← t1.f, t3 ← t2.g, y← t3
2 z := y.h; =⇒ t3 ← y, t4 ← t3.h, z← t4
3 assume (z 6= Null); =⇒ add t4 to nonNullExprs

4 a := x.f; =⇒ t1 ← x, t2 ← t1.f, a← t2
5 b := a.g.h; =⇒ t2 ← a, t3 ← t2.g, t4 ← t3.h, b← t4
6 assert (b 6= Null); =⇒ check t4 ∈ nonNullExprs

7 c.g := d;

It is clear that z and b are equivalent at the assertion location, and since
z 6= Null, the assertion is safe. However, none of the previous methods would
allow us to prove the safety of the assertion. We adapt the GVN scheme to help
us establish the equality between z and b. We introduce the concept of terms
that will be used as a placeholder for subexpressions. The intuitive idea is that
equivalent subexpressions will be represented using the same term.

We start by giving an overview of the transformation for a single basic block,
and then generalize it to full procedure later in this section. For a single ba-
sic block, we walk through the statements in order and as we encounter a
new variable, we assign it a new term and remember this mapping in a dic-
tionary called hashValue. We also store the mapping from terms to other terms
through operators in a separate dictionary called hashFunction. For example,
if x is assigned term t1, and we encounter the assignment y := x.f, we store
hashFunction[f][t1] = t2 and assign the term t2 to y. We also maintain a sep-
arate list nonNullExprs of terms that are not null. Finally, for performing the
actual substitution, we maintain a dictionary defaultVar that maps terms to the
temporary variables that we introduce for non-null expressions.

We go through the program snippet starting at the first statement and move
down to the last statement. At statement i, we follow the description written

in the ith item below. This description is also shown on the right side of the
program snippet, after the =⇒ arrow.

1. Assign a new term t1 to x, and set hashValue[x] = t1. Then, set
hashFunction[f][t1] = t2, and hashFunction[g][t2] = t3. Finally the assign-
ment to y sets hashValue[y] = t3.

2. We already have hashValue[y] = t3, so assign hashFunction[g][t3] = t4. The
assignment to z sets hashValue[z] = t4.

3. We have hashValue[z] = t4. So, we add t4 to nonNullExprs. We cre-
ate a new temporary variable gvnTmp#, and construct an extra assign-
ment gvnTmp# := z, and add it after the assume statement. Because
hashValue[z] = t4, we also add defaultVar[t4] = gvnTmp#, which we will
use later for substitutions to all expressions that hash to t4.

4. We already have hashValue[x] = t1 and hashFunction[f][t1] = t2, so we set
hashValue[a] = t2.

5. Since hashValue[a] = t2, hashFunction[g][t2] = t3 and hashFunction[h][t3] =
t4, the hash value of the expression a.g.h is t4. We also have defaultVar[t4] =
gvnTmp#. At this point, we observe t4 being in nonNullExprs and substitute
the RHS a.g.h with gvnTmp#. Finally, we set hashValue[b] = t4.

6. Because hashValue[b] = t4 and defaultVar[t4] = gvnTmp# and nonNullExprs
contains t4, we replace the expression b with gvnTmp#.

The resulting code is shown below.

1 y := x.f.g;

2 z := y.h;

3 assume (z 6= Null);

4 gvnTmp# := z;

5 a := x.f;

6 b := gvnTmp#;

7 assert (gvnTmp# 6= Null);

8 c.g := d;

Clearly, we retain the invariant that #-tagged variables cannot be Null, and
it is now straightforward to prove the safety of the assertion. We also note that
the expression substitution is performed in a conservative manner. It is aborted
as soon as a subexpression is assigned to. For example, at line 8, we encounter
an assignment to the field g, so we remove g from the dictionary hashFunction.
This has the effect of g acting as a new field, and all terms referenced by this
field will now be assigned new terms.

The above transformation, in general, is performed on the entire procedure,
not just a basic block to fully exploit its potential. This occurs in two steps. First,
loops are lifted and converted to procedures (with recursion), so that the control-
flow of each resulting procedure is acyclic. Next, we perform a topological sort of
the basic blocks of a procedure and analyze the blocks in this order. This ensures
that by the time the algorithm visits a basic block, it has already processed all
predecessors of the block.

L1 :
assume (x 6= Null);

gvnTmp
#
1 := x;

goto L3;

L2 :
assume (x 6= Null);

gvnTmp
#
2 := x;

goto L3;

L3 :
assert (x 6= Null);

L1 :
assume (x 6= Null);

gvnTmp
#
1 := x;

goto L3;

L2 :
assume (x 6= Null);

gvnTmp
#
2 := x;

goto L3;

L3 :

gvnTmp
#
3 := x;

assert (gvnTmp
#
3 6= Null);

Fig. 5. A program snippet before GVN (left) and after GVN (right)

When analyzing a block, the algorithm considers all its predecessors and
takes the intersection of their nonNullExprs list and hashValue map. This is
because an expression is non-null only if it is non-null in all its predecessors and,
further, we can use a term for a variable only if it is associated with the same
term in all its predecessors. Finally, an important aspect of the algorithm is to
perform a sound substitution at the merge point of basic blocks. Consider the
code snippet on the left in Figure 5.

In this example, although x is available as a non-null expression in L3, we
cannot substitute x in the assertion by either gvnTmp#1 or gvnTmp#2 because nei-

ther preserves program semantics. Instead, we introduce a new variable gvnTmp#3
and add the assignment gvnTmp#3 := x right before the assertion in L3 and use
that for substituting x. This is achieved by the map var2expr in the main al-
gorithm. It maps the #-tagged variable to the expression it will substitute for.
In the above program, let’s say we assign the term t to the non-null expression
x. Hence, nonNullExprs[L1] and nonNullExprs[L2] both contain t. We also have

defaultVar[L1][t] = gvnTmp#1 and var2expr[gvnTmp#1] = x. Since t is available
from all predecessors of L3, we know that this term is non-null in L3. The ques-
tion is finding the expression corresponding to this term t and introducing a
new assignment for it. At this point, the map var2expr comes into play. We
pick a predecessor of L3, say L1. We look for the default variable of t and find
defaultVar[L1][t] = gvnTmp#1 , we then search for var2expr[gvnTmp#1] = x. At
this point, we find that the expression corresponding to term t is x, and we
introduce a new assignment gvnTmp#3 := x at the start of L3 and use this for
substitution of x in L3. The next section describes the algorithm formally.

4 Algorithm

We present the pseudocode of our program transformation in this section (Al-
gorithms 2 and 3). The transformation takes a program as input and produces
a semantically equivalent program with new #-tagged variables that can never
point to Null. This involves adding assignments for these new variables, and
substituting existing expressions with these variables whenever we determine
that the substitution will preserve semantics.

Algorithm 2 Algorithm to perform GVN

1: nonNullExprs = {} . block → non-null terms in block
2: var2expr = {} . #-tagged variable → expression
3: defaultVar = {} . block, term → variable for substitution
4: hashValue = {} . block, variable → term
5: hashFunction = {} . operator, terms → term
6: currBlock . current block
7: function DoGVN
8: for proc in program do
9: for block in proc.Blocks do

10: for stmt in block.Stmts do
11: if stmt is “assert expr 6= Null” or “assume expr 6= Null” then
12: gvnTmp# ← GetNewTaggedV ar()
13: s← “gvnTmp# := expr”
14: block.Stmts.Add(s)
15: var2expr[block][gvnTmp#]← expr

16: for proc in program do
17: sortedBlocks← TopologicalSort(proc.Blocks)
18: for block in sortedBlocks do
19: nonNullExprs[block]←

⋂
blk∈block.Preds nonNullExprs[blk]

20: hashValue[block]←
⋂

blk∈block.Preds hashValue[blk]
21: currBlock ← block
22: for term in nonNullExprs[block] do
23: expr← var2expr[defaultVar[blk][term]] . for some blk ∈ Preds
24: gvnTmp# ← GetNewSpecialV ar()
25: var2expr[gvnTmp#]← expr
26: s← “gvnTmp# := expr”
27: block.Stmts.Add(s)

28: for stmt in block.Stmts do
29: stmt← ProcessStmt(stmt)
30: if stmt is “gvnTmp# := expr” then
31: term← ComputeHash(expr)
32: nonNullExprs[block].Add(term)
33: defaultVar[block][term]← gvnTmp#

At a high level, the idea is to use assume and assert statements to identify non-
null expressions. We introduce fresh #-tagged variables and assign these non-null
expressions to them. Then, in a second pass, we compute a term corresponding
to each expression. These terms are assigned in a manner that if two expressions
have the same term, then they are equivalent to each other. If we encounter
an expression e with the same term as one of the non-null expressions e′, we
substitute e with the #-tagged variable corresponding to e′.

We start by describing the role of each data structure used in Algorithm 2.

– nonNullExprs stores the terms corresponding to non-null expressions of a
particular block.

– var2expr maps a #-tagged variable to the expression it is assigned to in
each block. This will be used to perform sound substitution at merge points
of basic blocks, as discussed in the last example of Section 3.2.

– defaultVar maps the term corresponding to an expression to the #-tagged
variable that will be used for its substitution. Whenever we compute the
term for an expression, if the term is present in nonNullExprs, we will use
defaultVar to find the #-tagged variable that is going to be used for the
substitution.

– hashValue maps variables to terms assigned to them in a particular block.
– hashFunction stores the mapping from a field and a term to a new term. It

is used to store the term for expressions with fields.
– currBlock keeps track of the current block and is used while calling the

helper functions.

Algorithm 3 Helper Functions for DoGVN

1: function ProcessStmt(stmt)
2: if stmt is “assume expr” or “assert expr” then
3: expr← GetExpr(expr)
4: return stmt
5: else if stmt is “v := expr” then
6: hashValue[currBlock][v]← ComputeHash(expr)
7: expr← GetExpr(expr)
8: return stmt
9: else if stmt is “v.f := expr” then

10: expr← GetExpr(expr)
11: v← GetExpr(v)
12: hashFunction.Remove(f)
13: return stmt
14: function GetExpr(expr)
15: if expr is v then
16: term← ComputeHash(v)
17: if nonNullExprs[currBlock] contains term then
18: return defaultVar[currBlock][term]

19: return v
20: if expr is v.f then
21: v← GetExpr(v)
22: return v.f
23: function ComputeHash(expr)
24: if expr is v then
25: if hashValue[currBlock] does not contain v then
26: hashValue[currBlock][v]← GetNewTerm()

27: return hashValue[currBlock][v]
28: else if expr is v.f then
29: term← ComputeHash(v)
30: if hashFunction[f] does not contain term then
31: hashFunction[f][term]← GetNewTerm()

32: return hashFunction[f][term]

We explain the algorithm step by step.

1. Lines 8 - 15 – In this first pass of the algorithm, we search for program
statements of the form “assert expr 6= Null” or “assume expr 6= Null”. This

guarantees that expr cannot be Null after this program location under all
executions. Hence, we introduce a new variable gvnTmp# and assign expr to
it. This mapping is also added to var2expr.

2. Line 17 – Before the second pass, we perform a topological sort on the
basic blocks according to the control-flow graph. This is necessary since
the information of nonNullExprs for the predecessors of a basic block is
needed before analyzing it. Note that control-flow graphs of procedures in our
language must be acyclic (we convert loops to recursion), thus a topological
sorting always succeeds.

3. Lines 18 - 27 – We compute the set of expressions that are non-null in all
predecessors. These expressions will also be non-null in the current block.
We also need the term for each variable in the current block, which also
comes from the intersection of terms from all predecessors. Finally, for all
the non-null expressions, we add an assignment since these expressions may
be available from different variables in different predecessors, as discussed in
Section 3.2.

4. Lines 28 - 33 – Finally, we process each statement in the current block. This
performs the substitution for each expression in the statement (GetExpr
function in Algorithm 3). GetExpr computes the term for the expression
(ComputeHash function in Algorithm 3), and if the term is contained in
nonNullExprs, the substitution is performed. Finally, if we encounter a store
statement, “v.f := expr”, we remove all mappings w.r.t. f in hashFunction.
So, for the future statements (and future blocks in the topological order),
new terms will be assigned to expressions related to field f.

Following Algorithm 2, we generate a semantically equivalent program, and
as we show in our experiments, will have improved precision with regard to
alias analysis. The main reason behind this improvement is that these #-tagged
variables can never contain aS0 in their points-to set, hence Null cannot flow
through these variables in the analysis, while earlier, there was no such restriction
and Null could flow freely.

5 Experimental Evaluation

We have implemented the algorithms presented in this paper for the Boogie
language [18]. Boogie is an intermediate verification language. Several front-ends
are available that compile source languages such as C/C++ [16,22] and C# [2]
to Boogie, making it a useful target for developing practical tools. (For C/C++,
we make the standard assumption that pointer arithmetic does not change the
allocation site of the pointer, and thus can be ignored for the alias analysis [29];
due to space constraints we do not describe these details in this paper.)

Our work fits into a broader verification effort. The Angelic Verification (AV)
project4 at Microsoft Research aims to design push-button technology for finding
software defects. In an earlier effort, AV was targeted to find null-pointer bugs [6].

4 https://www.microsoft.com/en-us/research/project/angelic-verification/

https://www.microsoft.com/en-us/research/project/angelic-verification/

Stats SSA only SSA with GVN
Bench KLOC Asserts Time(s) Asserts Time(s) GVN Asserts

Mod 1 3.2 1741 9.08 61 11.37 0.88 17
Mod 2 8.4 4035 11.34 233 17.62 1.13 45
Mod 3 6.5 4375 10.26 617 19.43 2.15 52
Mod 4 20.9 7523 24.04 543 33.99 2.43 123
Mod 5 30.9 11184 35.02 1881 59.84 7.11 232
Mod 6 37.8 12128 35.94 2675 70.71 11.13 452
Mod 7 37.2 6840 36.88 1396 53.24 3.44 127
Mod 8 43.8 12209 28.91 2854 62.27 5.38 475
Mod 9 56.6 19030 60.05 5444 106.61 12.40 508
Mod 10 76.5 39955 171.43 2887 839.58 475.08 372
Mod 11 23.5 6966 49.17 875 69.10 10.14 103
Mod 12 14.9 8359 24.57 820 59.13 13.41 210
Mod 13 22.1 11471 38.27 869 87.07 24.03 248
Mod 14 36.2 18026 48.56 2501 149.60 41.93 478
Mod 15 19.4 20555 55.07 586 269.35 134.06 131
Mod 16 54.0 16957 62.86 2821 127.67 30.46 342

Total 491.9 201354 701.45 27063 2036.58 775.16 3915

Table 1. Results showing the effect of SSA and GVN program transformations on the
ability of alias analysis to prove safety of non-null assertions.

Programs from the Windows codebase, in C/C++, were compiled down to Boo-
gie with assertions guarding every pointer access to check for null dereferences.
These Boogie programs were fed to a verification pipeline that applied heavy-
weight SMT-solver technology to reason over all possible program behaviors. To
optimize the verification time, an alias analysis is run at the Boogie level to re-
move assertions that can be proved safe by the analysis. As our results will show,
this optimization is necessary. The alias analysis is based on Andersen’s analysis,
as was described in Figure 2. We follow the algorithm given in Sridharan et al.’s
report [25] with the extra constraint that #-tagged variables cannot alias with
Null, i.e. they cannot contain the allocation site aS0. We can optionally per-
form the program transformation of Section 4 before running the alias analysis.
Our implementation is available open-source5.

We evaluate the effect of our program transformation on the precision of
alias analysis for checking safety of null-pointer assertions. The benchmarks are
described in the first three columns of Table 1. We picked 16 different modules
from the Windows codebase. The table lists an anonymized name for the module
(Bench), the lines of code in thousands (KLOC) and the number of assertions
(one per pointer dereference) in the code (Asserts). It is worth noting that the
first ten modules are the same as ones used in the study with AV [6], while the
rest were added later.

We execute our tool in two modes. In the first, we use SSA and then run the
alias analysis algorithm. In the second, we perform our GVN transformation on
top of SSA and then run the alias analysis algorithm. In each case, we list the
total time taken by the tool (Time(s)), including the time to run the transfor-

5 At https://github.com/boogie-org/corral, project AddOns\AliasAnalysis

https://github.com/boogie-org/corral

mation, and the number of assertions that were not proved safe (Asserts). In
the case of GVN, we also isolate and list the time taken by the GVN transforma-
tion itself (GVN). The experiments were run (sequentially, single-threaded) on a
server class machine with an Intel(R) Xeon(R) processor (single core) executing
at 2.4 GHz with 32 GB RAM.

It is clear from the table that GVN offers significant increase in precision.
With only the use of SSA, the analysis was able to prove the safety of 86.56%
of assertions, while with the GVN transformation, we can prune away 98.05%
of assertions. This is approximately a 7X reduction in the number of assertions
that remain. This pruning is surprising because the alias analysis is still context
and flow insensitive. Our program transformation crucially exploits the fact that
programmers tend to be defensive against null-pointer bugs, allowing the analysis
to get away with a very coarse abstraction. In fact, this level of pruning meant
that any level of investment in making the analysis more sophisticated (e.g., flow
sensitive) would have very diminished returns.

The alias analysis itself scales quite well: it finishes on about half a million
lines of code in approximately 700 seconds with just SSA (86.56% pruning) or
2000 seconds with GVN (98.05% pruning). We note that there is an increase in
the running time when using GVN. This happens because the transformation
introduces more variables, compared to just SSA. However, this increase in time
is more than offset by the improvement presented to the AV toolchain. For
example, with the GVN transformation, AV takes 11 hours to finish the first 10
modules, whereas with the SSA transformation alone it does not finish even in
24 hours. Furthermore, AV reports fewer bugs when using just SSA because the
extra computational efforts translate to a loss in program coverage as timeouts
are hit more frequently.

6 Related Work

Pointer analysis is a well-researched branch of static analysis. There are several
techniques proposed that interplay between context, flow and field sensitivity.
Our choice of using context-insensitive, flow-insensitive but field sensitive anal-
ysis is to pick a scalable starting point, after which we add precision at low cost.
The distinguishing factor in our work is: (1) the ability to leverage information
from assume and assert statements (or branch conditions) and (2) specializing
for the purpose of checking non-null assertions (as opposed to general aliasing
assertions). We very briefly list, in the rest of this section, some of the previous
work in adding precision to alias analysis or making it more scalable.

Context Sensitivity. Sharir and Pnueli [24] introduced the concept of call-strings
to add context-sensitivity to static analysis techniques. Call strings may grow
extremely long and limit efficiency, so Lhoták and Hendren [20] used k-limiting
approaches to limit the size of call strings. Whaley and Lam [28] instead use
Binary Decision Diagrams (BDDs) to scale a context sensitive analysis.

Flow sensitivity. Hardekopf and Lin [10] present a staged flow-sensitive analysis
where a less precise auxiliary pointer analysis computes def-use chains which is

used to enable the sparsity of the primary flow-sensitive analysis. The technique
is quite scalable on large benchmarks but they abstract away the assume state-
ments. De and D’Souza [7] compute a map from access paths to sets of abstract
objects at each program statement. This enables them to perform strong up-
dates at indirect assignments. The technique is shown to be scalable only for
small benchmarks, moreover, they also abstract away all assume statements. Fi-
nally, Lerch et al. [19] introduce the access-path abstraction, where access paths
rooted at the same base variable are represented by this base variable at control
flow merge points. The technique is quite expensive even on small benchmarks
(less than 25 KLOC) and do not deal with assume statements in any way.

Other techniques. Heintze and Tardieu [12] improved performance by using a
demand-driven pointer analysis, computing sufficient information to only deter-
mine points-to set of query variables. Fink et al. [8] developed a staged verifi-
cation system, where faster and naive techniques run as early stages to prune
away assertions that are easier to prove, which then reduces the load on more
precise but slow techniques that run later. Landi and Ryder [17] use conditional
may alias information to over-approximate the points-to sets of each pointer.
Context sensitivity is added using k-limiting approach, and a set of aliases is
maintained for every statement within a procedure to achieve flow-sensitivity.
Choi et al. [3] also follows [17] closely but uses sparse representations for the con-
trol flow graphs and use transfer functions instead of alias-generating rules. To
the best of our knowledge, none of these techniques are able to leverage assume
statements to improve precision.

7 Conclusion

This paper presents a program transformation that improves the efficiency of
alias analysis with minor scalability overhead. The transformation is proved to
be semantics preserving. Our evaluation demonstrates the merit of our approach
on a practical end-to-end scenario of finding null-pointer dereferences in software.

References

1. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. Ph.D. thesis, DIKU, University of Copenhagen (May 1994)

2. Barnett, M., Qadeer, S.: BCT: A translator from MSIL to Boogie (2012), seventh
Workshop on Bytecode Semantics, Verification, Analysis and Transformation

3. Choi, J.D., Burke, M., Carini, P.: Efficient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side effects. In: Principles of Programming
Languages. pp. 232–245 (1993)

4. Cocke, J.: Global common subexpression elimination. In: Proceedings of a Sympo-
sium on Compiler Optimization. pp. 20–24. ACM, New York, NY, USA (1970)

5. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (Oct 1991)

6. Das, A., Lahiri, S.K., Lal, A., Li, Y.: Angelic verification: Precise verification mod-
ulo unknowns. In: Computer Aided Verification (CAV). pp. 324–342 (2015)

7. De, A., D’Souza, D.: Scalable flow-sensitive pointer analysis for java with strong
updates. In: ECOOP. pp. 665–687. Springer (2012)

8. Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate
verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17(2),
9:1–9:34 (May 2008)

9. Gulwani, S., Necula, G.C.: Global value numbering using random interpretation.
In: Principles of Programming Languages, POPL. pp. 342–352 (2004)

10. Hardekopf, B., Lin, C.: Flow-sensitive pointer analysis for millions of lines of code.
In: Code Generation and Optimization (CGO). pp. 289–298 (2011)

11. Hasti, R., Horwitz, S.: Using static single assignment form to improve flow-
insensitive pointer analysis. In: Programming Language Design and Implemen-
tation (PLDI). pp. 97–105 (1998)

12. Heintze, N., Tardieu, O.: Demand-driven pointer analysis. In: Programming Lan-
guage Design and Implementation (PLDI). pp. 24–34 (2001)

13. Horwitz, S.: Precise flow-insensitive may-alias analysis is np-hard. ACM Trans.
Program. Lang. Syst. 19(1), 1–6 (Jan 1997)

14. Jones, N.D., Muchnick, S.S.: A flexible approach to interprocedural data flow anal-
ysis and programs with recursive data structures. In: Principles of Programming
Languages (POPL). pp. 66–74 (1982)

15. Kildall, G.A.: A unified approach to global program optimization. In: Principles of
Programming Languages. pp. 194–206 (1973)

16. Lal, A., Qadeer, S.: Powering the static driver verifier using corral. In: Foundations
of Software Engineering. pp. 202–212 (2014)

17. Landi, W., Ryder, B.G.: A safe approximate algorithm for interprocedural pointer
aliasing. SIGPLAN Not. 39(4), 473–489 (Apr 2004)

18. Leino, K.R.M.: This is boogie 2 (2008), https://github.com/boogie-org/boogie
19. Lerch, J., Spth, J., Bodden, E., Mezini, M.: Access-path abstraction: Scaling field-

sensitive data-flow analysis with unbounded access paths (t). In: Automated Soft-
ware Engineering (ASE). pp. 619–629 (2015)

20. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to
analysis using a bdd-based implementation. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 18(1), 3 (2008)

21. Microsoft: Static driver verifier, http://msdn.microsoft.com/en-us/library/

windows/hardware/ff552808(v=vs.85).aspx
22. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from veri-

fier implementations. In: Computer Aided Verification (CAV). pp. 106–113 (2014)
23. Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang. Syst.

16(5), 1467–1471 (Sep 1994)
24. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis,

chap. 7, pp. 189–234. Prentice-Hall, Englewood Cliffs, NJ (1981)
25. Sridharan, M., Chandra, S., Dolby, J., Fink, S.J., Yahav, E.: Alias analysis for

object-oriented programs. In: Aliasing in Object-Oriented Programming. Types,
Analysis and Verification, pp. 196–232. Springer (2013)

26. Sridharan, M., Fink, S.J.: The complexity of andersen’s analysis in practice. In:
Static Analysis Symposium (SAS). pp. 205–221 (2009)

27. Steensgaard, B.: Points-to analysis in almost linear time. In: Principles of Pro-
gramming Languages (POPL). pp. 32–41. ACM, New York, NY, USA (1996)

28. Whaley, J., Lam, M.S.: An efficient inclusion-based points-to analysis for strictly-
typed languages. In: Static Analysis Symposium. pp. 180–195 (2002)

29. Zheng, X., Rugina, R.: Demand-driven alias analysis for c. In: Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 197–208. POPL ’08, ACM, New York, NY, USA (2008)

https://github.com/boogie-org/boogie
http://msdn.microsoft.com/en-us/library/windows/hardware/ff552808(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff552808(v=vs.85).aspx

A Proof of Correctness

We sketch the proof of the fact that the transformation introduced in Section 4
preserves semantics. This transformation performs a series of substitutions on
the original program. We prove the soundness of the substitutions performed by
the algorithm. To substitute an expression, say expr with a variable, say v at a
program location L, we need to prove the following two conditions.

– Assignment of v reaches L along every execution path.
– expr and v evaluate to the same value at L under all possible executions.

We follow the proof of each condition, together implying that the substitution
performed by the algorithm is sound.

A.1 First Condition

We follow the proof of the first condition. Note that substitution only occurs in
the function GetExpr(), (line 18 in Algorithm 3) and only by variables present
in the map defaultVar. Also, only #-tagged variables are added to defaultV ar
(line 33 in Algorithm 2). Hence, v is tagged with #. As is clear from the algo-
rithm, such a variable is assigned either at line 13 or line 26 in Algorithm 2.
Moreover, in both cases, this variable is generated afresh before constructing the
assignment. Therefore, v is assigned only once. Let this assignment location be
S. It suffices to show that S dominates L (Location A dominates location B if
every path from the entry block to B goes through A). We will prove this using
strong induction on the blocks sorted in the topological order (making it a well
founded set). For the sake of convenience, let us say that S and L are basic
blocks. Hence, the statement that we will prove is the following.

Lemma 1. expr can be substituted by v in block B ⇒ S dominates B.

Proof. Let P (B) denote the property of block B that expr can be substituted by
v in B ⇒ S dominates B. We prove this property P by induction on the basic
blocks sorted in topological order. Since S dominates itself, P (S) is trivially true.
Now, consider P (B). When we arrive at block B in the second pass, we have
already processed all predecessors of B since we process blocks in the topological
order. Let t = ComputeHash(expr). Consider the following lemma.

Lemma 2. expr can be substituted by v in block B ⇒ nonNullExprs[B] contains
t.

Proof. Substitution occurs at line 18 of Algorithm 3, which can only be reached
if line 17 holds. Line 17 implies nonNullExprs[B] contains t.

Now, for nonNullExprs[B] to contain t, nonNullExprs[blk] should also contain t
for all blocks blk ∈ B.Preds, i.e. all predecessors of B. This follows from line 19
in Algorithm 2.

Lemma 3. nonNullExprs[B] contains t⇒ S dominates B.

Proof. We show Lemma 3 using strong induction on the blocks sorted in topo-
logical order. Clearly, Lemma 3 holds for S, as nonNullExprs[S] contains t and
S dominates itself. Since nonNullExprs[B] contains t, we know, due to line 19
in Algorithm 2, that nonNullExprs[blk] contains t for all predecessors blk of B.
Now, by induction hypothesis, since the lemma holds for all predecessors of B,
S dominates all predecessors of B. This implies that S dominates B.

Lemmas 2 and 3 together imply Lemma 1, which is a reformulation of the first
condition of the proof of correctness.

A.2 Second Condition

We sketch the proof of the second condition.

Lemma 4. If two expressions e1 and e2 at locations L1 and L2 respectively
evaluate to the same term t = ComputeHash(e1) = ComputeHash(e2), then e1
at L1 and e2 at L2 evaluate to the same value under all program executions.

Proof. We prove this lemma by an outer induction on the structure of the ex-
pression, and an inner induction on the blocks sorted in the topological or-
der. First, we prove this lemma when e1 and e2 are both variables. The map
hashValue stores the terms corresponding to each variable in a particular block.
Therefore, ComputeHash(e1) = hashValue[L1][e1], and ComputeHash(e2) =
hashValue[L2][e2], which imply hashValue[L1][e1] = hashValue[L2][e2]. Also, by
line 20 in Algorithm 2, we know that for a block B, hashValue[B] contains a
variable v only if it evaluates to the same term in all its predecessors. By the
inner induction hypothesis, this means that v evaluates to the same value in each
predecessor. Also, whenever an assignment of form “x := e” is encountered, the
term for e is assigned to x. Since this is the only way that two variables can have
the same term, we have the proof of Lemma 4 for variables.

Consider the case when e1 and e2 are expressions. Suppose e1 has the form
v1.f, while e2 has the form v2.g. Since ComputeHash(e1) = ComputeHash(e2),
we know that f = g, and ComputeHash(v1) = ComputeHash(v2). This is easy
to see from the fact that whenever hashFunction is updated (line 31 in Algo-
rithm 3), a new term is added to it. Now, by the outer induction hypothesis, we
have that v1 and v2 evaluate to the same value in all executions and since f = g,
we have that e1 and e2 evaluate to the same value under all executions. That
concludes the proof of Lemma 4.

Essentially, Lemma 4 entails that term is an abstract representation of the
value of an expression. Going back to our original proof of correctness, the
variable v substitutes expression expr (at line 18 in Algorithm 3) only when
v = defaultVar[L][t] where t = ComputeHash(expr). Also, defaultVar is up-
dated only when an assignment of the form v := expr is encountered (line 33
in Algorithm 3), and before this update, ProcessStmt is called on the assign-
ment. This sets hashV alue[S][v] = ComputeHash(expr). Combining the two
arguments above, we have

ComputeHash(v) at S = ComputeHash(expr) at L
ComputeHash(v) at L = ComputeHash(expr) at L

The last line follows from the fact that v is tagged with #, hence it is assigned
only once, and it is available at L due to the first condition in the proof of
correctness. With the two conditions proved, we have that the transformation
introduced in Algorithm 2 produces a semantically equivalent program.

	Precise Null Pointer Analysis ThroughGlobal Value Numbering

