Verified Linear Session-Typed Concurrent Programming

Ankush Das*

Frank Pfenning Carnegie Mellon University

PPDP 2020

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Communication protocol enforced by session types

- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Communication protocol enforced by session types

- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Communication protocol enforced by session types

$$\mathbf{bits} = \oplus \{\mathbf{b0} : \mathbf{bits}, \mathbf{b1} : \mathbf{bits}\}$$

- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Communication protocol enforced by session types

$$\mathbf{bits} = \oplus \{\mathbf{b0} : \mathbf{bits}, \mathbf{b1} : \mathbf{bits}\}$$

$queue_A = \&\{ins : A \multimap queue_A, \\ del : \oplus\{none : 1, \\ some : A \otimes queue_A\}\}$

$$\begin{aligned} \mathsf{queue}_A &= \&\{\mathbf{ins}: A \multimap \mathsf{queue}_A, \\ \mathbf{del}: \oplus\{\mathbf{none}: \mathbf{1}, \\ \mathbf{some}: A \otimes \mathsf{queue}_A\} \end{aligned}$$

When are the none and some branches taken? Can the size of queue be encoded in the type?

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Count the total number of messages!

Count the total number of messages!

Work done by Queue

Count the total number of messages!

w_i = Work done to process insertion
= 2n (n is the size of queue)
= 'ins' and 'e' travel to end of queue

Work done by Queue

Count the total number of messages!

w_i = Work done to process insertion
= 2n (n is the size of queue)
= 'ins' and 'e' travel to end of queue

Insertion: How do you refer to n in the queue type?

Refined Queue Type

 $queue_{A}[n] = \&\{ins : A \multimap queue_{A}[n+1], \\ del : \oplus\{none : ?\{n = 0\}. 1, \\ some : ?\{n > 0\}. A \otimes queue_{A}[n-1]\}\}$

Refined Queue Type

queue_A[n] = &{ins : A
$$\multimap$$
 queue_A[n + 1],
del : \oplus {none : ?{n = 0}. 1,
some : ?{n > 0}. A \otimes queue_A[n - 1]}}

Index Refinement (Size of Queue)

Refined Queue Type

'none' branch: send (proof of) constraint {n=0}

- 'some' branch: send (proof of) constraint {n>0}
- Domain of constraints: Presburger Arithmetic

Two New Type Operators

Two New Type Operators

?{φ}. A

- Provider sends (proof of) φ, then continues to provide A
- Client receives (proof of) constraint φ

Two New Type Operators ?{φ}. A

- Provider sends (proof
 of) φ, then continues to
 provide A
- Client receives (proof of) constraint φ

- Provider receives (proof of) φ, then continues to provide A
- Client sends (proof of)
 constraint φ

Two New Type Operators ?{φ}. A !{φ}. A

- Provider sends (proof
 of) φ, then continues to
 provide A
- Client receives (proof of) constraint φ

- Provider receives (proof of) φ, then continues to provide A
- Client sends (proof of)
 constraint φ

Since Presburger arithmetic is decidable and only closed programs are executed, no need to exchange proofs/constraints at runtime

Contributions

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Contributions

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

```
proc q <- empty =
    case q (
        ins => x <- recv q ;
            t <- empty ;
            q <- elem x t
            | del => q.none ;
                 close q )
```



```
proc q <- empty =
    case q (
        ins => x <- recv q ;
            t <- empty ;
            q <- elem x t
            | del => q.none ;
                 close q )
```


Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Verified Linear Session-Typed Concurrent Programming

Verified Linear Session-Typed Concurrent Programming

Verified Linear Session-Typed Concurrent Programming

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Verified Linear Session-Typed Concurrent Programming

Verified Linear Session-Typed Concurrent Programming

```
proc q <- empty =
    case q (
        ins => x <- recv q ;
            t <- empty ;
            q <- elem{1} x t
            | del => q.none ;
            assert q {0 = 0} ;
            close q )
```

```
proc q <- elem{n} x t =
    case q (
        ins => y <- recv q ;
            t.ins ;
            send t y ;
            q <- elem{n+1} x t
        | del => q.some ;
            assert q {n > 0} ;
            send q x ;
            q <-> t )
```


proc q <- empty =
case q (
ins => x <- recv q ;
t <- empty ;
q <- elem{1} x t
del => q.none ;
assert q {0 = 0} ;
close q)

```
proc q <- elem{n} x t =
    case q (
        ins => y <- recv q ;
            t.ins ;
            send t y ;
            q <- elem{n+1} x t
        | del => q.some ;
            assert q {n > 0} ;
            send q x ;
            q <-> t )
```


proc q <- elem{n} x t =
case q (
ins => y <- recv q ;
t.ins ;
send t y ;
q <- elem{n+1} x t
del => q.some ;
assert q {n > 0} ;
send q x ;
q <-> t)

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning


```
proc q <- elem{n} x t =
    case q (
        ins => y <- recv q ;
            t.ins ;
            send t y ;
            q <- elem{n+1} x t
        | del => q.some ;
            assert q {n > 0} ;
            send q x ;
            q <-> t )
```

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Key Observation

sending a proof corresponds to an assertion receiving a proof corresponds to an assumption

Two New Constructs

assert x { ϕ }: send constraint ϕ along channel x

assume x $\{\phi\}$: receive constraint ϕ along channel x

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Formal Typing Judgment

\mathcal{V} ; C; $\Delta \vdash_{\Sigma} P :: (x : A)$

Process P uses channels in Δ and offers channel x : A under free variables \mathcal{V} satisfying constraint C

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Formal Typing Judgment

Process P uses channels in Δ and offers channel x : A under free variables \mathcal{V} satisfying constraint C

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

Process P uses channels in Δ and offers channel x : A under free variables \mathcal{V} satisfying constraint C

Verified Linear Session-Typed Concurrent Programming

Process P uses channels in Δ and offers channel x : A under free variables \mathcal{V} satisfying constraint C

Verified Linear Session-Typed Concurrent Programming

Process P uses channels in Δ and offers channel x : A under free variables \mathcal{V} satisfying constraint C

Verified Linear Session-Typed Concurrent Programming

Process P uses channels in Δ and offers channel x : A under free variables \mathcal{V} satisfying constraint C

Verified Linear Session-Typed Concurrent Programming

$$\frac{\mathcal{V}; \ C \vDash \phi \quad \mathcal{V}; \ C; \ \Delta \vdash P :: (x : A)}{\mathcal{V}; \ C; \ \Delta \vdash \text{assert } x \ \{\phi\}; \ P :: (x : ?\{\phi\}, A)} ?R$$

$$\frac{\mathcal{V}; C \land \phi; \Delta, (x:A) \vdash Q :: (z:C)}{\mathcal{V}; C; \Delta, (x:?\{\phi\}, A) \vdash \text{assume } x \{\phi\}; Q :: (z:C)} ?L$$

Typing Rules

$$C \text{ proves } \phi$$

$$\frac{\mathcal{V} ; C \vDash \phi \quad \mathcal{V} ; C ; \Delta \vdash P :: (x : A)}{\mathcal{V} ; C ; \Delta \vdash \text{ assert } x \{\phi\} ; P :: (x : ?\{\phi\}, A)} ?R$$

$$\frac{\mathcal{V}; C \land \phi; \Delta, (x:A) \vdash Q :: (z:C)}{\mathcal{V}; C; \Delta, (x:?\{\phi\}, A) \vdash \text{assume } x \{\phi\}; Q :: (z:C)} ?L$$

Typing Rules

$$C \text{ proves } \phi$$

$$\frac{\mathcal{V} ; C \vDash \phi \quad \mathcal{V} ; C ; \Delta \vdash P :: (x : A)}{\mathcal{V} ; C ; \Delta \vdash \text{ assert } x \ \{\phi\} ; P :: (x : ?\{\phi\}.A)} ?R$$

$$Add \phi \text{ to } C$$

$$\frac{\mathcal{V} ; C \land \phi ; \Delta, (x : A) \vdash Q :: (z : C)}{\mathcal{V} ; C ; \Delta, (x : ?\{\phi\}.A) \vdash \text{ assume } x \ \{\phi\} ; Q :: (z : C)} ?L$$

Too Many Asserts/Assumes! 14

$$nat[n] = \bigoplus \{succ : ?\{n > 0\}. nat[n - 1], zero : ?\{n = 0\}. 1\}$$

 $predecessor[n] : (x : nat[n + 1]) \vdash (y : nat[n])$

$$y \leftarrow predecessor[n] \ x =$$

case x (
succ $\Rightarrow y \leftrightarrow x$)

Too Many Asserts/Assumes! 14

$$nat[n] = \bigoplus \{succ : ?\{n > 0\}. nat[n - 1], zero : ?\{n = 0\}. 1\}$$

 $predecessor[n] : (x : nat[n + 1]) \vdash (y : nat[n])$

 $y \leftarrow predecessor[n] \ x =$ case x ($succ \Rightarrow y \leftrightarrow x)$ $y \leftarrow predecessor[n] \ x =$ case x ($succ \Rightarrow assume x \{n+1 > 0\};$ $y \leftrightarrow x$ $| zero \Rightarrow assume x \{n+1 = 0\};$ impossible)

Too Many Asserts/Assumes! 14

$$nat[n] = \bigoplus \{succ : ?\{n > 0\}. nat[n - 1], zero : ?\{n = 0\}. 1\}$$

 $predecessor[n] : (x : nat[n + 1]) \vdash (y : nat[n])$

 $y \leftarrow predecessor[n] \ x =$ $case \ x \ ($ $succ \Rightarrow y \leftrightarrow x)$ $y \leftarrow predecessor[n] \ x =$ $case \ x \ ($ $succ \Rightarrow assume \ x \ \{n+1 > 0\} \ ;$ $y \leftrightarrow x$ $| zero \Rightarrow assume \ x \ \{n+1 = 0\} \ ;$ impossible)

Insert asserts/assumes/impossible automatically?

Program Reconstruction

- Key Idea : Treat constraints as money and the reconstruction engine as a greedy salesperson
- Eagerly insert assumes (get money) and lazily insert asserts (pay money)
- Logically: type rules for assumes are invertible, therefore applied eagerly
- Formalized using the forcing calculus

Forcing Calculus

 \mathcal{V} ; C; $\Delta \vdash_{\Sigma} P :: (x : A)$

Forcing Calculus

$$\mathcal{V}; C; \Delta \vdash_{\Sigma} P ::: (x : A)$$
$$\mathcal{V}; C; \Delta; \Omega \vdash P ::: (x : A)$$

Forcing Calculus

Δ : linear context, corresponding assumes inserted
 Ω : ordered context, assumes to be inserted

Reconstruction Properties¹⁷

If \mathcal{V} ; C; \cdot ; $\Delta \vdash P :: (x : A)$, then \mathcal{V} ; C; $\Delta_i \vdash P :: (x : A)$.

Soundness

If \mathcal{V} ; C; $\Delta_i \vdash P :: (x : A)$, then \mathcal{V} ; C; \cdot ; $\Delta \vdash P :: (x : A)$.

Completeness

Verified Linear Session-Typed Concurrent Programming
Reconstruction Properties¹⁷

If \mathcal{V} ; C; \cdot ; $\Delta \vdash P :: (x : A)$, then \mathcal{V} ; C; $\Delta_i \vdash P :: (x : A)$.

Soundness

If \mathcal{V} ; C; $\Delta_i \vdash P :: (x : A)$, then \mathcal{V} ; C; \cdot ; $\Delta \vdash P :: (x : A)$.

Completeness

- Soundness: the program that the reconstruction engine generates is well-typed!
- Completeness: if there is a reconstruction possible, our engine will find it!

Examples in the Rast Programming Language

Verified Linear Session-Typed Concurrent Programming

Ankush Das* and Frank Pfenning

List Operations

type list{n} = +{cons : ?{n > 0}. A * list{n-1}, nil : ?{n = 0}. 1}

List Operations

type list{n} = +{cons : ?{n > 0}. A * list{n-1}, nil : ?{n = 0}. 1}

- decl cons{n} : (x : A) (t : list{n}) |- (l : list{n+1})
- decl append{n1}{n2} : (l1 : list{n1}) (l2 : list{n2}) |- (l : list{n1+n2})
- decl split{n} : (l : list{2*n}) |- (m : list{n} * list{n})
- decl reverse{n} : (l : list{n}) |- (m : list{n})
- decl map{n} : (k : list{n}) (m : mapper) $|-(l : list{n})$
- decl filter{n} : (s : selector) (k : list{n}) |- (l : ?m. ?{m <= n}. list{m})</pre>

Linear λ -Calculus

type val = +{ lam : exp -o exp }

Linear λ -Calculus

type val = +{ lam : exp -o exp }

expression sizes

type val{n} = +{lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1}}

Linear λ -Calculus

type val = +{ lam : exp -o exp }

expression sizes

type val{n} = +{lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1}}

decl eval{n} : (e : exp{n}) |- (v : ?k. ?{k <= n}. val{k})</pre>

size of value is smaller

Module	iLOC	eLOC	R (ms)
arithmetic	69	143	0.353
integers	90	114	0.200
linlam	54	67	0.734
list	244	441	1.534
primes	90	118	0.196
segments	48	65	0.239
ternary	156	235	0.550
theorems	79	141	0.361
tries	147	308	1.113
Total	977	1632	5.280

Before Reconstruction

Module	iLOC	eLOC	R (ms)
arithmetic	69	143	0.353
integers	90	114	0.200
linlam	54	67	0.734
list	244	441	1.534
primes	90	118	0.196
segments	48	65	0.239
ternary	156	235	0.550
theorems	79	141	0.361
tries	147	308	1.113
Total	977	1632	5.280

Before Reconstruction		on	After Reconstruction		onstruction
	Module	iLOC	eLOC	R (ms)	
	arithmetic	69	143	0.353	
	integers	90	114	0.200	
	linlam	54	67	0.734	
	list	244	441	1.534	
	primes	90	118	0.196	
	segments	48	65	0.239	
	ternary	156	235	0.550	
	theorems	79	141	0.361	
	tries	147	308	1.113	
	Total	977	1632	5.280	

Before Reconstruction		After Reconstruction			
	Module	iLOC	eLOC	R (ms)	
	arithmetic	69	143	0.353	
/ 70/	integers	90	114	0.200	
61%	linlam	54	67	0.734	
increase in	list	244	441	1.534	
lines of	primes	90	118	0.196	
	segments	48	65	0.239	
code after	ternary	156	235	0.550	
recon!	theorems	79	141	0.361	
	tries	147	308	1.113	
	Total	977	1632	5.280	

Before Reconstruction			After Reconstruction		
	Module	iLOC	eLOC	R (ms)	
	arithmetic	69	143	0.353	
/ 70/	integers	90	114	0.200	
01%	linlam	54	67	0.734	recon is
increase in	list	244	441	1.534	
lines of	primes	90	118	0.196	very
	segments	48	65	0.239	efficient!
code after	ternary	156	235	0.550	<2ms
recon!	theorems	79	141	0.361	
	tries	147	308	1.113	
	Total	977	1632	5 280	

The Rast Language

- Resource-Aware Session Types: refinement session types with support for verifying sequential and parallel complexity bounds automatically
- Lightweight verification using refinements
- Reconstruction: constructs pertaining to refinement layer are inserted automatically
- **Evaluation:** implemented standard benchmarks
- Availability: implementation open-source on <u>https://</u> <u>bitbucket.org/fpfenning/rast/src/master/rast/</u>