
Verified Linear
Session-Typed

Concurrent Programming

Ankush Das*

Frank Pfenning

Carnegie Mellon University

PPDP 2020

1

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types? 2

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types?

P Q

Provider Process Client Process
Channel

2

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types?

P Q

Provider Process Client Process

c : bits

Channel

bits = �{b0 : bits,b1 : bits}

2

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types?

P Q

Provider Process Client Process

c : bits

b0/b1

Channel

bits = �{b0 : bits,b1 : bits}

2

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

ba c d

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

ba c d

offers choice
of ins/del

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

ba c d

offers choice
of ins/del

recv element
of type A

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

ba c d

offers choice
of ins/del

recv element
of type A

behave as
queue again

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

ins, e

ba c d

offers choice
of ins/del

recv element
of type A

behave as
queue again

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

ba c d e

offers choice
of ins/del

recv element
of type A

behave as
queue again

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

del

ba c d e

offers choice
of ins/del

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

del

ba c d e

offers choice
of ins/del

send none if
queue is empty

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

del

ba c d e

offers choice
of ins/del

terminate

send none if
queue is empty

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

del

ba c d e

offers choice
of ins/del

send some
otherwise

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

del

ba c d e

offers choice
of ins/del

send some
otherwise

send element
of type A

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

del

ba c d e

offers choice
of ins/del

send some
otherwise

send element
of type A

behave as
queue again

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

b c d e

some, a

offers choice
of ins/del

send some
otherwise

send element
of type A

behave as
queue again

3

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Example: Queues

b c d e

3

When are the none and some branches taken?
Can the size of queue be encoded in the type?

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Work done by Queue 4

ba c d

Count the total number of messages!

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Work done by Queue 4

ins, e

ba c d

Count the total number of messages!

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Work done by Queue 4

ins, e

ba c d e

wi = Work done to process insertion
 = 2n (n is the size of queue)
 = ‘ins’ and ‘e’ travel to end of queue

Count the total number of messages!
ins, e ins, e ins, e ins, e

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Work done by Queue 4

ins, e

ba c d e

wi = Work done to process insertion
 = 2n (n is the size of queue)
 = ‘ins’ and ‘e’ travel to end of queue

Count the total number of messages!
ins, e ins, e ins, e ins, e

Insertion: How do you refer to n in the queue type?

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Refined Queue Type 5

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Refined Queue Type 5

Index Refinement
(Size of Queue)

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Refined Queue Type 5

Index Refinement
(Size of Queue)

▸ ‘none’ branch: send (proof of) constraint {n=0}

▸ ‘some’ branch: send (proof of) constraint {n>0}

▸ Domain of constraints: Presburger Arithmetic

Proof Constraints
(Sent by queue)

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Two New Type Operators 6

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Two New Type Operators 6

?{ɸ}. A
▸ Provider sends (proof

of) ɸ, then continues to
provide A

▸ Client receives (proof
of) constraint ɸ

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Two New Type Operators 6

?{ɸ}. A !{ɸ}. A
▸ Provider sends (proof

of) ɸ, then continues to
provide A

▸ Client receives (proof
of) constraint ɸ

▸ Provider receives (proof
of) ɸ, then continues to
provide A

▸ Client sends (proof of)
constraint ɸ

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Two New Type Operators 6

?{ɸ}. A !{ɸ}. A
▸ Provider sends (proof

of) ɸ, then continues to
provide A

▸ Client receives (proof
of) constraint ɸ

▸ Provider receives (proof
of) ɸ, then continues to
provide A

▸ Client sends (proof of)
constraint ɸ

Since Presburger arithmetic is decidable and
only closed programs are executed,

no need to exchange proofs/constraints at runtime

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Contributions
Session
Types

Rast Language

Resource
Analysis

Arithmetic
Refinements

7

LICS 18, ICFP 18 FSCD 20, CONCUR 20

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Contributions
Session
Types

Rast Language

Resource
Analysis

Arithmetic
Refinements

7

LICS 18, ICFP 18 FSCD 20, CONCUR 20

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 8

empty q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 8

empty
ins, x

q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 8

empty empty
t

q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 8

empty emptyelem

x : A

t
q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 8

empty emptyelem

x : A

t

empty
del

q : queue

q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 8

empty emptyelem

x : A

t

empty q : queue

q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 8

empty emptyelem

x : A

t

empty
none, close

q : queue

q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 9

elem

x : A

t : queue q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 9

ins, y
elem

x : A

t : queue q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 9

elem

x : A

t : queue q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 9

elem

x : A

t : queue
ins, y q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 9

elem

x : A

t : queue

elem

x : A

t : queue

q : queue

q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 9

elem

x : A

t : queue

elem

x : A

t : queue
del

q : queue

q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 9

elem

x : A

t : queue

elem

x : A

t : queue

q : queue

q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 9

elem

x : A

t : queue

elem

x : A

t : queue

q : queue

q : queue

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 9

elem

x : A

t : queue

elemt : queue

q : queue

q : queue
some, x

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Queues in Rast 9

elem

x : A

t : queue

elemt : queue

q : queue

q : queue
some, x

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Refined Queues in Rast 10

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Refined Queues in Rast 10

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Refined Queues in Rast 10

send constraint
Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Refined Queues in Rast 10

send constraint
Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Refined Queues in Rast 10

send constraint
Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Key Observation 11

sending a proof corresponds to an assertion
receiving a proof corresponds to an assumption

Two New Constructs

 assert x {ɸ}: send constraint ɸ along channel x

 assume x {ɸ}: receive constraint ɸ along channel x

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Formal Typing Judgment 12

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Process P uses channels in Δ and offers channel x : A
under free variables 𝓥 satisfying constraint 𝑪

Formal Typing Judgment 12

Free variables

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Process P uses channels in Δ and offers channel x : A
under free variables 𝓥 satisfying constraint 𝑪

Formal Typing Judgment 12

Free variables

Constraint satisfied by V

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Process P uses channels in Δ and offers channel x : A
under free variables 𝓥 satisfying constraint 𝑪

Formal Typing Judgment 12

Free variables

Constraint satisfied by V

Context (Channel Types)

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Process P uses channels in Δ and offers channel x : A
under free variables 𝓥 satisfying constraint 𝑪

Formal Typing Judgment 12

Free variables

Constraint satisfied by V

Context (Channel Types)

Process Expression

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Process P uses channels in Δ and offers channel x : A
under free variables 𝓥 satisfying constraint 𝑪

Formal Typing Judgment 12

Free variables

Constraint satisfied by V

Context (Channel Types)

Process Expression

Offered Channel Type

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Process P uses channels in Δ and offers channel x : A
under free variables 𝓥 satisfying constraint 𝑪

Typing Rules 13

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Typing Rules 13

𝑪 proves ɸ

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Typing Rules 13

𝑪 proves ɸ

Add ɸ to 𝑪

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Too Many Asserts/Assumes! 14

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Too Many Asserts/Assumes! 14

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Too Many Asserts/Assumes! 14

Insert asserts/assumes/impossible automatically?

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

▸ Key Idea : Treat constraints as money and the

reconstruction engine as a greedy salesperson

▸ Eagerly insert assumes (get money) and lazily insert

asserts (pay money)

▸ Logically: type rules for assumes are invertible,

therefore applied eagerly

▸ Formalized using the forcing calculus

Program Reconstruction 15

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Forcing Calculus 16

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Forcing Calculus 16

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

▸ Δ : linear context, corresponding assumes inserted

▸ Ω : ordered context, assumes to be inserted

Forcing Calculus 16

invertible
rules applied

invertible rules
not applied

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Reconstruction Properties 17

Soundness

Completeness

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Reconstruction Properties 17

Soundness

Completeness

▸ Soundness: the program that the reconstruction

engine generates is well-typed!

▸ Completeness: if there is a reconstruction possible,

our engine will find it!
Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Examples in the
Rast Programming
Language

18

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

List Operations 19

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

List Operations 19

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Linear λ-Calculus 20

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Linear λ-Calculus 20

expression sizes

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Linear λ-Calculus 20

expression sizes

size of value is smaller
Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Evaluation 21

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Evaluation 21

Before Reconstruction

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Evaluation 21

Before Reconstruction After Reconstruction

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Evaluation 21

Before Reconstruction After Reconstruction

67%
increase in

lines of
code after

recon!

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

Evaluation 21

Before Reconstruction After Reconstruction

67%
increase in

lines of
code after

recon!

recon is
very

efficient!
<2ms

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

▸ Resource-Aware Session Types: refinement session
types with support for verifying sequential and
parallel complexity bounds automatically

▸ Lightweight verification using refinements

▸ Reconstruction: constructs pertaining to refinement
layer are inserted automatically

▸ Evaluation: implemented standard benchmarks

▸ Availability: implementation open-source on https://
bitbucket.org/fpfenning/rast/src/master/rast/

The Rast Language 22

Verified Linear Session-Typed Concurrent Programming Ankush Das* and Frank Pfenning

https://bitbucket.org/fpfenning/rast/src/master/rast/
https://bitbucket.org/fpfenning/rast/src/master/rast/
https://bitbucket.org/fpfenning/rast/src/master/rast/
https://bitbucket.org/fpfenning/rast/src/master/rast/

