
Resource-Aware
Session Types for
Digital Contracts

Ankush Das
Carnegie Mellon University

February 27, 2019

Purdue University

1

▸ Programs to digitally facilitate the execution of a
transaction between distrusting parties

▸ Transactions are carried out by miners and stored
on a global distributed ledger, or blockchain

▸ User pays for the execution cost of transaction

Digital Contracts 2

▸ Programs to digitally facilitate the execution of a
transaction between distrusting parties

▸ Transactions are carried out by miners and stored
on a global distributed ledger, or blockchain

▸ User pays for the execution cost of transaction

Digital Contracts 2

set standard assigns
cost to each operation

Execution Model 3

Execution Model 3

User Miner
money (gas)

transaction (contract)

Execution Model 3

User Miner
money (gas)

transaction (contract)

global ledger
(blockchain)

new block

execute

Execution Model 3

User Miner
money (gas)

transaction (contract)

remaining money

global ledger
(blockchain)

new block

execute

Auction Contract 4

status: running

Auction Contract

Bidder 1

Bidder 3

Bidder 2

Bid 1

Bid 2

Bid 3

4

status: running

Auction Contract

Bidder 1

Bidder 3

Bidder 2

Bid 1

Bid 2

Bid 3

4

status: running

Auction Contract

Bidder 1

Bidder 3

Bidder 2

Bid 1

Bid 2

Bid 3

4

status: ended

Auction Contract

Bidder 1

Bidder 3

Bidder 2

Bid 1

Bid 2

Bid 3

4

status: ended

Auction Contract

Bidder 1

Bidder 3

Bidder 2

Bid 1

Bid 2 Bid 3

4

status: ended

Auction in Solidity 5

Auction in Solidity 6

Auction in Solidity 6

Hint: think of
the functions
as server-client
interactions

Auction in Solidity 6

What happens if
collect is called when
auction is running?

Hint: think of
the functions
as server-client
interactions

Auction in Solidity 6

What happens if
collect is called when
auction is running?

add require (status == ended);

Hint: think of
the functions
as server-client
interactions

Auction in Solidity 6

What happens if
collect is called when
auction is running?

add require (status == ended);

Protocol is not

statically enforced!
Hint: think of
the functions
as server-client
interactions

Auction in Solidity 7

Auction in Solidity 7

Hint: think of
the functions
as server-client
interactions

Auction in Solidity 7

What happens if
collect is called twice?

Hint: think of
the functions
as server-client
interactions

Auction in Solidity 7

What happens if
collect is called twice?

set pendingReturns[msg.sender] = 0

Hint: think of
the functions
as server-client
interactions

Auction in Solidity 7

What happens if
collect is called twice?

set pendingReturns[msg.sender] = 0

Linearity is not

enforced!
Hint: think of
the functions
as server-client
interactions

Auction in Solidity 8

Auction in Solidity 8

Auction in Solidity 8

‘send’ transfers control to
user who can call collect

Auction in Solidity 8

‘send’ transfers control to
user who can call collect

‘send’ should be the last instruction

Auction in Solidity 8

‘send’ transfers control to
user who can call collect

‘send’ should be the last instruction

Re-entrancy Attack

Reentrancy Attacks in News 9

Auction in Solidity 10

Auction in Solidity 10

Resource consumption?
User needs to pay appropriate gas

Auction in Solidity 10

Resource consumption?
User needs to pay appropriate gas

EVM cost
model

Auction in Solidity 10

Resource consumption?
User needs to pay appropriate gas

EVM cost
model

Automatic

Resource Analysis

Auction Protocol 11

Auction Protocol 11

bidding phase

Auction Protocol 11

bidding phase

id, money

Auction Protocol 11

bidding phase

id, money

recurse

Auction Protocol 11

bidding phase

id, money

recurse

ended phase

Auction Protocol 11

bidding phase

id, money

recurse

ended phase

id

Auction Protocol 11

bidding phase

id, money

recurse

ended phase

id

monalisa / money
recurse

Auction as a Session Type 12

Auction as a Session Type

Auction is the Provider | Bidder is the Client

12

Auction as a Session Type

sends status
of auction

Auction is the Provider | Bidder is the Client

12

Auction as a Session Type

sends status
of auction

offers choice
of bidding

Auction is the Provider | Bidder is the Client

12

Auction as a Session Type

sends status
of auction

offers choice
of bidding

receive id
and money

Auction is the Provider | Bidder is the Client

12

Auction as a Session Type

sends status
of auction

offers choice
of bidding

receive id
and money

recurse

Auction is the Provider | Bidder is the Client

12

Auction as a Session Type

sends status
of auction

offers choice
of bidding

receive id
and money

recurse

offers choice
to collect

Auction is the Provider | Bidder is the Client

12

Auction as a Session Type

sends status
of auction

offers choice
of bidding

receive id
and money

recurse

offers choice
to collect

sends result
of bidding

Auction is the Provider | Bidder is the Client

12

Auction as a Session Type

sends status
of auction

offers choice
of bidding

receive id
and money

recurse

offers choice
to collect

sends result
of bidding

send
Mona Lisa

Auction is the Provider | Bidder is the Client

12

Auction as a Session Type

sends status
of auction

offers choice
of bidding

receive id
and money

recurse

offers choice
to collect

sends result
of bidding

send
Mona Lisa

send back
bid

Auction is the Provider | Bidder is the Client

12

Talk Outline 13

Talk Outline 13

Session Types

Talk Outline 13

Session Types

Resource-Aware
Session Types

Work

LICS ’18

Talk Outline 13

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Talk Outline 13

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Programming
Digital Contracts

under review

Talk Outline 13

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Programming
Digital Contracts

under review

Future
Work

Talk Outline 13

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Programming
Digital Contracts

under review

Future
Work

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types? 14

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types?

P Q

Provider Process Client Process
Channel

14

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types?

P Q

Provider Process Client Process
Channel

14

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types?

P Q

Provider Process Client Process

c : bits

Channel

bits = �{b0 : bits,b1 : bits}

14

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types?

P Q

Provider Process Client Process

c : bits

b0/b1

Channel

bits = �{b0 : bits,b1 : bits}

14

Example: Queues

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

15

Example: Queues

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

15

Example: Queues

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

15

Example: Queues

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

behave as
queue again

15

Example: Queues

ins(e)

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

behave as
queue again

15

Example: Queues

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

behave as
queue again

15

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

15

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send none if
queue is empty

15

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

terminate

send none if
queue is empty

15

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

15

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

15

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

behave as
queue again

15

Example: Queues

b c d e

some(a)

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

behave as
queue again

15

Talk Outline 16

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Programming
Digital Contracts

under review

Future
Work

Talk Outline 16

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Programming
Digital Contracts

under review

Future
Work

Resource Analysis 17

Concurrent Programs

Resource Analysis 17

Work
Sequential Complexity

Execution time
on one processor

Concurrent Programs

Resource Analysis 17

Work
Sequential Complexity

Execution time
on one processor

Span
Parallel Complexity

Execution time on
arbitrarily many processors

Concurrent Programs

Resource Analysis 17

Work
Sequential Complexity

Execution time
on one processor

Span
Parallel Complexity

Execution time on
arbitrarily many processors

Concurrent Programs

Work done by Queue 18

ba c d

Count the total number of messages!

Work done by Queue 18

ins(e)

ba c d

Count the total number of messages!

Work done by Queue 18

ins(e)

ba c d e

wi = Work done to process insertion
 = 2n (n is the size of queue)
 = ‘ins’ and ‘e’ travel to end of queue

Count the total number of messages!
ins(e) ins(e) ins(e) ins(e)

Work done by Queue 18

del

ba c d e

wi = Work done to process insertion
 = 2n (n is the size of queue)
 = ‘ins’ and ‘e’ travel to end of queue

Count the total number of messages!

Work done by Queue 18

b c d e

some(a)

wd = Work done to process deletion
 = 2 (sends back ‘some’ and ‘a’)

wi = Work done to process insertion
 = 2n (n is the size of queue)
 = ‘ins’ and ‘e’ travel to end of queue

Count the total number of messages!

▸ Processes store potential

▸ Potential is exchanged via messages

▸ Potential is consumed to perform ‘work’

Potential Method 19

▸ Processes store potential

▸ Potential is exchanged via messages

▸ Potential is consumed to perform ‘work’

Potential Method 19

only at type level
not needed at runtime

▸ Processes store potential

▸ Potential is exchanged via messages

▸ Potential is consumed to perform ‘work’

Potential Method 19

User defined cost model
This talk: number of messages

only at type level
not needed at runtime

Queue Type 20

queueA[n] = &{ins : /2n(A (queueA[n+ 1]),

del : /2 � {none : 1,
some : A⌦ queueA[n� 1]}}

Queue Type 20

Index Refinement
(Size of Queue)

queueA[n] = &{ins : /2n(A (queueA[n+ 1]),

del : /2 � {none : 1,
some : A⌦ queueA[n� 1]}}

Queue Type 20

Index Refinement
(Size of Queue) Potential Annotation

queueA[n] = &{ins : /2n(A (queueA[n+ 1]),

del : /2 � {none : 1,
some : A⌦ queueA[n� 1]}}

Queue Type 20

Index Refinement
(Size of Queue) Potential Annotation

▸ receive 2n units of potential after ‘ins’

▸ receive 2 units of potential after ‘del’

▸ potential is consumed to exchange messages

queueA[n] = &{ins : /2n(A (queueA[n+ 1]),

del : /2 � {none : 1,
some : A⌦ queueA[n� 1]}}

Stacks vs Queues 21

Which one’s more efficient?

stackA[n] = &{ins : A (stackA[n+ 1],

del : /2 � {none : 1,
some : A⌦ stackA[n� 1]}}

queueA[n] = &{ins : /2n(A (queueA[n+ 1]),

del : /2 � {none : 1,
some : A⌦ queueA[n� 1]}}

Stacks vs Queues 21

Which one’s more efficient?

stackA[n] = &{ins : A (stackA[n+ 1],

del : /2 � {none : 1,
some : A⌦ stackA[n� 1]}}

queueA[n] = &{ins : /2n(A (queueA[n+ 1]),

del : /2 � {none : 1,
some : A⌦ queueA[n� 1]}}

Talk Outline 22

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Programming
Digital Contracts

under review

Future
Work

Talk Outline 22

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Programming
Digital Contracts

under review

Future
Work

Limitations of Session Types 23

Limitations of Session Types 23

Two Key Challenges

Limitations of Session Types 23

Channels are
linear, no sharing!

▸ Auction can have only
one bidder!

▸ To incorporate multiple
bidders, channels need
to be shared

Two Key Challenges

Limitations of Session Types 23

Channels are
linear, no sharing!

No functional
layer, no state!

▸ Auction can have only
one bidder!

▸ To incorporate multiple
bidders, channels need
to be shared

▸ Auction cannot store
list of players, mapping
of players to bids, etc.

▸ Needs integration with
a functional language

Two Key Challenges

Limitations of Session Types 23

Channels are
linear, no sharing!

No functional
layer, no state!

▸ Auction can have only
one bidder!

▸ To incorporate multiple
bidders, channels need
to be shared

▸ Auction cannot store
list of players, mapping
of players to bids, etc.

▸ Needs integration with
a functional language

Two Key Challenges

Explored in prior work, but never combined!

▸ Types stratified into linear and shared layers

▸ Modal operators connecting the layers

Shared Channels 24

Balzer and Pfenning, ICFP 2017

▸ Types stratified into linear and shared layers

▸ Modal operators connecting the layers

Shared Channels 24

Shifts a linear type to shared

Shifts a shared type to linear

"SL AL)

#SL AS)

Balzer and Pfenning, ICFP 2017

Shared Auction

Bidder 1

Bidder 3

Bidder 2

25

Shared Auction

Bidder 1

Bidder 3

Bidder 2

25

acquire!

Shared Auction

Bidder 1

Bidder 3

Bidder 2

25

acquire!

Shared Auction

Bidder 1

Bidder 3

Bidder 2

25

release!

Shared Auction

Bidder 1

Bidder 3

Bidder 2

25

release!

Shared Auction

Bidder 1

Bidder 3

Bidder 2

25

release!

Limitation (Independence Principle): shared
process cannot store any linear assets (no
money in the auction contract)

Shared Auction

Bidder 1

Bidder 3

Bidder 2

25

release!

Limitation (Independence Principle): shared
process cannot store any linear assets (no
money in the auction contract)

Prevents

Re-entrancy Attacks

▸ Integrate session types in a functional programming
language via a linear contextual monad

▸ Functional data structures isolated in a separate
context in the typing judgment

▸ In my case: integration with Resource-Aware ML
(Hoffmann, Das and Weng, POPL ’17)

Functional Layer 26

Toninho et. al., ESOP 2013

Shared Auction Type 27

Type checker fills in * annotations automatically

Shared Auction Type 27

Type checker fills in * annotations automatically

Shared Auction Type 27

shared: contract is
acquired before use

Type checker fills in * annotations automatically

Shared Auction Type 27

shared: contract is
acquired before use

receive 22 units of
potential

Type checker fills in * annotations automatically

Shared Auction Type 27

shared: contract is
acquired before use

receive 22 units of
potential

send back 7 units
of potential

Type checker fills in * annotations automatically

Shared Auction Type 27

shared: contract is
acquired before use

shared: contract is
released after use

receive 22 units of
potential

send back 7 units
of potential

Type checker fills in * annotations automatically

Running Auction 28

Running Auction 28

accept ‘acquire’ (↑S
L)

Running Auction 28

accept ‘acquire’ (↑S
L)

send status ‘running’

Running Auction 28

accept ‘acquire’ (↑S
L)

send status ‘running’

recv ‘id’ and ‘money’

Running Auction 28

accept ‘acquire’ (↑S
L)

send status ‘running’

recv ‘id’ and ‘money’

detach from client (↓S
L)

Running Auction 28

accept ‘acquire’ (↑S
L)

send status ‘running’

recv ‘id’ and ‘money’

detach from client (↓S
L)

add bid and money

Running Auction 28

accept ‘acquire’ (↑S
L)

send status ‘running’

recv ‘id’ and ‘money’

detach from client (↓S
L)

add bid and money

no work constructs!

Programming Contracts 29

▸ Protocol not explicit
in code, enforced
programmatically

▸ Resource (aka gas)
usage not analyzed

▸ Linearity of assets
(money) not enforced

▸ Prone to re-entrancy

▸ Session types express
protocol, enforced by
type checking

▸ Resource-aware types
express gas usage

▸ Linear type system
tracks assets

▸ No re-entrancy attack

Existing Languages
(e.g. Solidity)

Proposed Language
(Nomos)

Talk Outline 30

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Programming
Digital Contracts

under review

Future
Work

Talk Outline 30

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Programming
Digital Contracts

under review

Future
Work

▸ Tracking time in Nomos for time-specific contracts

▸ Evaluation of efficiency and scalability of Nomos

▸ Runtime monitoring to ensure Nomos contracts can
interact with ill-typed and untyped clients

▸ Deadlock detection of session-typed programs

▸ Integrating refinement types to prove stronger
invariants (e.g. money bid is equal to money
returned) (under review)

Future Directions 31

▸ Resource-Aware Session Types: track sequential
complexity using potential method

▸ Temporal Session Types: track parallel complexity
using temporal operators

▸ Resource-aware session types are great for
implementing digital contracts

▸ Types express contract protocol, track resource
usage, enforce linearity of assets, prevent re-
entrancy

Conclusion 32

Typing Judgment 33

 ; � ; � `q P :: (x : A)

Typing Judgment 33

 ; � ; � `q P :: (x : A)

Functional
Context

‣ All structural
rules

‣ Copying
semantics

‣ copied during
exchange

Typing Judgment 33

 ; � ; � `q P :: (x : A)

Functional
Context

‣ All structural
rules

‣ Copying
semantics

‣ copied during
exchange

Shared
Context

‣ All structural
rules

‣ Shared
Semantics

‣ no copying
of channels

Typing Judgment 33

 ; � ; � `q P :: (x : A)

Functional
Context

‣ All structural
rules

‣ Copying
semantics

‣ copied during
exchange

Shared
Context

‣ All structural
rules

‣ Shared
Semantics

‣ no copying
of channels

Linear
Context

‣ Only exhibits
exchange (no
weakening or
contraction)

‣ can’t discard
or duplicate

▸ Distinguish linear processes according to their roles

▸ Assets : can only refer to other linear assets ⇒
assign mode R (e.g. money, Mona Lisa)

▸ Contracts : can refer to other contracts or linear
assets ⇒ assign mode L (e.g. auction)

▸ Transactions : can refer to assets, contracts and
transactions ⇒ assign mode T (e.g. bidder)

Relaxing Independence 34

R < L < T

Talk Outline 35

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Programming
Digital Contracts

POPL ’20 (under review)

Future
Work

Talk Outline 35

Session Types

Resource-Aware
Session Types

Temporal
Session Types

Work Span

LICS ’18 ICFP ’18

Programming
Digital Contracts

POPL ’20 (under review)

Future
Work

▸ Time is defined using a cost model

▸ Cost model assigns a time cost to each operation

How is time defined? 36

▸ Time is defined using a cost model

▸ Cost model assigns a time cost to each operation

How is time defined? 36

RS cost model
Unit delay after each

receive and send

R cost model
Unit delay after

each receive

▸ Time is defined using a cost model

▸ Cost model assigns a time cost to each operation

How is time defined? 36

RS cost model
Unit delay after each

receive and send

R cost model
Unit delay after

each receive

▸ Expressed by inserting appropriate delays in the
source code, only the delays cost time

▸ Programmer specifies cost model, compiler
automatically inserts delays for type checking

Example: Bit Streams

bits = �{b0 : bits,b1 : bits, $: 1}

· ` two :: (c : bits)

37

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

bits = �{b0 : bits,b1 : bits, $: 1}

· ` two :: (c : bits)

37

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

bits = �{b0 : bits,b1 : bits, $: 1}

b0

· ` two :: (c : bits)

37

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

bits = �{b0 : bits,b1 : bits, $: 1}

b0

· ` two :: (c : bits)

37

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

· ` two :: (c : bits)

37

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

· ` two :: (c : bits)

37

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

$

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

· ` two :: (c : bits)

37

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

$

c : 1

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

· ` two :: (c : bits)

37

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

$close

c : 1

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

· ` two :: (c : bits)

37

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

$close

c : 1

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

Timing Information?· ` two :: (c : bits)

37

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

$close

c : 1

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

Timing Information?· ` two :: (c : bits)

Sending a message
causes unit delay

37

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

$close

c : 1

t = 0t = 1t = 2t = 3

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

Timing Information?· ` two :: (c : bits)

Sending a message
causes unit delay

37

Enforcing Time in the Type

bits = �{b0 : �bits,b1 : �bits, $: �1}

38

Enforcing Time in the Type

bits = �{b0 : �bits,b1 : �bits, $: �1}

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

c : bits

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

c : bits

t = 0

b0

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0

b0

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0

b0

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0t = 1

b0

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0t = 1

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0t = 1

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0t = 1

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

c : bits

t = 0t = 1t = 2

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

c : bits

$

t = 0t = 1t = 2

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

$

t = 0t = 1t = 2

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �1

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

$

t = 0t = 1t = 2

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �1

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

$

c : 1

t = 0t = 1t = 2t = 3

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

$close

c : 1

t = 0t = 1t = 2t = 3

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

38

Can we type the queue?

ba c d

39

Can we type the queue?

ins(e)

ba c d

39

Can we type the queue?

ins(e)

ba c d e

ins(e) ins(e) ins(e) ins(e)

39

Can we type the queue?

ins(e)

ba c d e

ins(e) ins(e) ins(e) ins(e)

▸ Next operator only expresses constant insertion rate

▸ But rate of insertion at the tail depends on the size of
the queue — longer the queue, slower the rate

▸ To maintain a constant rate at the tail, new elements
must be inserted at a faster rate than the previous one

39

Can we type the queue?

ins(e)

ba c d e

ins(e) ins(e) ins(e) ins(e)

▸ Next operator only expresses constant insertion rate

▸ But rate of insertion at the tail depends on the size of
the queue — longer the queue, slower the rate

▸ To maintain a constant rate at the tail, new elements
must be inserted at a faster rate than the previous one

39

I want
candies
faster!

▸ The Box Operator (⬜)
▸ Provider Action: always be ready to receive token

▸ Client Action: eventually send the token

▸ Provider doesn’t know when the token will come,
only the client does

▸ Different from ⃝ operator where both provider
and client knew the timing of message exchange

▸ The Diamond Operator (♢)

▸ Dual of the Box operator (provider and client flip)

Providing Flexibility 40

Response Time of Queues

queueA = ⇤ &{ins : �(⇤A (�3queueA)},
del : � � {none : �1,

some : �(⇤A⌦ �queueA)}}

41

Response Time of Queues

queueA = ⇤ &{ins : �(⇤A (�3queueA)},
del : � � {none : �1,

some : �(⇤A⌦ �queueA)}}

Can always accept ins/del messages

41

Response Time of Queues

queueA = ⇤ &{ins : �(⇤A (�3queueA)},
del : � � {none : �1,

some : �(⇤A⌦ �queueA)}}

Response time for insertion: 3

Can always accept ins/del messages

41

Response Time of Queues

queueA = ⇤ &{ins : �(⇤A (�3queueA)},
del : � � {none : �1,

some : �(⇤A⌦ �queueA)}}

Response time for insertion: 3

Response time for deletion: 1

Can always accept ins/del messages

41

Response Time of Queues

queueA = ⇤ &{ins : �(⇤A (�3queueA)},
del : � � {none : �1,

some : �(⇤A⌦ �queueA)}}

Response time for insertion: 3

Response time for deletion: 1

Can always accept ins/del messages

41

Precision FlexibilityWE ARE
HERE!

Stacks vs Queues
RS cost model

42

stackA = ⇤&{ins : �(⇤A (�stackA),

del : � � {none : �1,

some : �(⇤A⌦ �stackA)}}

queueA = ⇤&{ins : �(⇤A (�3queueA),

del : � � {none : �1,

some : �(⇤A⌦ �queueA)}}

Stacks vs Queues

Which one’s more efficient?

RS cost model

42

stackA = ⇤&{ins : �(⇤A (�stackA),

del : � � {none : �1,

some : �(⇤A⌦ �stackA)}}

queueA = ⇤&{ins : �(⇤A (�3queueA),

del : � � {none : �1,

some : �(⇤A⌦ �queueA)}}

Stacks vs Queues

Which one’s more efficient?

RS cost model

42

stackA = ⇤&{ins : �(⇤A (�stackA),

del : � � {none : �1,

some : �(⇤A⌦ �stackA)}}

queueA = ⇤&{ins : �(⇤A (�3queueA),

del : � � {none : �1,

some : �(⇤A⌦ �queueA)}}

▸ types define the timing of message exchanges

▸ provides precision and flexibility

▸ proved sound w.r.t. cost semantics tracking time

▸ conservative extension to typical session type system

▸ applies to all standard session types examples

▸ can be parameterized to count resource of interest

Contributions
Type system to analyze timing of message

exchanges of session-typed programs

43

