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Auction in Solidity

function bid() public payable {
bid = msg.value;
bidder = msg.sender;
pendingReturns[bidder] = bid;
if (bid > highestBid) {
highestBidder = bidder;
highestBid = bid;
s
¥

function collect() public returns (bool) {
require (msg.sender != highestBidder);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;
return true;

}
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function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
require (status == ended);
uint amount = pendingReturns([msg.sender];
msg.sender. (amount);
pendingReturns[msg.sender] = 0;
return true;

‘send’ transfers control to
user who can call collect

‘send’ should be the last instruction
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Reentrancy Attacks in News’

The DAO Attack"e’oe'lss.u.e Leads to

$60 Million Ether Theft

Michael del Castillo & ¥ N\
(® Jun 17, 2016 at 14:00 UTC e Updated Jun 18, 2016 at 14:46 UTC

NEWS

ETHEREUM

ChainSecurity: Ethereum’s Constantinople upgrade “enables
new Reentrancy Attack”

JANUARY 15, 2019, 3:12PM EDT

Clever Ethereum honeypot lets
coins come in but won'tlet them
back out

John Biggs @johnbiggs / 1 yearago E] Commen t
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Auction in Solidity “’

function collect() public returns (bool) {
require (msg.sender != highestBidder);
require (status == ended);
uint amount = pendingReturns[msg.senderl];
pendingReturns[msg.sender] = 0;
msg.sender. (amount) ;
return true;

Resource consumption?

User needs to pay appropriate gas

APPENDIX G. FEE SCHEDULE

The fee schedule G is a tuple of 31 scalar values corresponding to the relative costs, in gas, of a number of abstract
operations that a transaction may effect.

Name Value Description*®

(G- 0 Nothing paid for operations of the set W,¢o. Ev M C o St
Grase 2 Amount of gas to pay for operations of the set Wy, .

Guerylow 3 Amount of gas to pay for operations of the set Wyeryiow.

Glow 5 Amount of gas to pay for operations of the set Wy, . d I
(4 8 Amount of gas to pay for operations of the set W,,;q4- m o e

Ghigh 10 Amount of gas to pay for operations of the set Wy;g.

Geatcode 700 Amount of gas to pay for operations of the set W, icode-
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sends status

of auction

offers choice
of bidding

receive id
and money
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auction = @{running : &{bid : id — money —o auction},
ended : &{collect : id — ®{won : monalisa ® auction,
lost :/money ® auction}}}

offers choice
to collect

sends result send send back
of bidding Mona Lisa bid

Auction is the Provider | Bidder is the Client
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Example: Queues

/™

some(a)

offers choice send element behave as
of ins/del of type A queue again

™ w

queue, = &{ins: A —o queue,,

del : ©{none : 1, y
send some
otherwise |«

~_some : A ® queue, }}
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Work done by Queue -

Count the total number of messages!

/™

some(a)

wi = Work done to process insertion
= 2n (n is the size of queue)
= ‘ins’ and ‘e’ travel to end of queue

wd = Work done to process deletion
= 2 (sends back ‘some’ and ‘a’)
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only at type level
not needed at runtime
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User defined cost model

This talk: number of messages

» Potential is consumed to perform ‘work’
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Queue Type :

queuep [n] = &{ins : <*"(A —o queuen [n + 1]),
del : <* @ {none : 1,
some : A ® queuep n — 1]}}

Index Refinement

: Potential Annotation
(Size of Queue)

» receive 2n units of potential after ‘ins’
» receive 2 units of potential after ‘del’

» potential is consumed to exchange messages
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Two Key Challenges

Channels are No functional
linear, no sharing! layer, no state!
» Auction can have only » Auction cannot store
one bidder! list of players, mapping

, , of players to bids, etc.
» To incorporate multiple

bidders, channels need » Needs integration with
to be shared a functional language

Explored in prior work, but never combined!
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Balzer and Pfenning, ICFP 2017

» Types stratified into linear and shared layers

» Modal operators connecting the layers

TE A1, = Shifts a linear type to shared

iﬁ A s = Shifts a shared type to linear
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release!

\ g

Bidder |

Limitation (Independence Principle): shared
Bidder 3 process cannot store any linear assets (no
money in the auction contract)



Shared Auction

25



Functional Layer .

Toninho et. al., ESOP 2013

» Integrate session types in a functional programming
language via a linear contextual monad

» Functional data structures isolated in a separate
context in the typing judgment

» In my case: integration with Resource-Aware ML
(Hoffmann, Das and Weng, POPL ’17)
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shared: contract is
acquired before use

auction = 17<** ® {running : &{bid : id — money —o »’|>auction},
ended : &{collect : id —» ®{won /monalisa ® liauction,

v
receive 22 units of

potential

Type checker fills in * annotations automatically

shared: contract is
released after use

27

lost(: money ® »|auction}}}

send back 7 units
of potential
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Running Auction :

auction = 17<* @ {running : &{bid : id — money —o »’|auction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa<—runb< M| =
la < accept sa ; —

>

accept ‘acquire’ (13)

la.running ; — .
case la send status ‘running’
(bid = r < recv la ;
m < recv la; — recv ‘id’ and ‘money’
sa <— detach la I~
m.value ; ~—>

detach from client ({3)
UV 4 recv m ;

b' = addbid b (r,v) ; ,
M add <—(M ,,)n " »| add bid and money

sa < runb’ < M’ ml)

no work constructs!




Programming Contracts ~

Existing Languages Proposed Language

(e.g. Solidity) (Nomos)

» Protocol not explicit » Session types express
in code, enforced protocol, enforced by
programmatically type checking

» Resource (aka gas) » Resource-aware types
usage not analyzed express gas usage

» Linearity of assets » Linear type system
(money) not enforced tracks assets

» Prone to re-entrancy » No re-entrancy attack
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Future Directions 4

» Tracking time in Nomos for time-specific contracts
» Evaluation of efficiency and scalability of Nomos

» Runtime monitoring to ensure Nomos contracts can
interact with ill-typed and untyped clients

» Deadlock detection of session-typed programs

» Integrating refinement types to prove stronger
invariants (e.g. money bid is equal to money
returned) (under review)



Conclusion 32

» Resource-Aware Session Types: track sequential
complexity using potential method

» Temporal Session Types: track parallel complexity
using temporal operators

» Resource-aware session types are great for
implementing digital contracts

» Types express contract protocol, track resource
usage, enforce linearity of assets, prevent re-
entrancy
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Typing Judgment :

U:I'; AFP:(x:A)
M

Shared
Context

Linear
Context

Functional
Context

» All structural
rules

» All structural
rules

» Shared
Semantics

> Only exhibits
exchange (no

weakening or
contraction)

> Copying
semantics

can’t discard
or duplicate

> copied during
exchange

> no copying
of channels




Relaxing Independence *

» Distinguish linear processes according to their roles

» Assets : can only refer to other linear assets =
assigh mode R (e.g. money, Mona Lisa)

» Contracts : can refer to other contracts or linear
assets = assigh mode L (e.g. auction)

» Transactions : can refer to assets, contracts and
transactions = assign mode T (e.g. bidder)

R<L<T
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How is time defined? &

» Time is defined using a cost model

» Cost model assigns a time cost to each operation

‘R cost model ‘RS cost model

Unit delay after Unit delay after each
each receive receive and send

» Expressed by inserting appropriate delays in the
source code, only the delays cost time

» Programmer specifies cost model, compiler
automatically inserts delays for type checking
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Timing Information?

Sending a message
causes unit delay
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Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $ : O1}

Next Operator - expresses unit delay

C « two =

c.bO ; delay ;

c.bl ; delay ;

c.$ ; delay;
close c
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» Next operator only expresses constant insertion rate

» But rate of insertion at the tail depends on the size of
the queue — longer the queue, slower the rate

» To maintain a constant rate at the tail, new elements
must be inserted at a faster rate than the previous one



Can we type the queue! ~

—UArATArara

ins(e)

| want
candies
faster!

» Next operator only expresses constant insertion rate

» But rate of insertion at the tail depends on the size of
the queue — longer the queue, slower the rate

» To maintain a constant rate at the tail, new elements
must be inserted at a faster rate than the previous one



Providing Flexibility “

» The Box Operator (

)

» Provider Action: always be ready to receive token

» Client Action: eventually send the token

» Provider doesn’t know when the token will come,

only the client does

» Different from () operator where both provider
and client knew the timing of message exchange

» The Diamond Operator (<)

» Dual of the Box operator (provider and client flip)



Response Time of Queues *

queuep =

&A{ins : O

del : O @ {none : O1,

A —o O%queue,)},

some : O

A ® Oqueuep)}}
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Response Time of Queues *

queuep = [J &{ins : O(JA — O%queue, )},
' del : O @ {none:: O1,
Somel';: O(LA ® QqueueA)}}

\* 2 “
Can always accept ins/del messages |

Response time for insertion: 3

Response time for deletion: | g

Precision % Flexibility



Stacks vs Queues 5

RS cost model

stacka = & {ins : O(LJA —o Ostackny ),
del : O ® {none : O1,
some : O(JA ® Ostacka ) }}

queuep = & {ins : O(LA — O°queue, ),
del : O @ {none : O1,
some : O(LJA ® Oqueuen ) }}
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Stacks

vs Queues .

RS cost model

stacka = & {ins : O

A — Ostackpy ),

AN del : O & {none : O1,

some : O(LJA ® Ostacka )}}

A — O*queue, ),

b {none : O1,
some : O([JA ® Oqueuen ) }}

Which one’s more efficient?



Contributions .

Type system to analyze timing of message
exchanges of session-typed programs

» types define the timing of message exchanges

» provides precision and flexibility

» proved sound w.r.t. cost semantics tracking time

) conservative extension to typical session type system

» applies to all standard session types examples

» can be parameterized to count resource of interest



