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What happens if 
collect is called twice?

set pendingReturns[msg.sender] = 0
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enforced!
Hint: think of 
the functions 
as server-client 
interactions
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Resource consumption? 
User needs to pay appropriate gas

EVM cost 
model

Automatic

Resource Analysis
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id, money

recurse

ended phase

id

monalisa / money
recurse
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c : bits
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Channel
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b c d e

some(a)

wd = Work done to process deletion 
     = 2 (sends back ‘some’ and ‘a’)

wi = Work done to process insertion 
    = 2n (n is the size of queue) 
    = ‘ins’ and ‘e’ travel to end of queue

Count the total number of messages!
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▸ Potential is consumed to perform ‘work’

Potential Method 19

User defined cost model 
This talk: number of messages

only at type level 
not needed at runtime
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No functional 
layer, no state!

▸ Auction can have only 
one bidder! 

▸ To incorporate multiple 
bidders, channels need 
to be shared

▸ Auction cannot store 
list of players, mapping 
of players to bids, etc. 

▸ Needs integration with 
a functional language

Two Key Challenges

Explored in prior work, but never combined!
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Shifts a linear type to shared

Shifts a shared type to linear

"SL AL )

#SL AS )

Balzer and Pfenning, ICFP 2017
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release!

Limitation (Independence Principle): shared 
process cannot store any linear assets (no 
money in the auction contract)

Prevents

Re-entrancy Attacks



▸ Integrate session types in a functional programming 
language via a linear contextual monad 

▸ Functional data structures isolated in a separate 
context in the typing judgment 

▸ In my case: integration with Resource-Aware ML 
(Hoffmann, Das and Weng, POPL ’17)

Functional Layer 26

Toninho et. al., ESOP 2013
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shared: contract is 
acquired before use

shared: contract is 
released after use

receive 22 units of 
potential

send back 7 units 
of potential

Type checker fills in * annotations automatically
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Running Auction 28

accept ‘acquire’ (↑S
L )

send status ‘running’

recv ‘id’ and ‘money’

detach from client (↓S
L)

add bid and money

no work constructs!
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▸ Protocol not explicit 
in code, enforced 
programmatically 

▸ Resource (aka gas) 
usage not analyzed 

▸ Linearity of assets 
(money) not enforced 

▸ Prone to re-entrancy

▸ Session types express 
protocol, enforced by 
type checking 

▸ Resource-aware types 
express gas usage 

▸ Linear type system 
tracks assets 

▸ No re-entrancy attack

Existing Languages 
(e.g. Solidity)

Proposed Language 
(Nomos)
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▸ Tracking time in Nomos for time-specific contracts 

▸ Evaluation of efficiency and scalability of Nomos 

▸ Runtime monitoring to ensure Nomos contracts can 
interact with ill-typed and untyped clients 

▸ Deadlock detection of session-typed programs 

▸ Integrating refinement types to prove stronger 
invariants (e.g. money bid is equal to money 
returned) (under review)

Future Directions 31



▸ Resource-Aware Session Types: track sequential 
complexity using potential method 

▸ Temporal Session Types: track parallel complexity 
using temporal operators 

▸ Resource-aware session types are great for 
implementing digital contracts 

▸ Types express contract protocol, track resource 
usage, enforce linearity of assets, prevent re-
entrancy

Conclusion 32
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 ; � ; � `q P :: (x : A)

Functional 
Context 

‣ All structural 
rules 

‣ Copying 
semantics 

‣ copied during 
exchange

Shared 
Context 

‣ All structural 
rules 

‣ Shared 
Semantics 

‣ no copying  
of channels

Linear 
Context 

‣ Only exhibits 
exchange (no 
weakening or 
contraction) 

‣ can’t discard 
or duplicate



▸ Distinguish linear processes according to their roles 

▸ Assets : can only refer to other linear assets ⇒ 
assign mode R (e.g. money, Mona Lisa) 

▸ Contracts : can refer to other contracts or linear 
assets ⇒ assign mode L (e.g. auction) 

▸ Transactions : can refer to assets, contracts and 
transactions ⇒ assign mode T (e.g. bidder)

Relaxing Independence 34

R < L < T
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▸ Time is defined using a cost model 

▸ Cost model assigns a time cost to each operation

How is time defined? 36

RS cost model 
Unit delay after each 

receive and send

R cost model 
Unit delay after 

each receive

▸ Expressed by inserting appropriate delays in the 
source code, only the delays cost time 

▸ Programmer specifies cost model, compiler 
automatically inserts delays for type checking
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c ← two = 
c.b0 ; 
c.b1 ; 
c.$   ; 

close c

$close
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▸ The Box Operator (⬜)
▸ Provider Action: always be ready to receive token 

▸ Client Action: eventually send the token 

▸ Provider doesn’t know when the token will come, 
only the client does 

▸ Different from  ⃝  operator where both provider 
and client knew the timing of message exchange 

▸ The Diamond Operator (♢)

▸ Dual of the Box operator (provider and client flip)

Providing Flexibility 40
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Stacks vs Queues
RS cost model

42
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▸ types define the timing of message exchanges 

▸ provides precision and flexibility 

▸ proved sound w.r.t. cost semantics tracking time 

▸ conservative extension to typical session type system 

▸ applies to all standard session types examples 

▸ can be parameterized to count resource of interest

Contributions
Type system to analyze timing of message  

exchanges of session-typed programs
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