Resource-Aware
Session Types for
Digital Contracts

Ankush Das
Carnegie Mellon University
February 27, 2019

Purdue University

Digital Contracts

» Programs to digitally facilitate the execution of a
transaction between distrusting parties

» Transactions are carried out by miners and stored
on a global distributed ledger, or blockchain

» User pays for the execution cost of transaction

Digital Contracts

» Programs to digitally facilitate the execution of a
transaction between distrusting parties

» Transactions are carried out by miners and stored
on a global distributed ledger, or blockchain

» User pays for the execution cost of transaction

set standard assigns

cost to each operation

Execution Model

Execution Model

Miner

money (gas)

User

transaction (contract)

Execution Model

User

money (gas)

transaction (contract)

execute

global ledger

blocl
(blockchain) new block

Execution Model

e

money (gas)

transaction (contract)

execute

remaining money

global ledger

blocl
(blockchain) new block

Auction Contract

status: running

4

Bidder |

Bidder 2

Bidder 3

Auction Contract

*x * 7 V4
B i d I \’Qg;ﬁ“‘

Bid 2

status: running

A

Bidder |

Bidder 2

Bidder 3

Auction Contract

status: running

A

Bidder |

Bidder 2

Bidder 3

Auction Contract

status: ended

Auction Contract

ut

Bidder |

@

Bidder 2

Bidder 3

status: ended

Auction Contract

Bidder |

% Bid 2 Bid 3

Bidder 2

Bidder 3 & status: ended

Auction in Solidity

function bid() public payable {
bid = msg.value;
bidder = msg.sender;
pendingReturns[bidder] = bid;
if (bid > highestBid) {
highestBidder = bidder;
highestBid = bid;
s
¥

function collect() public returns (bool) {
require (msg.sender != highestBidder);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;
return true;

}

Auction in Solidity

function collect() public returns (bool) {

require (msg.sender != highestBidder);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;

return true;

}

Auction in Solidity

’function collect() public returns (bool) {

require (msg.sender != highestBidder);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;

return true;

}

Hint: think of
the functions
as server-client
interactions

Auction in Solidity

' function collect() public returns (bool) {

require (msg.sender != highestBidder);
uint amount = pendingReturns([msg.sender];
msg.sender. (amount);

return true;

Hint: think of

: 5011\ v | the functions
collect is called when L/ s server-client

auction is running? W T L interactions

What happens if

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender != highestBidder);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;

return true;

}

What happens if ARt Hint: think of
0111\ | the functions

collect is called when L/ as server-client
auction is running? WY AL interactions

add require (status == ended);

Auction in Solidity

Hint: think of
the functions
as server-client
interactions

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
require (status == ended);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;
return true;

}

Auction in Solidity 7

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
require (status == ended);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;
return true;

}

Hint: think of
the functions
as server-client
interactions

Auction in Solidity 7

function collect() public returns (bool) {
require (msg.sender != highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.sender];

msg.sender. (amount) ;
return true;

}

Hint: think of

What happens if | the functions
N .7 as server-client
interactions

collect is called twice?

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender != highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.sender];

msg.sender. (amount) ;
return true;

}

. (& Hint: think of
What happens ’f T the functions

collect is called twice? as server-client
Interactions

set pendingReturns[msg.sender] = 0

Auction in Solidity 7

Hint: think of
the functions
as server-client
interactions

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
require (status == ended);
uint amount = pendingReturns([msg.sender];
msg.sender. (amount);
pendingReturns[msg.sender] = 0;
return true;

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
require (status == ended);
uint amount = pendingReturns([msg.sender];
msg.sender. (amount);
pendingReturns[msg.sender] = 0;
return true;

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
require (status == ended);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount);
pendingReturns[msg.sender] = 0;
return true;

‘send’ transfers control to

user who can call collect

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
require (status == ended);
uint amount = pendingReturns([msg.sender];
msg.sender. (amount);
pendingReturns[msg.sender] = 0;
return true;

‘send’ transfers control to
user who can call collect

‘send’ should be the last instruction

Auction in Solidity

Reentrancy Attacks in News’

The DAO Attack"e’oe'lss.u.e Leads to

$60 Million Ether Theft

Michael del Castillo & ¥ N\
(® Jun 17, 2016 at 14:00 UTC e Updated Jun 18, 2016 at 14:46 UTC

NEWS

ETHEREUM

ChainSecurity: Ethereum’s Constantinople upgrade “enables
new Reentrancy Attack”

JANUARY 15, 2019, 3:12PM EDT

Clever Ethereum honeypot lets
coins come in but won'tlet them
back out

John Biggs @johnbiggs / 1 yearago E] Commen t

Auction in Solidity

function collect() public returns (bool) {

}

require (msg.sender != highestBidder);
require (status == ended);

uint amount = pendingReturns[msg.sender];
pendingReturns[msg.sender] = 0;
msg.sender. (amount) ;

return true;

10

Auction in Solidity ‘

function collect() public returns (bool) {
require (msg.sender != highestBidder);
require (status == ended);
uint amount = pendingReturns([msg.sender];
pendingReturns[msg.sender] = 0;
msg.sender. (amount) ;
return true;

Resource consumption?

User needs to pay appropriate gas

Auction in Solidity “’

function collect() public returns (bool) {
require (msg.sender != highestBidder);
require (status == ended);
uint amount = pendingReturns[msg.senderl];
pendingReturns[msg.sender] = 0;
msg.sender. (amount) ;
return true;

Resource consumption?

User needs to pay appropriate gas

APPENDIX G. FEE SCHEDULE

The fee schedule G is a tuple of 31 scalar values corresponding to the relative costs, in gas, of a number of abstract
operations that a transaction may effect.

Name Value Description*®

(G- 0 Nothing paid for operations of the set W,¢o. Ev M C o St
Grase 2 Amount of gas to pay for operations of the set Wy, .

Guerylow 3 Amount of gas to pay for operations of the set Wyeryiow.

Glow 5 Amount of gas to pay for operations of the set Wy, . d I
(4 8 Amount of gas to pay for operations of the set W,,;q4- m o e

Ghigh 10 Amount of gas to pay for operations of the set Wy;g.

Geatcode 700 Amount of gas to pay for operations of the set W, icode-

Auction in Solidity ‘

Auction Protocol

11

fat

Auction Protocol

bidding phase

11

Auction Protocol

bidding phase

id, money

11

Auction Protocol

bidding phase

id, money

recurse

11

Auction Protocol

bidding phase

id, money

W
ended phase

11

Auction Protocol

blddmg phase

% id, money
W

ended phase

id
- >

11

Auction Protocol

blddmg phase

% id, money
W
ended phase

% -
—_—
W

monalisa / money

11

Auction as a Session Type *

auction = @{running : &{bid : id — money —o auction},
ended : &{collect : id — ®{won : monalisa ® auction,
lost : money ® auction}}}

Auction as a Session Type *

auction = @{running : &{bid : id — money —o auction},
ended : &{collect : id — ®{won : monalisa ® auction,
lost : money ® auction}}}

Auction is the Provider | Bidder is the Client

Auction as a Session Type *

sends status
of auction

auction = @{running : &{bid : id — money —o auction},
ended : &{collect : id — ®{won : monalisa ® auction,
lost : money ® auction}}}

Auction is the Provider | Bidder is the Client

Auction as a Session Type *

sends status offers choice
of auction of bidding

auction = @{running : &{bid : id — money —o auction},
ended : &{collect : id — ®{won : monalisa ® auction,
lost : money ® auction}}}

Auction is the Provider | Bidder is the Client

Auction as a Session Type *

sends status offers choice receive id
of auction of bidding and money

auction = @{running : &{bid : id — money —o auction},
ended : &{collect : id — ®{won : monalisa ® auction,
lost : money ® auction}}}

Auction is the Provider | Bidder is the Client

Auction as a Session Type *

sends status offers choice receive id
of auction of bidding and money

recurse

auction = @{running : &{bid : id — money —o auction},
ended : &{collect : id — ®{won : monalisa ® auction,
lost : money ® auction}}}

Auction is the Provider | Bidder is the Client

Auction as a Session Type *

sends status offers choice receive id
of auction of bidding and money

recurse

auction = @{running : &{bid : id — money —o auction},
ended : &{collect : id — ®{won : monalisa ® auction,
lost : money ® auction}}}

offers choice
to collect

Auction is the Provider | Bidder is the Client

Auction as a Session Type *

sends status

of auction

offers choice
of bidding

receive id
and money

recurse

auction = @{running : &{bid : id — money —o auction},
ended : &{collect : id — ®{won : monalisa ® auction,
lost : money ® auction}}}

offers choice

to collect

sends result
of bidding

Auction is the Provider | Bidder is the Client

Auction as a Session Type *

sends status

of auction

offers choice
of bidding

receive id
and money

recurse

auction = @{running : &{bid : id — money —o auction},
ended : &{collect : id — ®{won : monalisa ® auction,
lost :/money ® auction}}}

offers choice

to collect

sends result
of bidding

send
Mona Lisa

Auction is the Provider | Bidder is the Client

Auction as a Session Type *

sends status

of auction

offers choice
of bidding

receive id
and money

recurse

auction = @{running : &{bid : id — money —o auction},
ended : &{collect : id — ®{won : monalisa ® auction,
lost :/money ® auction}}}

offers choice
to collect

sends result send send back
of bidding Mona Lisa bid

Auction is the Provider | Bidder is the Client

Talk Outline

13

Talk Outline

Session Types

13

Talk Outline

Session Types
Work
Resource-Aware
Session Types

13

Talk Outline

Work

Resource-Aware
Session Types

Session Types

Span

Temporal
Session Types

13

Talk Outline

Session Types

Work Span

Resource-Aware Temporal
Session Types Session Types

Programming
Digital Contracts

under review

13

Talk Outline

Session Types

Work Span

Resource-Aware Temporal
Session Types Session Types

LICS ’18 Future . ICFP’18
Work ;

Programming
Digital Contracts

under review

13

Talk Outline

Session Types

Work Span

Resource-Aware Temporal
Session Types Session Types

LICS I8 Future ICFP 18
Work ,

Programming
Digital Contracts

under review

13

What are Session Types!?

» Implement message-passing concurrent programs
» Communication via typed bi-directional channels

» Communication protocol enforced by session types

14

What are Session Types? *

» Implement message-passing concurrent programs
» Communication via typed bi-directional channels

» Communication protocol enforced by session types

ﬂ Channel a

Provider Process Client Process

What are Session Types? *

» Implement message-passing concurrent programs
» Communication via typed bi-directional channels

» Communication protocol enforced by session types

Channel
Provider Process Client Process

What are Session Types? *

» Implement message-passing concurrent programs
» Communication via typed bi-directional channels

» Communication protocol enforced by session types

bits = ®{b0 : bits, b1l : bits}

Channel
Provider Process Client Process

What are Session Types? *

» Implement message-passing concurrent programs
» Communication via typed bi-directional channels

» Communication protocol enforced by session types
bits = ®{b0 : bits, b1l : bits}

Channel
Provider Process Client Process

Example: Queues

queue, = &{ins: A —o queue,,
del : ©{none : 1,
some : A ® queuep }}

15

Example: Queues

offers choice
of ins/del

N

queue, = &{ins: A —o queue,,

del : ©{none : 1,
some : A ® queuep }}

15

Example: Queues

offers choice
of ins/del

N

recv element
of type A

\

queue, = &{ins: A —o queue,,

del : ©{none : 1,
some : A ® queuep }}

15

Example: Queues

offers choice
of ins/del

queue, = &{ins: A

N

recv element
of type A

\

behave as
queue again

/

—O queueA,

del : ©{none : 1,

some : A ® queuep }}

15

Example: Queues

/D

ins(e)

offers choice
of ins/del

queue, = &{ins: A

N

recv element
of type A

\

behave as
queue again

/

—O queueA,

del : ©{none : 1,

some : A ® queuep }}

15

Example: Queues

offers choice recv element behave as
of ins/del \ of type A queue again
v/

queue, = &{ins: A —o queue,,
del : ©{none : 1,
some : A ® queuep }}

Example: Queues

/D

offers choice
of ins/del

N

queue, = &{ins: A —o queue,,

del : ©{none : 1,
some : A ® queuep }}

15

Example: Queues

/D

offers choice
of ins/del

N

queue, = &{ins: A —o queue,,

del : ©{none : 1,
send none if -

queue is empty|* some : A ® queuep }}

Example: Queues

/D

offers choice
of ins/del

N

queue, = &{ins: A —o queue,,

del : @{none : 17 [terminate
send none if - .
queue is empty|* some : A ® queuep }}

Example: Queues

/D

offers choice

of ins/del \
queue, = &{ins: A —o queue,,
del : ©{none : 1,
send some

~_some : A ® queuep }}

otherwise |«

Example: Queues

/D

offers choice
of ins/del

N

send element
of type A

queue, = &{ins: A —o queue,,

send some
otherwise

del : ©{none : 1,

~_some : A ® queuep }}

15

Example: Queues

/D

offers choice send element behave as
of ins/del of type A queue again

™ w

queue, = &{ins: A —o queue,,

del : ©{none : 1, y
send some
otherwise |«

~_some : A ® queue, }}

Example: Queues

/™

some(a)

offers choice send element behave as
of ins/del of type A queue again

™ w

queue, = &{ins: A —o queue,,

del : ©{none : 1, y
send some
otherwise |«

~_some : A ® queue, }}

Talk Outline

Session Types

Work J Span

Resource-Aware Temporal
Session Types Session Types

LICS ’18 Future . ICFP’18
Work ;

Programming
Digital Contracts

under review

16

Talk Outline

Work

Resource-Aware
Session Types

LICS I8

under review

Span

16

Resource Analysis

Concurrent Programs

17

Resource Analysis

Concurrent Programs

Work
Sequential Complexity

Execution time
oh one processor

17

Resource Analysis ’

Concurrent Programs

“ ‘. 77
|

Work Span
Sequential Complexity Parallel Complexity
Execution time Execution time on

on one processor arbitrarily many processors

Resource Analysis

Concurrent Programs

Work
Sequential Complexity

Execution time
oh one processor

17

Work done by Queue

Count the total number of messages!

18

Work done by Queue

Count the total number of messages!

/DR

ins(e)

18

Work done by Queue -

Count the total number of messages!

i

ins(e)

wi = Work done to process insertion
= 2n (n is the size of queue)
= ‘ins’ and ‘e’ travel to end of queue

Work done by Queue -

Count the total number of messages!

/D

wi = Work done to process insertion
= 2n (n is the size of queue)
= ‘ins’ and ‘e’ travel to end of queue

Work done by Queue -

Count the total number of messages!

/™

some(a)

wi = Work done to process insertion
= 2n (n is the size of queue)
= ‘ins’ and ‘e’ travel to end of queue

wd = Work done to process deletion
= 2 (sends back ‘some’ and ‘a’)

Potential Method

» Processes store potential

» Potential is exchanged via messages

» Potential is consumed to perform ‘work’

19

Potential Method

» Processes store potential

only at type level
not needed at runtime

» Potential is exchanged via messages

» Potential is consumed to perform ‘work’

19

Potential Method

» Processes store potential

only at type level
not needed at runtime

» Potential is exchanged via messages

User defined cost model

This talk: number of messages

» Potential is consumed to perform ‘work’

19

Queue Type :

queuep [n] = &{ins : <*" (A —o queuen [n + 1]),
del : <* @ {none : 1,
some : A ® queuep n — 1]} }

Queue Type !

queuep [n] = &{ins : <*"(A —o queuen [n + 1]),
del : <* @ {none : 1,
some : A ® queuep n — 1]} }

Index Refinement
(Size of Queue)

Queue Type :

queuep [n] = &{ins : <*"(A —o queuen [n + 1]),
del : <* @ {none : 1,
some : A ® queuep n — 1]} }

Index Refinement
(Size of Queue)

Potential Annotation

Queue Type :

queuep [n] = &{ins : <*"(A —o queuen [n + 1]),
del : <* @ {none : 1,
some : A ® queuep n — 1]}}

Index Refinement

: Potential Annotation
(Size of Queue)

» receive 2n units of potential after ‘ins’
» receive 2 units of potential after ‘del’

» potential is consumed to exchange messages

Stacks vs Queues ’

stacka [n| = &{ins: A —o stacka [n + 1],
del : <* @ {none : 1,
some : A ® stacka|n — 1|}}

queuen [n] = &{ins : 42“(A —o queuep [n + 1}),
del : <* @ {none : 1,
some : A ® queuep [Il — 1]}}

Which one’s more efficient?

Stacks vs Queues ’

stacka [n| = &{ins: A —o stacka [n + 1],
del : <* @ {none : 1,
some : A ® stacka|n — 1|}}

queuep [n] = &{ins : <*"(A —o queuea [n + 1]),

del : <* @ {none : 1,

some : A ® queuep [Il — 1]}}

Which one’s more efficient?

Talk Outline

Session Types

Work V Span
Resource-Aware Temporal
Session Types (Session Types
Future . ICFP’| 8
aret (D

Programming
Digital Contracts

under review

22

Talk Outline
v

v

Programming
Digital Contracts

under review

22

Limitations of Session Types*

Limitations of Session Types*

Two Key Challenges

Limitations of Session Types*

Two Key Challenges

Channels are
linear, no sharing!

» Auction can have only
one bidder!

» To incorporate multiple
bidders, channels need
to be shared

Limitations of Session Types*

Two Key Challenges

Channels are No functional
linear, no sharing! layer, no state!
» Auction can have only » Auction cannot store
one bidder! list of players, mapping

, , of players to bids, etc.
» To incorporate multiple

bidders, channels need » Needs integration with
to be shared a functional language

Limitations of Session Types*

Two Key Challenges

Channels are No functional
linear, no sharing! layer, no state!
» Auction can have only » Auction cannot store
one bidder! list of players, mapping

, , of players to bids, etc.
» To incorporate multiple

bidders, channels need » Needs integration with
to be shared a functional language

Explored in prior work, but never combined!

Shared Channels 8

Balzer and Pfenning, ICFP 2017

» Types stratified into linear and shared layers

» Modal operators connecting the layers

Shared Channels 8

Balzer and Pfenning, ICFP 2017

» Types stratified into linear and shared layers

» Modal operators connecting the layers

TE A1, = Shifts a linear type to shared

iﬁ A s = Shifts a shared type to linear

Shared Auction &

2
2

Bidder |

Bidder 3

Shared Auction &

2
2

Bidder |

Bidder 3

Shared Auction &

Bidder |

Bidder 3

Shared Auction &

release!

Bidder |

EEEEEEEEEN
“

Bidder 2 .

Bidder 3

Shared Auction &

release!

2
2

Bidder |

Bidder 3

Shared Auction &

release!

\ g

Bidder |

Limitation (Independence Principle): shared
Bidder 3 process cannot store any linear assets (no
money in the auction contract)

Shared Auction

25

Functional Layer .

Toninho et. al., ESOP 2013

» Integrate session types in a functional programming
language via a linear contextual monad

» Functional data structures isolated in a separate
context in the typing judgment

» In my case: integration with Resource-Aware ML
(Hoffmann, Das and Weng, POPL ’17)

Shared Auction Type ~

auction = TE<* ® {running : &{bid : id — money —o >*liauction},
ended : &{collect : id —» ®{won : monalisa ® lls_auction,
lost : money ® l>*lfauction}}}-

Type checker fills in * annotations automatically

Shared Auction Type ~

auction = TE<22 @ {running : &{bid : id — money —o >7lEauction},
ended : &{collect : id —» ®{won : monalisa ® J,fauction,
lost : money ® >2lfauction}}}

Type checker fills in * annotations automatically

Shared Auction Type ~

shared: contract is
acquired before use

auction = 17<** ® {running : &{bid : id — money —o »’|?auction},
ended : &{collect : id —» ®{won : monalisa ® J,Eauction,
lost : money ® >2liauction}}}

Type checker fills in * annotations automatically

Shared Auction Type ~

shared: contract is
acquired before use

auction = 17<** ® {running : &{bid : id — money —o »’|?auction},
ended : &{collect : id —» ®{won : monalisa ® J,fauction,
lost : money ® >2,Liauction}}}

v
receive 22 units of

potential

Type checker fills in * annotations automatically

Shared Auction Type ~

shared: contract is
acquired before use

auction = 17<** ® {running : &{bid : id — money —o »’|>auction},
ended : &{collect : id —» ®{won ymonalisa ® liauction,
lost(: money ® >2,Lfauction}}}

v
receive 22 units of send back 7 units
potential of potential

Type checker fills in * annotations automatically

Shared Auction Type

shared: contract is
acquired before use

auction = 17<** ® {running : &{bid : id — money —o »’|>auction},
ended : &{collect : id —» ®{won /monalisa ® liauction,

v
receive 22 units of

potential

Type checker fills in * annotations automatically

shared: contract is
released after use

27

lost(: money ® »|auction}}}

send back 7 units
of potential

Running Auction :

auction = 17<* @ {running : &{bid : id — money —o »’|auction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa < runb< M [=
la < accept sa ;
[a.running ;
case la
(bid = r < recv la ;
m < recv la ;
sa < detach la ;
m.value ;
v 4— recv m ;
b = addbid b (r,v) ;
M' < add < M m ;
sa < runb’ < M’ ml)

Running Auction :

auction = 17<* @ {running : &{bid : id — money —o »’|auction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa < runb< M [=
la < accept sa ; —
[a.running ;
case la
(bid = r < recv la ;
m < recv la ;
sa < detach la ;
m.value ;
v 4— recv m ;
b = addbid b (r,v) ;
M' < add < M m ;
sa < runb’ < M’ ml)

>

accept ‘acquire’ (13)

Running Auction :

auction = 17<* @ {running : &{bid : id — money —o »’|auction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa<—runb< M| =
la < accept sa ; —
la.running ; —
case la send status ‘running’
(bid = r < recv la ;
m < recv la ;
sa < detach la ;
m.value ;
V 4 recv m ;
b’ = addbid b (r,v) ;
M' < add < M m ;
sa < runb’ < M’ ml)

>

accept ‘acquire’ (13)

Running Auction :

auction = 17<* @ {running : &{bid : id — money —o »’|auction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)

sa < runb< M [=
> € e 9 TS
la < accept sa ; — accept ‘acquire’ (7))
la.running ; —
> ¢ *)
case la send status ‘running
(bid = r < recv la ;
.\ °
m < recv la ; - recv ‘id’ and ‘money’
sa < detach la ;
m.value ;

V 4 recv m ;

b’ = addbid b (r,v) ;
M' < add < M m ;
sa < runb’ < M’ ml)

Running Auction :

auction = 17<* @ {running : &{bid : id — money —o »’|auction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)

sa < runb <+ M| = -
¢ °)
la < accept sa ; — "| accept ‘acquire (T L)
la.running ; — .
case la send status ‘running’
(bid = r < recv la ;
m < recv la ; — “d’ and ’
: recv ‘id’ and ‘money
sa < detach la ;
m.value ; T : S
detach from client ({})
V < recv m ;

b’ = addbid b (r,v) ;
M' < add < M m ;
sa < runb’ < M’ ml)

Running Auction :

auction = 17<* @ {running : &{bid : id — money —o »’|auction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa<—runb< M| =
la < accept sa ; —

>

accept ‘acquire’ (T3)

la.running ; — .
case la send status ‘running’
(bid = r < recv la ;
m < recv la; — recv ‘id’ and ‘money’
sa <— detach la I~
m.value ; ~—>

detach from client ({3)
UV 4 recv m ;

b = addbid b (r,v) ; :
M’ « add « M m »| add bid and money

sa < runb’ < M’ ml)

Running Auction :

auction = 17<* @ {running : &{bid : id — money —o »’|auction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa<—runb< M| =
la < accept sa ; —

>

accept ‘acquire’ (13)

la.running ; — .
case la send status ‘running’
(bid = r < recv la ;
m < recv la; — recv ‘id’ and ‘money’
sa <— detach la I~
m.value ; ~—>

detach from client ({3)
UV 4 recv m ;

b' = addbid b (r,v) ; ,
M add <—(M ,,)n " »| add bid and money

sa < runb’ < M’ ml)

no work constructs!

Programming Contracts ~

Existing Languages Proposed Language

(e.g. Solidity) (Nomos)

» Protocol not explicit » Session types express
in code, enforced protocol, enforced by
programmatically type checking

» Resource (aka gas) » Resource-aware types
usage not analyzed express gas usage

» Linearity of assets » Linear type system
(money) not enforced tracks assets

» Prone to re-entrancy » No re-entrancy attack

Talk Outline

Session Types

Work J Span

Resource-Aware Temporal
Session Types (Session Types
Future . ICFP 18
et (D
Programming
Digital Contracts (

under review

30

Talk Outline

Session Types

Work i’{

Resource-Aware
Session Types

/

Futurei
Work .

Programming
Digital Contracts l

under review

Span

Temporal
Session Types

30

Future Directions 4

» Tracking time in Nomos for time-specific contracts
» Evaluation of efficiency and scalability of Nomos

» Runtime monitoring to ensure Nomos contracts can
interact with ill-typed and untyped clients

» Deadlock detection of session-typed programs

» Integrating refinement types to prove stronger
invariants (e.g. money bid is equal to money
returned) (under review)

Conclusion 32

» Resource-Aware Session Types: track sequential
complexity using potential method

» Temporal Session Types: track parallel complexity
using temporal operators

» Resource-aware session types are great for
implementing digital contracts

» Types express contract protocol, track resource
usage, enforce linearity of assets, prevent re-
entrancy

Typing Judgment :

U:I'; AFP:(x:A)

Typing Judgment :

U:I'; AFP:(x:A)

Functional
Context

» All structural
rules

> Copying
semantics

» copied during
exchange

Typing Judgment :

U:I'; AFP:(x:A)
M

Shared
Context

Functional
Context

» All structural
rules

» All structural
rules

» Shared
Semantics

» Copying
semantics

> copied during
exchange

> no copying
of channels

Typing Judgment :

U:I'; AFP:(x:A)
M

Shared
Context

Linear
Context

Functional
Context

» All structural
rules

» All structural
rules

» Shared
Semantics

> Only exhibits
exchange (no

weakening or
contraction)

> Copying
semantics

can’t discard
or duplicate

> copied during
exchange

> no copying
of channels

Relaxing Independence *

» Distinguish linear processes according to their roles

» Assets : can only refer to other linear assets =
assigh mode R (e.g. money, Mona Lisa)

» Contracts : can refer to other contracts or linear
assets = assigh mode L (e.g. auction)

» Transactions : can refer to assets, contracts and
transactions = assign mode T (e.g. bidder)

R<L<T

Talk Outline

Session Types

Work

Resource-Aware
Session Types

i

J Span

Temporal
Session Types

Future . ICFP 18
Work ,

Programming
Digital Contracts

POPL °20 (under revie

35

Talk Outline

/ Span

Temporal
(Session Types

ICFP 18

Ya

POPL °20 (under review)

35

How is time defined?

» Time is defined using a cost model

» Cost model assigns a time cost to each operation

36

How is time defined? &

» Time is defined using a cost model

» Cost model assigns a time cost to each operation

‘R cost model ‘RS cost model

Unit delay after Unit delay after each
each receive receive and send

How is time defined? &

» Time is defined using a cost model

» Cost model assigns a time cost to each operation

‘R cost model ‘RS cost model

Unit delay after Unit delay after each
each receive receive and send

» Expressed by inserting appropriate delays in the
source code, only the delays cost time

» Programmer specifies cost model, compiler
automatically inserts delays for type checking

Example: Bit Streams *
bits = ©{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

Example: Bit Streams ~
bits = ®{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

c : bits

Example: Bit Streams ~

bits = ©{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

Example: Bit Streams ~

bits = ©{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

b0

Example: Bit Streams ~

bits = ©{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

b0

Example: Bit Streams ~

bits = ©{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

bl b0

Example: Bit Streams ~

bits = ©{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

bl b0

Example: Bit Streams ~

bits = ©{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

bl b0

Example: Bit Streams ~

bits = ©{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

bl b0

Example: Bit Streams *

bits = ©{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

Timing Information?

bl b0

Example: Bit Streams *

bits = ©{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

Timing Information?

Sending a message
causes unit delay

bl b0

Example: Bit Streams *

bits = ©{b0 : bits, bl : bits,$: 1}

- two :: (c : bits)

Timing Information?

Sending a message
causes unit delay

Enforcing Time in the Type

bits = &{b0 : Obits, bl : Obits, $: O1}

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay
- two :: (c : bits)

C < two =
c.b0 ; delay ; c : bits

c.bl ; delay ;
c.$; delay;
close c

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay
- two :: (c : bits)

C < two =
c.b0 ; delay ; c : bits

c.bl ; delay ;
c.$; delay;
close c t—0

Enforcing Time in the Type *

bits = ©&{b0 : Obits, bl : Obits,$: O1}

Next Operator - expresses unit delay

- two :: (c : bits)

C « two =
c.b0 ; delay ; c : Obits

c.bl ; delay ;
c.$; delay;
close c t—0

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay
- two :: (c : bits)

C < two =
c.b0 ; dela ’ c : Obits

c.bl ; delay ;
c.$; delay;
close c t—0

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay
- two :: (c : bits)

C < two =
c.b0 ; delay ; c : bits

c.bl ; delay ;
c.$; delay;

close ¢ t—1 t=0

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay
- two :: (c : bits)

C < two =
c.b0 ; delay ; c : bits

c.bl ; delay ;
c.$; delay;

close ¢ t—1 t=0

Enforcing Time in the Type *

bits = ©&{b0 : Obits, bl : Obits,$: O1}

Next Operator - expresses unit delay

- two :: (c : bits)

C « two =
c.b0 ; delay ; c : Obits

c.bl ; delay ;
c.$; delay;

close ¢ t—1 t=0

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay
- two :: (c : bits)

C « two =
c.b0 ; delay ; c : Obits

c.bl ; delay ;
c.$; delay;

close ¢ t—1 t=0

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay

C « two =

c.bO ; delay ;

c.bl ; delay ;

c.$; delay;
close c

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay

C « two =

c.bO ; delay ;
c.bl ; delay ;
c.$; delay;

close c

Enforcing Time in the Type *

bits = &{b0 : Obits, bl : Obits,$: O1}

Next Operator - expresses unit delay

C « two =

c.bO ; delay ;

c.bl ; delay ;

c.$; delay;
close c

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay

C « two =

c.bO ; delay ;
c.bl ; delay ;
c.$;delay;

close c

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay

C « two =

c.bO ; delay ;

c.bl ; delay ;

c.$; delay;
close c

Enforcing Time in the Type *

bits = ©&{b0 : Obits, b1l : Obits, $: O1}

Next Operator - expresses unit delay

C « two =

c.bO ; delay ;

c.bl ; delay ;

c.$; delay;
close c

Can we type the queue?! ~

Can we type the queue?! ~

. ||

ins(e)

Can we type the queue?! ~

~nnninn

ins(e)

Can we type the queue! ~

~nnninn

ins(e)

» Next operator only expresses constant insertion rate

» But rate of insertion at the tail depends on the size of
the queue — longer the queue, slower the rate

» To maintain a constant rate at the tail, new elements
must be inserted at a faster rate than the previous one

Can we type the queue! ~

—UArATArara

ins(e)

| want
candies
faster!

» Next operator only expresses constant insertion rate

» But rate of insertion at the tail depends on the size of
the queue — longer the queue, slower the rate

» To maintain a constant rate at the tail, new elements
must be inserted at a faster rate than the previous one

Providing Flexibility “

» The Box Operator (

)

» Provider Action: always be ready to receive token

» Client Action: eventually send the token

» Provider doesn’t know when the token will come,

only the client does

» Different from () operator where both provider
and client knew the timing of message exchange

» The Diamond Operator (<)

» Dual of the Box operator (provider and client flip)

Response Time of Queues *

queuep =

&A{ins : O

del : O @ {none : O1,

A —o O%queue,)},

some : O

A ® Oqueuep)}}

Response Time of Queues

queuep = &{ins : O(OJA — O*queuea)},
' del : O @ {none : O1,
some : O(LJA ® Oqueuen) }}

* 2
Can always accept ins/del messages

Response Time of Queues

queuep = [&{ins : O(LJA — O%queuea)},
' del : O @ {none:: O1,
some:: O(OA ® Oqueuen)} }

* 2
Can always accept ins/del messages

Response time for insertion: 3

Response Time of Queues *

queuep = [J &{ins : O(JA — O%queue,)},
' del : O @ {none:: O1,
Somel';: O(LA ® QqueueA)}}

* 2 “
Can always accept ins/del messages |

Response time for insertion: 3

Response time for deletion: | g

Response Time of Queues *

queuep = [J &{ins : O(JA — O%queue,)},
' del : O @ {none:: O1,
Somel';: O(LA ® QqueueA)}}

* 2 “
Can always accept ins/del messages |

Response time for insertion: 3

Response time for deletion: | g

Precision % Flexibility

Stacks vs Queues 5

RS cost model

stacka = & {ins : O(LJA —o Ostackny),
del : O ® {none : O1,
some : O(JA ® Ostacka) }}

queuep = & {ins : O(LA — O°queue,),
del : O @ {none : O1,
some : O(LJA ® Oqueuen) }}

Stacks

vs Queues .

RS cost model

stacka = & {ins : O

A — Ostackpy),

del : O ® {none : O1,

queuep = [&{ins : O

some : O(LJA ® Ostacka)}}

A — O*queue,),

del : O¢

b {none : O1,
some : O([JA ® Oqueuen) }}

Which one’s more efficient?

Stacks

vs Queues .

RS cost model

stacka = & {ins : O

A — Ostackpy),

AN del : O & {none : O1,

some : O(LJA ® Ostacka)}}

A — O*queue,),

b {none : O1,
some : O([JA ® Oqueuen) }}

Which one’s more efficient?

Contributions .

Type system to analyze timing of message
exchanges of session-typed programs

» types define the timing of message exchanges

» provides precision and flexibility

» proved sound w.r.t. cost semantics tracking time

) conservative extension to typical session type system

» applies to all standard session types examples

» can be parameterized to count resource of interest

