
Work Analysis with
 Resource-Aware

Session Types

Ankush Das
Jan Hoffmann
Frank Pfenning

LICS, July 10, 2018

1

Goal for this Talk

2

Resource Analysis
for Concurrent Programs

Execution Time Memory Usage

Why Resource Analysis?

3

Why Resource Analysis?

3

Complexity of
Parallel Algorithms

Çiçek et. al. (ESOP ’15)

Why Resource Analysis?

3

Complexity of
Parallel Algorithms

Design of Optimal
Scheduling Policies

Çiçek et. al. (ESOP ’15) Acar et. al. (JFP ’16)

Why Resource Analysis?

3

Complexity of
Parallel Algorithms

Design of Optimal
Scheduling Policies

Prevention of
Side-Channel Attacks

Çiçek et. al. (ESOP ’15) Acar et. al. (JFP ’16)

Ngo et. al. (S&P ’17)

Why Resource Analysis?

3

Complexity of
Parallel Algorithms

Design of Optimal
Scheduling Policies

Prevention of
Side-Channel Attacks

Static and
Dynamic Profiling

Çiçek et. al. (ESOP ’15) Acar et. al. (JFP ’16)

Ngo et. al. (S&P ’17) Haemmerlé et. al. (FLOPS ’17)

Measures of Execution Time

4

Measures of Execution Time

4

Work
Sequential Complexity

Execution time
on one processor

Measures of Execution Time

4

Work
Sequential Complexity

Execution time
on one processor

Span
Parallel Complexity

Execution time on
arbitrarily many processors

Measures of Execution Time

4

Work
Sequential Complexity

Execution time
on one processor

Span
Parallel Complexity

Execution time on
arbitrarily many processors

Today’s
talk!

Measures of Execution Time

4

Work
Sequential Complexity

Execution time
on one processor

Span
Parallel Complexity

Execution time on
arbitrarily many processors

Today’s
talk!

ICFP
2018

Concurrent Programs
are hard to analyze!

5

Concurrent Programs
are hard to analyze!

5

Shared Memory
Read/Write Overhead

Concurrent Programs
are hard to analyze!

5

Shared Memory
Read/Write Overhead

Communication Overhead

Concurrent Programs
are hard to analyze!

5

Shared Memory
Read/Write Overhead

Communication Overhead

Deadlocks

Concurrent Programs
are hard to analyze!

5

Shared Memory
Read/Write Overhead

Communication Overhead

Deadlocks Non-Compositional

5

Shared Memory
Read/Write Overhead

Communication Overhead

Deadlocks Non-Compositional

Session types
can help :-)

5

Communication Overhead

Deadlocks Non-Compositional

Session types
can help :-)

No Shared Memory

5

Deadlocks Non-Compositional

Session types
can help :-)

No Shared Memory Types strictly enforce
communication protocols

5

Non-Compositional

Session types
can help :-)

No Shared Memory Types strictly enforce
communication protocols

Deadlock Freedom

5

Session types
can help :-)

No Shared Memory Types strictly enforce
communication protocols

Deadlock Freedom Channels abstract over
connected processes

What are Session Types?
• Implement message-passing concurrent programs

• Communication via bi-directional typed channels

• Curry-Howard isomorphism with intuitionistic
linear logic

6

What are Session Types?
• Implement message-passing concurrent programs

• Communication via bi-directional typed channels

• Curry-Howard isomorphism with intuitionistic
linear logic

6

P Q

Provider Process Client Process
Channel

What are Session Types?
• Implement message-passing concurrent programs

• Communication via bi-directional typed channels

• Curry-Howard isomorphism with intuitionistic
linear logic

6

P Q

Provider Process Client Process

c : bits

Channel

bits = �{b0 : bits,b1 : bits}

What are Session Types?
• Implement message-passing concurrent programs

• Communication via bi-directional typed channels

• Curry-Howard isomorphism with intuitionistic
linear logic

6

P Q

Provider Process Client Process

c : bits

b0/b1

Channel

bits = �{b0 : bits,b1 : bits}

7

Contributions

Design a type system to analyze work
of session-typed programs

7

Contributions

Design a type system to analyze work
of session-typed programs

7

Contributions

• based on amortized analysis

• can be parameterized to count
different resources

• proved sound w.r.t. cost semantics

• conservative extension to standard
session type system

• applied to all standard programs

Design a type system to analyze work
of session-typed programs

7

Contributions

• based on amortized analysis

• can be parameterized to count
different resources

• proved sound w.r.t. cost semantics

• conservative extension to standard
session type system

• applied to all standard programs

messages
exchanged

Design a type system to analyze work
of session-typed programs

7

Contributions

• based on amortized analysis

• can be parameterized to count
different resources

• proved sound w.r.t. cost semantics

• conservative extension to standard
session type system

• applied to all standard programs

messages
exchanged

processes
spawned

Design a type system to analyze work
of session-typed programs

7

Contributions

• based on amortized analysis

• can be parameterized to count
different resources

• proved sound w.r.t. cost semantics

• conservative extension to standard
session type system

• applied to all standard programs
instructions

executed

messages
exchanged

processes
spawned

Design a type system to analyze work
of session-typed programs

7

Contributions

• based on amortized analysis

• can be parameterized to count
different resources

• proved sound w.r.t. cost semantics

• conservative extension to standard
session type system

• applied to all standard programs
instructions

executed

messages
exchanged

processes
spawned

Overview

8

Session types

Type System

Cost Semantics

proc(c,w,P)

Soundness
Theorem

q � w

⌦ `q P :: (c : A)

Overview

8

Session types

Type System

Cost Semantics

proc(c,w,P)

Soundness
Theorem

q � w

⌦ `q P :: (c : A)

Example: Queues

9

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

Example: Queues

9

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

Example: Queues

9

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

Example: Queues

9

ins(e)

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

Example: Queues

9

ins(e)

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

Example: Queues

9

ins(e)

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

behave as
queue again

Example: Queues

9

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

Example: Queues

9

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send none if
queue is empty

Example: Queues

9

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

terminate

send none if
queue is empty

Example: Queues

9

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

Example: Queues

9

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

Example: Queues

9

b c d e

some(a)

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

Example: Queues

9

b c d e

some(a)

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

behave as
queue again

Session-typed Program

10

elemx
s : queueAt : queueA

x : A

tail of queue head of queue

(element stored)

elemy elemz

Session-typed Program

10

elemx
s : queueAt : queueA

x : A

tail of queue head of queue

(element stored)

elemy elemz

recv ‘ins’ and y

Session-typed Program

10

elemx
s : queueAt : queueA

x : A

tail of queue head of queue

(element stored)

elemy elemz

recv ‘ins’ and y

send ‘ins’ and y

Session-typed Program

10

elemx
s : queueAt : queueA

x : A

tail of queue head of queue

(element stored)

elemy elemz

recv ‘ins’ and y

send ‘ins’ and y

recurse

Session-typed Program

10

elemx
s : queueAt : queueA

x : A

tail of queue head of queue

(element stored)

elemy elemz

recv ‘ins’ and y

send ‘ins’ and y

recurse

send ‘some’, x

Session-typed Program

10

elemx
s : queueAt : queueA

x : A

tail of queue head of queue

(element stored)

elemy elemz

recv ‘ins’ and y

send ‘ins’ and y

recurse

send ‘some’, x

terminate

Overview

11

Session types

Type System

Cost Semantics

proc(c,w,P)

Soundness
Theorem

q � w

⌦ `q P :: (c : A)

Overview

11

Session types

Type System

Cost Semantics

proc(c,w,P)

Soundness
Theorem

q � w

⌦ `q P :: (c : A)

Cost Semantics

12

proc(c,w,P)

Process P offering along channel c
and has performed work w

• Standard semantics extended with local work
counters w for each process

• Total work of system is sum of local counters w

• w is incremented every time process P performs
some ‘work’ (this talk: whenever message is sent)

Overview

13

Session types

Type System

Cost Semantics

proc(c,w,P)

Soundness
Theorem

q � w

⌦ `q P :: (c : A)

Overview

13

Session types

Type System

Cost Semantics

proc(c,w,P)

Soundness
Theorem

q � w

⌦ `q P :: (c : A)

• Store potential in each process

• Potential can be transferred via messages

• Potential is consumed to perform ‘work’

14

Type System

Based on Amortized Analysis!

• Store potential in each process

• Potential can be transferred via messages

• Potential is consumed to perform ‘work’

14

Type System

⌦ `q P :: (c : A)
Process P offers along channel c,
acts as a client for channels in Ω

and storing potential q

Based on Amortized Analysis!

Concurrent Queues

15

ba c d

Count the messages!

Concurrent Queues

15

ins(e)

ba c d

Count the messages!

Concurrent Queues

15

ins(e)

ba c d e

Count the messages!
ins(e) ins(e) ins(e) ins(e)

Concurrent Queues

15

del

ba c d e

Count the messages!

Concurrent Queues

15

b c d e

some(a)

Count the messages!

Concurrent Queues

15

b c d e

wd = Work done to process deletion
 = 2 (sends back ‘some’ and ‘a’)

wi = Work done to process insertion
 = 2n (where n is the size of queue)
 = ‘ins’ and ‘e’ travel to end of queue

Count the messages!

Type for Queues
queueA[n] = &{ins2n : A (queueA[n+ 1],

del

2 : �{none : 1,
some : A⌦ queueA[n� 1]}}

16

Type for Queues
queueA[n] = &{ins2n : A (queueA[n+ 1],

del

2 : �{none : 1,
some : A⌦ queueA[n� 1]}}

16

Resource-Aware
Session Types

types augmented with potential information
sender pays potential with message
receiver gets potential with message

Type for Queues
queueA[n] = &{ins2n : A (queueA[n+ 1],

del

2 : �{none : 1,
some : A⌦ queueA[n� 1]}}

17

Type for Queues
queueA[n] = &{ins2n : A (queueA[n+ 1],

del

2 : �{none : 1,
some : A⌦ queueA[n� 1]}}

17

recv 2(n+1) units

Type for Queues
queueA[n] = &{ins2n : A (queueA[n+ 1],

del

2 : �{none : 1,
some : A⌦ queueA[n� 1]}}

17

recv 2(n+1) units

send 2n units

Type for Queues
queueA[n] = &{ins2n : A (queueA[n+ 1],

del

2 : �{none : 1,
some : A⌦ queueA[n� 1]}}

17

recv 2(n+1) units

send 2n units

cost of 2

Type for Queues
queueA[n] = &{ins2n : A (queueA[n+ 1],

del

2 : �{none : 1,
some : A⌦ queueA[n� 1]}}

17

recv 2(n+1) units

send 2n units

cost of 2

recv 2 units

Type for Queues
queueA[n] = &{ins2n : A (queueA[n+ 1],

del

2 : �{none : 1,
some : A⌦ queueA[n� 1]}}

17

recv 2(n+1) units

send 2n units

cost of 2

recv 2 units

cost of 2

Rule: Sending a label

18

c.k ; P
q

c : �{`r` : A`}`2L

⌦ `q P :: (c : A)
Process P offers along

channel c,
acts as a client for

channels in Ω
and storing potential q

Rule: Sending a label

18

c.k ; P

P

q

p

c : �{`r` : A`}`2L

c : Ak

⌦ `q P :: (c : A)
Process P offers along

channel c,
acts as a client for

channels in Ω
and storing potential q

Rule: Sending a label

18

c.k ; P

P

q

p

q � p+ rk + 1 ⌦ `p P :: (c : Ak)

⌦ `q c.k :: (c : �{`r` : A`}`2L)

c : �{`r` : A`}`2L

c : Ak

⌦ `q P :: (c : A)
Process P offers along

channel c,
acts as a client for

channels in Ω
and storing potential q

Features of Type System
• Flexible: supports counting of different resources

(e.g. messages exchanged, processes spawned, etc.)
by being parametric in cost model

• Compositional: types describe individual processes,
not just whole programs

• Precise: potential upper bounds work accurately

• Conservative: strict extension of type system

• General: works on most standard examples

• Automatic: future work
19

Examples!

20

Binary Counters

21

ctr[n] = &{inc1 : ctr[n+ 1],

val2dlog(n+1)e+2 : bits}
• Increment:

• requires one unit of potential

• uses amortized analysis!

• Value:

• requires logarithmic potential

• precise work bound

Stacks vs Queues

22

queueA[n] = &{ins2n : A (queueA[n+ 1],

del

2 : �{none : 1,
some : A⌦ queueA[n� 1]}}

Which one’s more efficient?

stackA[n] = &{ins0 : A (stackA[n+ 1],

del

2 : �{none : 1,
some : A⌦ stackA[n� 1]}}

Stacks vs Queues

22

queueA[n] = &{ins2n : A (queueA[n+ 1],

del

2 : �{none : 1,
some : A⌦ queueA[n� 1]}}

Which one’s more efficient?

stackA[n] = &{ins0 : A (stackA[n+ 1],

del

2 : �{none : 1,
some : A⌦ stackA[n� 1]}}

Contributions

23

Type System for Work Analysis
based on amortized analysis
types augmented with potential information
work is upper bounded by potential
Flexible, Compositional, Precise, Conservative,
General, Automatic

Contributions

23

Type System for Work Analysis
based on amortized analysis
types augmented with potential information
work is upper bounded by potential
Flexible, Compositional, Precise, Conservative,
General, Automatic

Cost Semantics

Soundness
Theorem

Contributions

23

Type System for Work Analysis
based on amortized analysis
types augmented with potential information
work is upper bounded by potential
Flexible, Compositional, Precise, Conservative,
General, Automatic

Cost Semantics

Soundness
Theorem

Examples
stacks, queues, binary counters
efficiency comparison
list examples: append, map, fold

