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Session types
can help :-)

No Shared Memory Types strictly enforce 
communication protocols

Deadlock Freedom Channels abstract over 
connected processes 
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proc(c,w,P)

Process P offering along channel c 
and has performed work w

• Standard semantics extended with local work 
counters w for each process 

• Total work of system is sum of local counters w 

• w is incremented every time process P performs 
some ‘work’ (this talk: whenever message is sent)
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Type System

⌦ `q P :: (c : A)
Process P offers along channel c, 
acts as a client for channels in Ω 

and storing potential q

Based on Amortized Analysis!
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Concurrent Queues
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b c d e

wd = Work done to process deletion 
     = 2 (sends back ‘some’ and ‘a’)

wi = Work done to process insertion 
    = 2n (where n is the size of queue) 
    = ‘ins’ and ‘e’ travel to end of queue

Count the messages!
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Resource-Aware 
Session Types 

types augmented with potential information 
sender pays potential with message 
receiver gets potential with message
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Features of Type System
• Flexible: supports counting of different resources 

(e.g. messages exchanged, processes spawned, etc.) 
by being parametric in cost model 

• Compositional: types describe individual processes, 
not just whole programs 

• Precise: potential upper bounds work accurately 

• Conservative: strict extension of type system 

• General: works on most standard examples 

• Automatic: future work
19
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Binary Counters
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ctr[n] = &{inc1 : ctr[n+ 1],

val2dlog(n+1)e+2 : bits}
• Increment: 

• requires one unit of potential 

• uses amortized analysis! 

• Value: 

• requires logarithmic potential 

• precise work bound
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Type System for Work Analysis 
based on amortized analysis 
types augmented with potential information 
work is upper bounded by potential 
Flexible, Compositional, Precise, Conservative, 
General, Automatic

Cost Semantics

Soundness 
Theorem

Examples 
stacks, queues, binary counters 
efficiency comparison 
list examples: append, map, fold


