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▸ types define the timing of message exchanges 

▸ provides precision and flexibility 

▸ proved sound w.r.t. cost semantics tracking time 

▸ conservative extension to typical session type system 

▸ applies to all standard session types examples 

▸ can be parameterized to count resource of interest

Contributions
Type system to analyze timings of message  

exchanges of session-typed programs

6



▸ Time is defined using a cost model 

▸ Cost model assigns a time cost to each operation

How is time defined? 7



▸ Time is defined using a cost model 

▸ Cost model assigns a time cost to each operation

How is time defined? 7

RS cost model 
Unit delay after each 

receive and send

R cost model 
Unit delay after 

each receive
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▸ Cost model assigns a time cost to each operation

How is time defined? 7

RS cost model 
Unit delay after each 

receive and send

R cost model 
Unit delay after 

each receive

▸ Expressed by inserting appropriate delays in the 
source code, only the delays cost time 

▸ Programmer specifies cost model, compiler 
automatically inserts delays for type checking



Definition of 
the Types

⌦ ` P :: (x : S)
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Track Message Rates

Input
Output

Input

Compute output rate given input rate

9

Necessary: 
need exact input/

output rate to ensure 
compositionality

Sufficient: 
span can be thought as 
timing of final message

timing of messages ⇔  Parallel Complexity
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15

I want 
candies 
faster!



Adding Flexibility 
to the Type System

The Next Operator 
is too precise!
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▸ The Box Operator (⬜)
▸ Provider Action: always be ready to receive token 

▸ Client Action: eventually send the token 

▸ Provider doesn’t know when the token will come, 
only the client does 

▸ Different from  ⃝  operator where both provider 
and client knew the timing of message exchange 

▸ The Diamond Operator (♢)
▸ Dual of the Box operator (provider and client flip)

Providing Flexibility 17
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Precision FlexibilityWE ARE 
HERE!
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▸ Parametric: time can be defined using a cost model 

▸ Compositional: types describe individual processes, 
not just whole programs 

▸ Precise & Flexible:  ⃝  operator provides precision. 
⬜ , ♢ operators provide flexibility 

▸ Conservative: only added 3 type operators 

▸ General: works on all standard examples 

▸ Automatic: supports automatic type checking, type 
inference future work

Features of Type System 22



Cost Semantics

proc(c, t,P)

Process P offering along 
channel c at local time t
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Cost Semantics

proc(c, t,P)

Process P offering along 
channel c at local time t

Soundness Theorem: 
message timings realized by the local clocks 

matches the timing predicted by the type system 

23



▸ Interaction of  ⬜ , ♢ with  ⃝  operators 

▸ Sound and complete subtyping relation 

▸ Time Reconstruction — inserting delay, now!, when? 
automatically from the program type 

▸ Cost Semantics — each process stores a local clock, 
expresses timing at runtime, connected to the type 
system by a proof of progress and preservation 

▸ Connection to the standard cost semantics 

▸ Typing a set of processes at different local clocks

What else is in the paper? 24
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Conclusion
Type System 

analyzes timing of 
message exchanges

Cost Semantics 
local clocks at 
each process

Soundness 
Theorem

Examples 
throughput and latency of bit stream processors 

response time of stacks vs queues 
list examples: append, map, fold (many more in paper!)

Properties 
conservative extension, added 3 type operators 

 ⃝  provides precision,   ⬜ , ♢ provide flexibility

25


