
Parallel Complexity Analysis
with Temporal Session Types

Ankush Das
Jan Hoffmann

Frank Pfenning

ICFP, Sep 26, 2018

1

What is Parallel Complexity? 2

a.k.a. Span

What is Parallel Complexity?

Total time of computation?

2

a.k.a. Span

What is Parallel Complexity?

Total time of computation?

Depends on amount of parallelism in system

2

a.k.a. Span

What is Parallel Complexity?

Total time of computation?

Depends on amount of parallelism in system

Data
Dependencies

Wait for
Messages

Data Races
Shared Memory

2

a.k.a. Span

Why Parallel Complexity? 3

Why Parallel Complexity?

Complexity of
Parallel Algorithms

Blelloch (Comm. ACM ‘96)

3

Why Parallel Complexity?

Complexity of
Parallel Algorithms

Design of Optimal
Scheduling Policies

Blelloch (Comm. ACM ‘96) Acar et. al. (JFP ’16)

3

Why Parallel Complexity?

Complexity of
Parallel Algorithms

Design of Optimal
Scheduling Policies

Blelloch (Comm. ACM ‘96) Acar et. al. (JFP ’16)

Throughput and
Latency of Streams

Mamouras et. al. (PLDI ’17)

3

Why Parallel Complexity?

Complexity of
Parallel Algorithms

Design of Optimal
Scheduling Policies

Blelloch (Comm. ACM ‘96) Acar et. al. (JFP ’16)

Throughput and
Latency of Streams

Response Time of
Concurrent Data Structures

Mamouras et. al. (PLDI ’17) Ellen and Brown (PODC ’16)

3

Why Session Types? 4

Why Session Types? 4

Concurrent Programs are hard to analyze!

Why Session Types? 4

No Shared Memory

Concurrent Programs are hard to analyze!

Why Session Types? 4

No Shared Memory
Types strictly enforce

communication protocols

Concurrent Programs are hard to analyze!

Why Session Types? 4

No Shared Memory
Types strictly enforce

communication protocols

Deadlock Freedom

Concurrent Programs are hard to analyze!

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Curry-Howard isomorphism with intuitionistic
linear logic

What are Session Types? 5

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Curry-Howard isomorphism with intuitionistic
linear logic

What are Session Types?

P Q

Provider Process Client Process
Channel

5

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Curry-Howard isomorphism with intuitionistic
linear logic

What are Session Types?

P Q

Provider Process Client Process
Channel

5

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Curry-Howard isomorphism with intuitionistic
linear logic

What are Session Types?

P Q

Provider Process Client Process

c : bits

Channel

bits = �{b0 : bits,b1 : bits}

5

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Curry-Howard isomorphism with intuitionistic
linear logic

What are Session Types?

P Q

Provider Process Client Process

c : bits

b0/b1

Channel

bits = �{b0 : bits,b1 : bits}

5

Contributions 6

Contributions
Type system to analyze timings of message

exchanges of session-typed programs

6

▸ types define the timing of message exchanges

▸ provides precision and flexibility

▸ proved sound w.r.t. cost semantics tracking time

▸ conservative extension to typical session type system

▸ applies to all standard session types examples

▸ can be parameterized to count resource of interest

Contributions
Type system to analyze timings of message

exchanges of session-typed programs

6

▸ Time is defined using a cost model

▸ Cost model assigns a time cost to each operation

How is time defined? 7

▸ Time is defined using a cost model

▸ Cost model assigns a time cost to each operation

How is time defined? 7

RS cost model
Unit delay after each

receive and send

R cost model
Unit delay after

each receive

▸ Time is defined using a cost model

▸ Cost model assigns a time cost to each operation

How is time defined? 7

RS cost model
Unit delay after each

receive and send

R cost model
Unit delay after

each receive

▸ Expressed by inserting appropriate delays in the
source code, only the delays cost time

▸ Programmer specifies cost model, compiler
automatically inserts delays for type checking

Definition of
the Types

⌦ ` P :: (x : S)

8

Track Message Rates

Input
Output

Input

9

Track Message Rates

Input
Output

Input

Compute output rate given input rate

9

Track Message Rates

Input
Output

Input

Compute output rate given input rate

9

timing of messages ⇔ Parallel Complexity

Track Message Rates

Input
Output

Input

Compute output rate given input rate

9

Necessary:
need exact input/

output rate to ensure
compositionality

Sufficient:
span can be thought as
timing of final message

timing of messages ⇔ Parallel Complexity

Example: Bit Streams

bits = �{b0 : bits,b1 : bits, $: 1}

· ` two :: (c : bits)

10

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

bits = �{b0 : bits,b1 : bits, $: 1}

· ` two :: (c : bits)

10

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

bits = �{b0 : bits,b1 : bits, $: 1}

b0

· ` two :: (c : bits)

10

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

bits = �{b0 : bits,b1 : bits, $: 1}

b0

· ` two :: (c : bits)

10

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

· ` two :: (c : bits)

10

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

· ` two :: (c : bits)

10

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

c : bits

$

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

· ` two :: (c : bits)

10

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

$

c : 1

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

· ` two :: (c : bits)

10

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

$
close

c : 1

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

· ` two :: (c : bits)

10

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

$
close

c : 1

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

Timing Information?· ` two :: (c : bits)

10

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

$
close

c : 1

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

Timing Information?· ` two :: (c : bits)

Sending a message
causes unit delay

10

Example: Bit Streams

c ← two =
c.b0 ;
c.b1 ;
c.$;

close c

$
close

c : 1

t = 0t = 1t = 2t = 3

bits = �{b0 : bits,b1 : bits, $: 1}

b0b1

Timing Information?· ` two :: (c : bits)

Sending a message
causes unit delay

10

Enforcing Time in the Type

bits = �{b0 : �bits,b1 : �bits, $: �1}

11

Enforcing Time in the Type

bits = �{b0 : �bits,b1 : �bits, $: �1}

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

c : bits

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

c : bits

t = 0

b0

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0

b0

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0

b0

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0t = 1

b0

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0t = 1

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0t = 1

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c t = 0t = 1

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �bits

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

c : bits

t = 0t = 1t = 2

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

c : bits

$

t = 0t = 1t = 2

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

$

t = 0t = 1t = 2

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �1

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

$

t = 0t = 1t = 2

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

c : �1

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

$

c : 1

t = 0t = 1t = 2t = 3

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Enforcing Time in the Type

c ← two =
c.b0 ; delay ;
c.b1 ; delay ;
c.$; delay ;

close c

$
close

c : 1

t = 0t = 1t = 2t = 3

b0b1

bits = �{b0 : �bits,b1 : �bits, $: �1}

· ` two :: (c : bits)

Next Operator - expresses unit delay

11

Typing Rule (⃝)

⌦ ` P :: (x : S)
�
⌦ ` delay; P :: (x : �S)

12

applied
pointwise

Typing Rule (⃝)

⌦ ` P :: (x : S)
�
⌦ ` delay; P :: (x : �S)

12

breaks the locality property of type system!

applied
pointwise

Bit Streams
R cost model

13

bits = �{b0 : �rbits,b1 : �rbits, $: �r1}

Bit Streams

copyx : bits ` copy :: (y : �bits)
x

y = x

R cost model

13

bits = �{b0 : �rbits,b1 : �rbits, $: �r1}

Bit Streams

copy

plus1plus1plus1

x : bits ` copy :: (y : �bits)

x : bits ` plus1 :: (y : �bits)

x

y = x

x

y = x+ 1

R cost model

13

bits = �{b0 : �rbits,b1 : �rbits, $: �r1}

Bit Streams

copy

plus1

plus1plus1

x : bits ` copy :: (y : �bits)

x : bits ` plus1 :: (y : �bits)

x

y = x

x

y = x+ 1

R cost model

13

bits = �{b0 : �rbits,b1 : �rbits, $: �r1}

Bit Streams

copy

plus1

plus1plus1

x : bits ` copy :: (y : �bits)

x : bits ` plus1 :: (y : �bits)

x : bits y : �bits z : ��bits

x : bits ` plus2 :: (z : ��
bits)

x

y = x

x

y = x+ 1

R cost model

13

bits = �{b0 : �rbits,b1 : �rbits, $: �r1}

Fork-Join Parallelism

0s and 1s at the leaves

Compute the parity

0 1 0 0 1 1 1 0

14

Fork-Join Parallelism

0s and 1s at the leaves

Compute the parity

0 1 0 0 1 1 1 0

parity

14

Fork-Join Parallelism

0s and 1s at the leaves

Compute the parity

0 1 0 0 1 1 1 0

parity bool

14

Fork-Join Parallelism

0s and 1s at the leaves

Compute the parity

0 1 0 0 1 1 1 0

tree[h] = &{parity : �5h+3
bool}RS cost model

parity bool

14

Fork-Join Parallelism

0s and 1s at the leaves

Compute the parity

0 1 0 0 1 1 1 0

tree[h] = &{parity : �5h+3
bool}RS cost model

tree[h] = &{parity : �h
bool}Counting xors

parity bool

14

Can we type the queue?

ba c d

15

Can we type the queue?

ins(e)

ba c d

15

Can we type the queue?

ins(e)

ba c d e

ins(e) ins(e) ins(e) ins(e)

15

Can we type the queue?

ins(e)

ba c d e

ins(e) ins(e) ins(e) ins(e)

▸ Next operator only expresses constant insertion rate

▸ But rate of insertion at the tail depends on the size of
the queue — longer the queue, slower the rate

▸ To maintain a constant rate at the tail, new elements
must be inserted at a faster rate than the previous one

15

Can we type the queue?

ins(e)

ba c d e

ins(e) ins(e) ins(e) ins(e)

▸ Next operator only expresses constant insertion rate

▸ But rate of insertion at the tail depends on the size of
the queue — longer the queue, slower the rate

▸ To maintain a constant rate at the tail, new elements
must be inserted at a faster rate than the previous one

15

I want
candies
faster!

Adding Flexibility
to the Type System

The Next Operator
is too precise!

16

▸ The Box Operator (⬜)
▸ Provider Action: always be ready to receive token

▸ Client Action: eventually send the token

▸ Provider doesn’t know when the token will come,
only the client does

▸ Different from ⃝ operator where both provider
and client knew the timing of message exchange

▸ The Diamond Operator (♢)
▸ Dual of the Box operator (provider and client flip)

Providing Flexibility 17

Typing the Queue

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

18

Typing the Queue

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

18

Typing the Queue

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

18

Typing the Queue

ins(e)

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

18

Typing the Queue

ins(e)

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

18

Typing the Queue

ins(e)

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

behave as
queue again

18

Typing the Queue

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

18

Typing the Queue

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send none if
queue is empty

18

Typing the Queue

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

terminate

send none if
queue is empty

18

Typing the Queue

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

18

Typing the Queue

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

18

Typing the Queue

b c d e

some(a)

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

18

Typing the Queue

b c d e

some(a)

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

behave as
queue again

18

Response Time of Queues

queueA = ⇤ &{ins : �(⇤A (�3
queueA)},

del : � � {none : �1,

some : �(⇤A⌦ �
queueA)}}

19

Response Time of Queues

queueA = ⇤ &{ins : �(⇤A (�3
queueA)},

del : � � {none : �1,

some : �(⇤A⌦ �
queueA)}}

Can always accept ins/del messages

19

Response Time of Queues

queueA = ⇤ &{ins : �(⇤A (�3
queueA)},

del : � � {none : �1,

some : �(⇤A⌦ �
queueA)}}

Response time for insertion: 3

Can always accept ins/del messages

19

Response Time of Queues

queueA = ⇤ &{ins : �(⇤A (�3
queueA)},

del : � � {none : �1,

some : �(⇤A⌦ �
queueA)}}

Response time for insertion: 3

Response time for deletion: 1

Can always accept ins/del messages

19

Response Time of Queues

queueA = ⇤ &{ins : �(⇤A (�3
queueA)},

del : � � {none : �1,

some : �(⇤A⌦ �
queueA)}}

Response time for insertion: 3

Response time for deletion: 1

Can always accept ins/del messages

19

Precision FlexibilityWE ARE
HERE!

Typing Rules(⬜) 20

Typing Rules(⬜)

⌦ delayed

⇤
⌦ ` P :: (x : S)

⌦ ` when? x ;P :: (x : ⇤S)
⇤R

 → can be delayed indefinitelydelayed⇤ = �⇤⇤T

Exchanged token is a now! message

20

Typing Rules(⬜)

⌦,x : S ` Q :: (z : T)

⌦,x : ⇤S ` now! x ;Q :: (z : T)
⇤L

⌦ delayed

⇤
⌦ ` P :: (x : S)

⌦ ` when? x ;P :: (x : ⇤S)
⇤R

 → can be delayed indefinitelydelayed⇤ = �⇤⇤T

Exchanged token is a now! message

20

Stacks vs Queues

stackA = ⇤ &{ins : �(⇤A (�
stackA)},

del : � � {none : �1,

some : �(⇤A⌦ �
stackA)}}

queueA = ⇤ &{ins : �(⇤A (�3
queueA)},

del : � � {none : �1,

some : �(⇤A⌦ �
queueA)}}

RS cost model

21

Stacks vs Queues

stackA = ⇤ &{ins : �(⇤A (�
stackA)},

del : � � {none : �1,

some : �(⇤A⌦ �
stackA)}}

queueA = ⇤ &{ins : �(⇤A (�3
queueA)},

del : � � {none : �1,

some : �(⇤A⌦ �
queueA)}}

Which one’s more efficient?

RS cost model

21

Stacks vs Queues

stackA = ⇤ &{ins : �(⇤A (�
stackA)},

del : � � {none : �1,

some : �(⇤A⌦ �
stackA)}}

queueA = ⇤ &{ins : �(⇤A (�3
queueA)},

del : � � {none : �1,

some : �(⇤A⌦ �
queueA)}}

Which one’s more efficient?

RS cost model

21

Stacks vs Queues

stackA = ⇤ &{ins : �(⇤A (�
stackA)},

del : � � {none : �1,

some : �(⇤A⌦ �
stackA)}}

queueA = ⇤ &{ins : �(⇤A (�3
queueA)},

del : � � {none : �1,

some : �(⇤A⌦ �
queueA)}}

Which one’s more efficient?

RS cost model

21

▸ Parametric: time can be defined using a cost model

▸ Compositional: types describe individual processes,
not just whole programs

▸ Precise & Flexible: ⃝ operator provides precision.
⬜ , ♢ operators provide flexibility

▸ Conservative: only added 3 type operators

▸ General: works on all standard examples

▸ Automatic: supports automatic type checking, type
inference future work

Features of Type System 22

Cost Semantics

proc(c, t,P)

Process P offering along
channel c at local time t

23

Cost Semantics

proc(c, t,P)

Process P offering along
channel c at local time t

Soundness Theorem:
message timings realized by the local clocks

matches the timing predicted by the type system

23

▸ Interaction of ⬜ , ♢ with ⃝ operators

▸ Sound and complete subtyping relation

▸ Time Reconstruction — inserting delay, now!, when?
automatically from the program type

▸ Cost Semantics — each process stores a local clock,
expresses timing at runtime, connected to the type
system by a proof of progress and preservation

▸ Connection to the standard cost semantics

▸ Typing a set of processes at different local clocks

What else is in the paper? 24

Conclusion 25

Conclusion
Type System

analyzes timing of
message exchanges

Cost Semantics
local clocks at
each process

Soundness
Theorem

Examples
throughput and latency of bit stream processors

response time of stacks vs queues
list examples: append, map, fold (many more in paper!)

Properties
conservative extension, added 3 type operators

 ⃝ provides precision, ⬜ , ♢ provide flexibility

25

