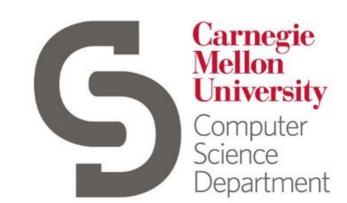
Parallel Complexity Analysis with Temporal Session Types

Ankush Das

Jan Hoffmann

Frank Pfenning

ICFP, Sep 26, 2018



Total time of computation?

Total time of computation? Depends on amount of parallelism in system

Total time of computation?

Depends on amount of parallelism in system

Data Dependencies

Data Races Shared Memory

Complexity of Parallel Algorithms

Blelloch (Comm. ACM '96)

Complexity of Parallel Algorithms

Blelloch (Comm. ACM '96)

Design of Optimal Scheduling Policies

Acar et. al. (JFP '16)

Complexity of Parallel Algorithms

Blelloch (Comm. ACM '96)

Throughput and Latency of Streams

Mamouras et. al. (PLDI '17)

Design of Optimal Scheduling Policies

Acar et. al. (JFP '16)

Complexity of Parallel Algorithms

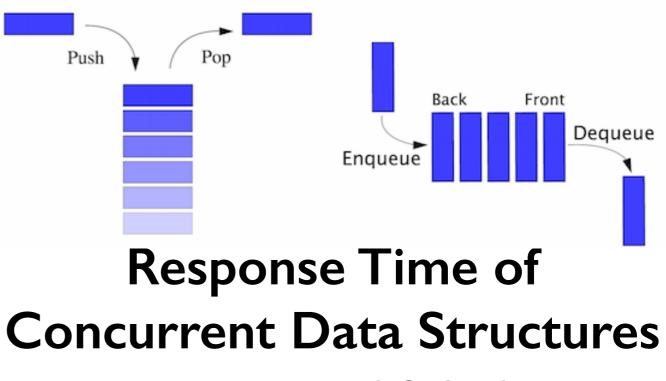
Blelloch (Comm. ACM '96)

Throughput and Latency of Streams

Mamouras et. al. (PLDI '17)

Design of Optimal Scheduling Policies

Acar et. al. (JFP '16)



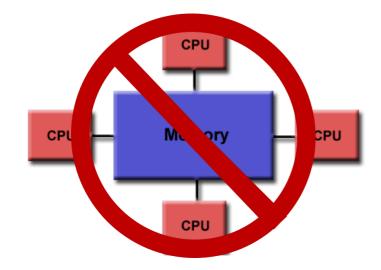
Ellen and Brown (PODC '16)

4

Concurrent Programs are hard to analyze!

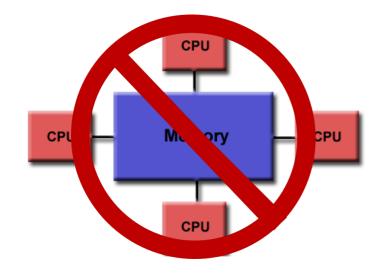
4

Concurrent Programs are hard to analyze!



No Shared Memory

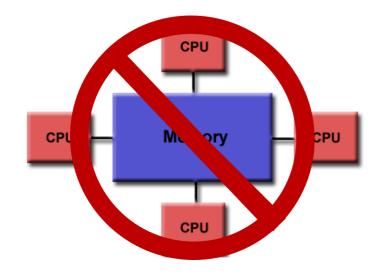
Concurrent Programs are hard to analyze!



No Shared Memory

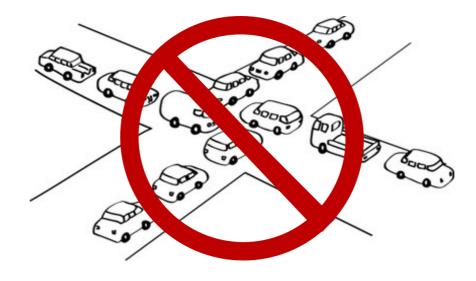
Types strictly enforce communication protocols

Concurrent Programs are hard to analyze!



No Shared Memory

Types strictly enforce communication protocols



Deadlock Freedom

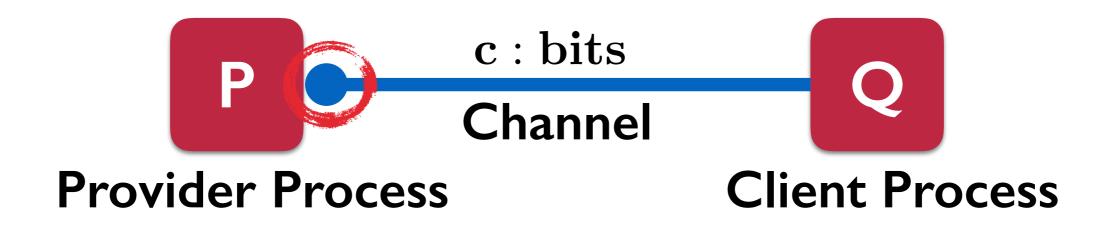
- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Curry-Howard isomorphism with intuitionistic linear logic

- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Curry-Howard isomorphism with intuitionistic linear logic

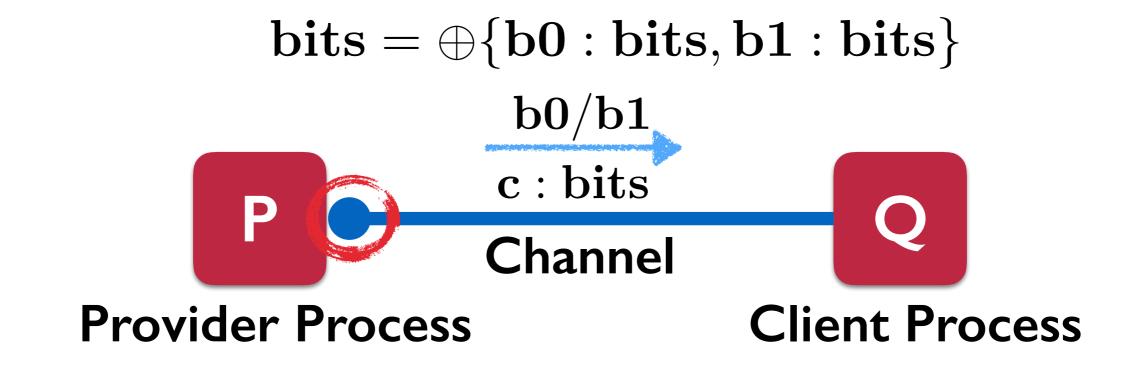
- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Curry-Howard isomorphism with intuitionistic linear logic

- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Curry-Howard isomorphism with intuitionistic linear logic

$$\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}\}$$



- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Curry-Howard isomorphism with intuitionistic linear logic



Contributions

Contributions

Type system to analyze timings of message exchanges of session-typed programs

Contributions

- Type system to analyze timings of message exchanges of session-typed programs
- types define the timing of message exchanges
- provides precision and flexibility
- proved sound w.r.t. cost semantics tracking time
- conservative extension to typical session type system
- applies to all standard session types examples
- can be parameterized to count resource of interest

How is time defined?

- Time is defined using a cost model
- Cost model assigns a time cost to each operation

How is time defined?

- Time is defined using a cost model
- Cost model assigns a time cost to each operation

 \mathcal{R} cost model Unit delay after each receive RS cost model Unit delay after each receive and send

How is time defined?

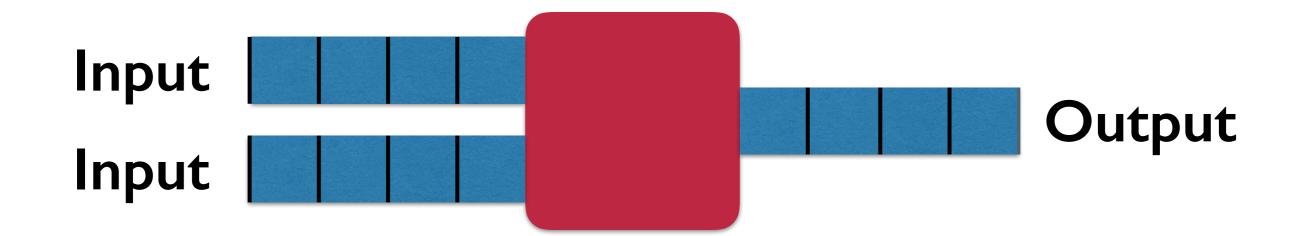
- Time is defined using a cost model
- Cost model assigns a time cost to each operation

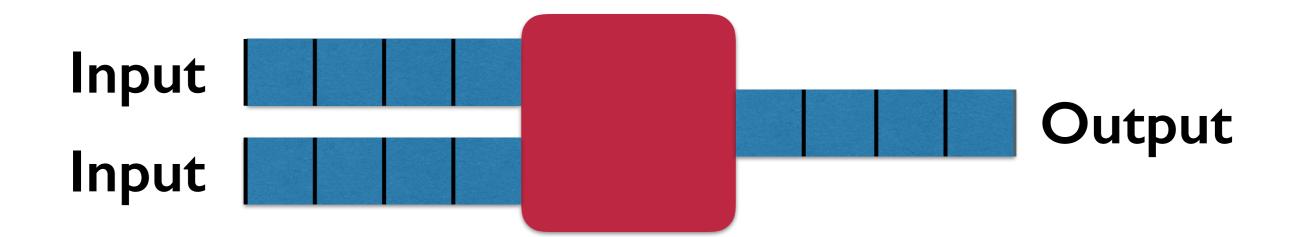
 \mathcal{R} cost model Unit delay after each receive RS cost model Unit delay after each receive and send

- Expressed by inserting appropriate delays in the source code, only the delays cost time
- Programmer specifies cost model, compiler automatically inserts delays for type checking

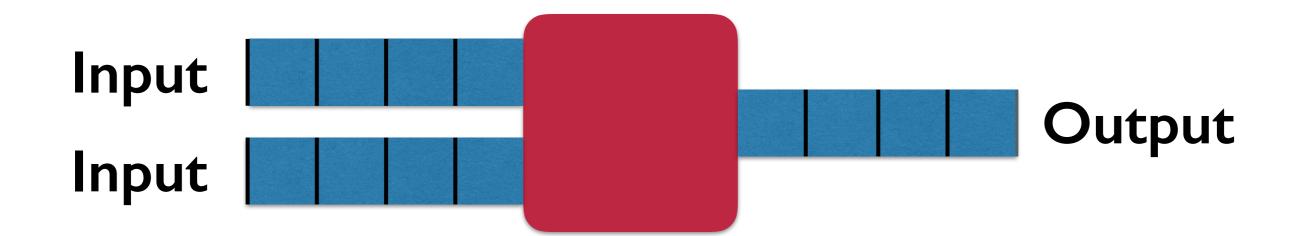
 $\mathbf{\Omega} \vdash \mathbf{P} :: (\mathbf{x} : \mathbf{S})$

Definition of the Types



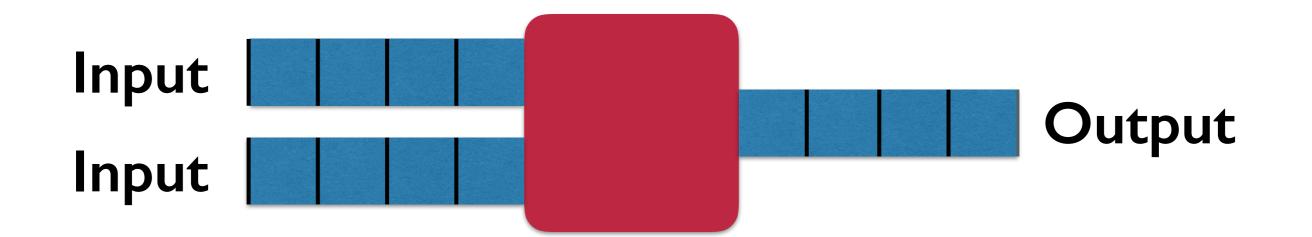


Compute output rate given input rate



Compute output rate given input rate

timing of messages \Leftrightarrow Parallel Complexity



Compute output rate given input rate

timing of messages \Leftrightarrow Parallel Complexity

Necessary:

need exact input/ output rate to ensure compositionality

Sufficient:

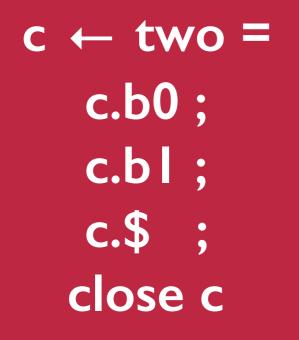
span can be thought as timing of final message

$\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

$\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$

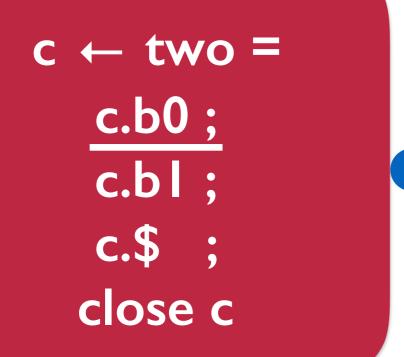
 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

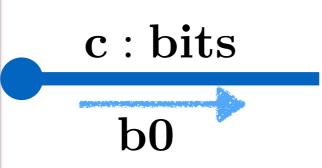


 $\mathbf{c}:\mathbf{bits}$

$\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$





$\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$

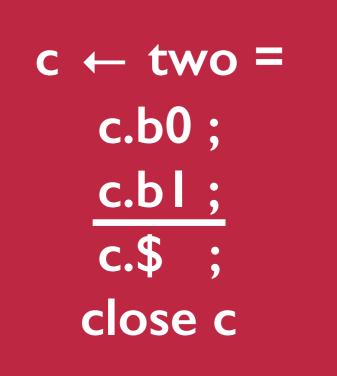
 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

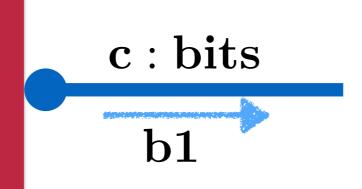
c ← two =
 c.b0;
 c.bl;
 c.\$;
 close c

b0

$\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

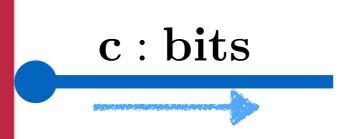




10

- $\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$
- $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

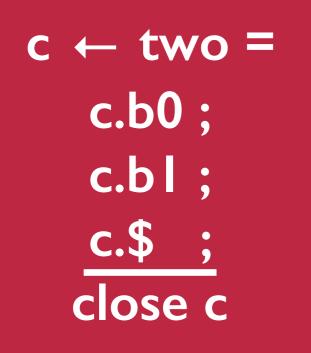
c ← two =
 c.b0;
 c.bl;
 c.\$;
 close c

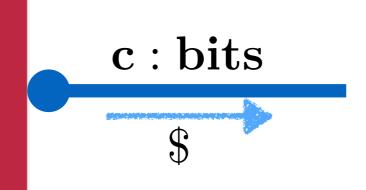


b1

$\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$

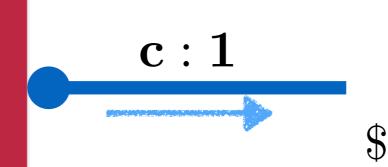
 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$





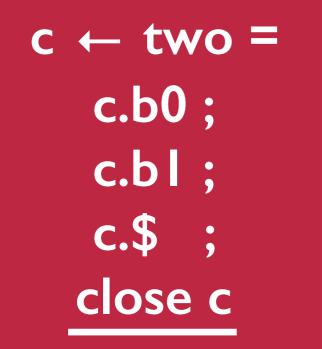
- $\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$
- $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
 c.b0;
 c.bl;
 c.\$;
 close c



$\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$



 $\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

Timing Information?

c ← two =
 c.b0;
 c.bl;
 c.\$;
 close c

 $\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

Timing Information?

Sending a message causes unit delay

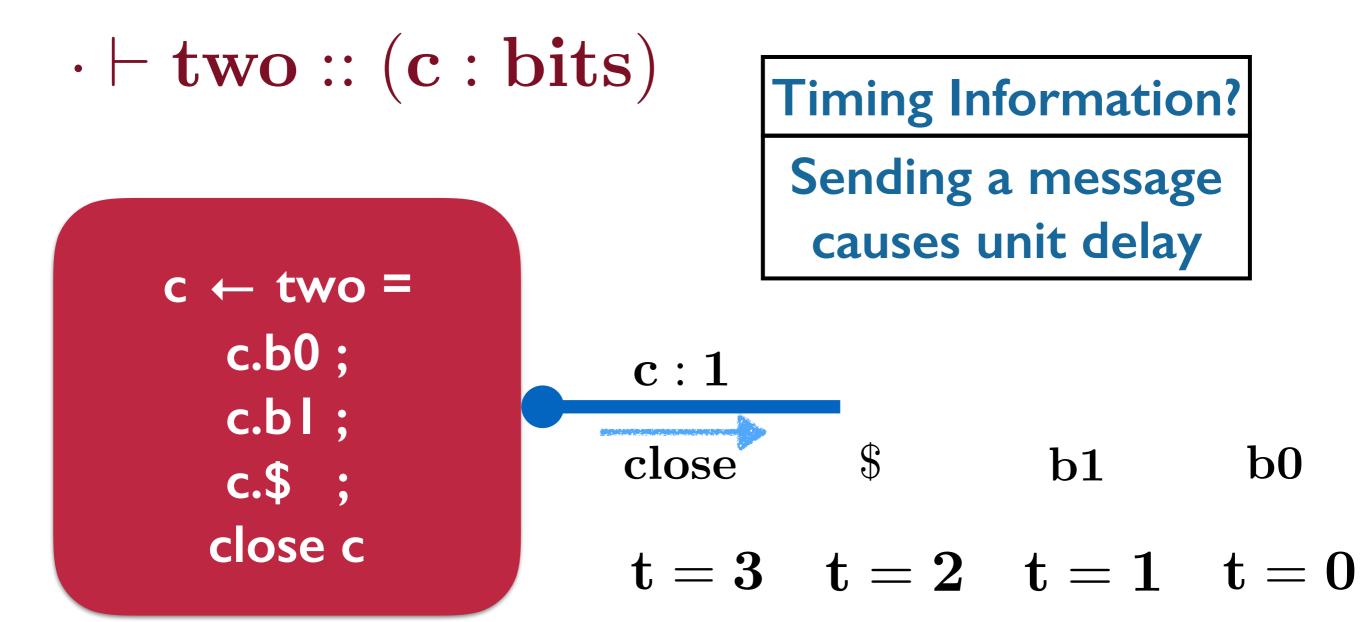
c ← two =
 c.b0;
 c.b1;
 c.\$;
 close c

c:1 close \$ b1

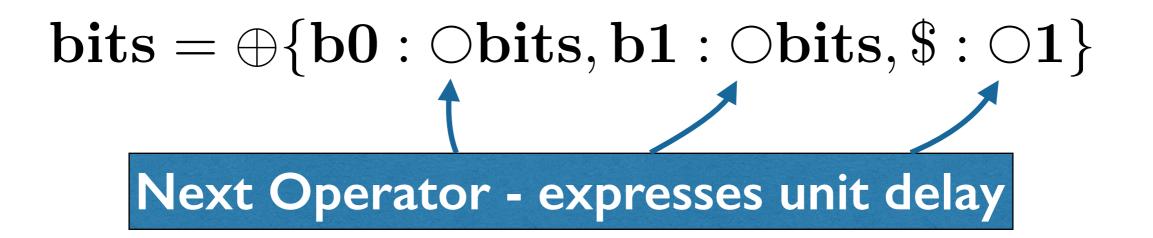
b0

10

 $\mathbf{bits} = \oplus \{\mathbf{b0}: \mathbf{bits}, \mathbf{b1}: \mathbf{bits}, \$: \mathbf{1}\}$



$\mathbf{bits} = \oplus \{\mathbf{b0}: \bigcirc \mathbf{bits}, \mathbf{b1}: \bigcirc \mathbf{bits}, \$: \bigcirc \mathbf{1}\}$



bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;
c.\$; delay;
close c

 $\mathbf{c}:\mathbf{bits}$

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;
close c

c : bits b0

 $\mathbf{t} = \mathbf{0}$

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;
close c

b0

 $\mathbf{t} = \mathbf{0}$

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;
c.\$; delay;
close c

b0

 $\mathbf{t} = \mathbf{0}$

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;
c.\$; delay;
close c

b0

t = 1 t = 0

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two = c.b0 ; delay ; c.b1 ; delay ; c.\$; delay ; close c

c : bits b1

b0

t = 1 t = 0

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;
close c

b1 b0

 $\mathbf{t} = \mathbf{1} \quad \mathbf{t} = \mathbf{0}$

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;
c.\$; delay;
close c

b1

b0

t = 1 t = 0

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;
c.\$; delay;
close c

c : bits

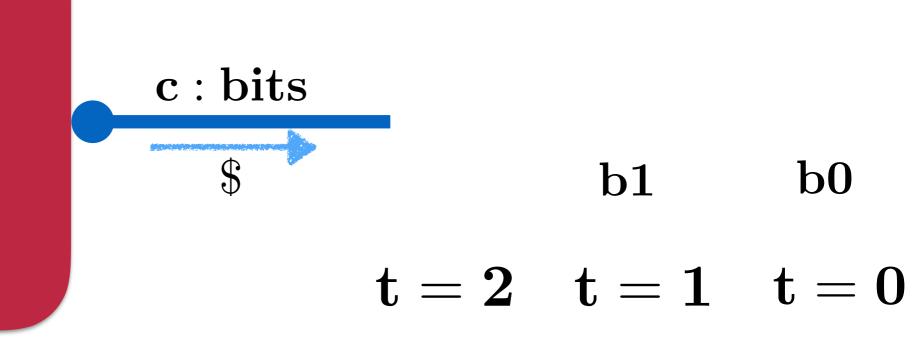
b0 **b1**

 $\mathbf{t} = \mathbf{2}$ $\mathbf{t} = \mathbf{1}$ $\mathbf{t} = \mathbf{0}$

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two = c.b0 ; delay ; c.b1 ; delay ; c.\$; delay ; close c



bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;
close c

 $\begin{array}{c} \mathbf{c}: \bigcirc \mathbf{1} \\ & & \\ & & \\ & & \\ & & \\ & & \mathbf{t}=\mathbf{2} \quad \mathbf{t}=\mathbf{1} \quad \mathbf{t}=\mathbf{0} \end{array}$

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c : O1

\$

b0

b1

t = 2 t = 1 t = 0

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;
close c

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;
close c

c:1 \$ b1 b0t=3 t=2 t=1 t=0

bits = \oplus {b0 : \bigcirc bits, b1 : \bigcirc bits, \$: \bigcirc 1} Next Operator - expresses unit delay

 $\cdot \vdash \mathbf{two} :: (\mathbf{c} : \mathbf{bits})$

c ← two =
c.b0; delay;
c.b1; delay;
c.\$; delay;

 $\begin{array}{cccc} c:1\\ \hline close & \$ & b1 & b0\\ t=3 & t=2 & t=1 & t=0 \end{array}$

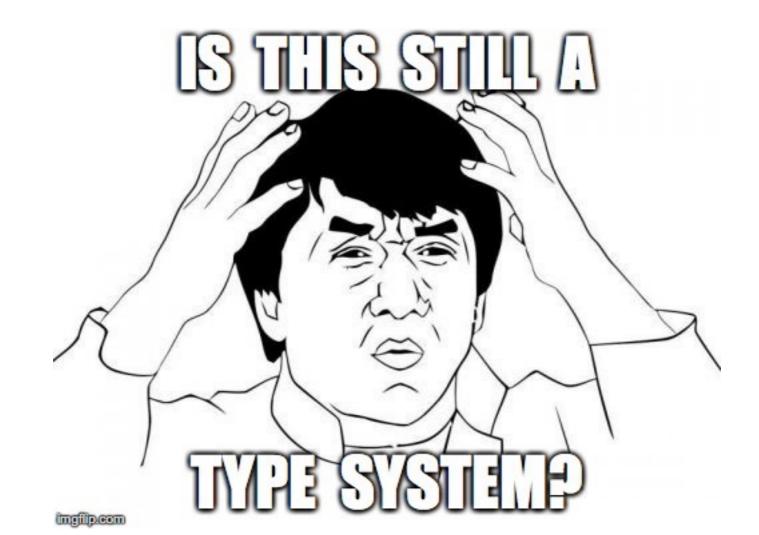
Typing Rule (O)

applied $\mathbf{\Omega} \vdash \mathbf{P} :: (\mathbf{x} : \mathbf{S})$ pointwise $\bigcirc \Omega \vdash$ delay; $\mathbf{P} :: (\mathbf{x} : \bigcirc \mathbf{S})$

Typing Rule (O)

$\begin{array}{l} \begin{array}{c} \text{applied} \\ \text{pointwise} \end{array} & \Omega \vdash \mathbf{P} :: (\mathbf{x} : \mathbf{S}) \\ \hline \bigcirc \Omega \vdash \text{delay}; \ \mathbf{P} :: (\mathbf{x} : \bigcirc \mathbf{S}) \end{array}$

breaks the locality property of type system!



 $\mathcal{R} \operatorname{\mathbf{cost}} \operatorname{\mathbf{model}}$

$\mathbf{bits} = \oplus \{\mathbf{b0}: \bigcirc^{\mathbf{r}} \mathbf{bits}, \mathbf{b1}: \bigcirc^{\mathbf{r}} \mathbf{bits}, \$: \bigcirc^{\mathbf{r}} \mathbf{1}\}$

 ${\mathcal R} \operatorname{\mathbf{cost}} \operatorname{\mathbf{model}}$

$\mathbf{bits} = \oplus \{\mathbf{b0}: \bigcirc^{\mathbf{r}} \mathbf{bits}, \mathbf{b1}: \bigcirc^{\mathbf{r}} \mathbf{bits}, \$: \bigcirc^{\mathbf{r}} \mathbf{1}\}$

 $\mathbf{x} : \mathbf{bits} \vdash \mathbf{copy} :: (\mathbf{y} : \bigcirc \mathbf{bits})$

 ${\mathcal R} \operatorname{\mathbf{cost}} \operatorname{\mathbf{model}}$

 $\mathbf{bits} = \oplus \{\mathbf{b0}: \bigcirc^{\mathbf{r}} \mathbf{bits}, \mathbf{b1}: \bigcirc^{\mathbf{r}} \mathbf{bits}, \$: \bigcirc^{\mathbf{r}} \mathbf{1}\}$

 $\mathbf{x} : \mathbf{bits} \vdash \mathbf{copy} :: (\mathbf{y} : \bigcirc \mathbf{bits})$

 $\mathbf{x} : \mathbf{bits} \vdash \mathbf{plus1} :: (\mathbf{y} : \bigcirc \mathbf{bits})$

$$x \qquad y = x$$

$$y = x + 1$$

$$y = x + 1$$

 ${\mathcal R} \operatorname{\mathbf{cost}} \operatorname{\mathbf{model}}$

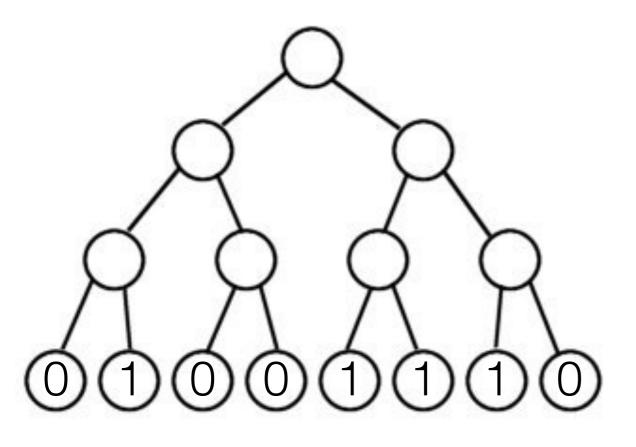
- $\mathbf{bits} = \bigoplus \{\mathbf{b0} : \bigcirc^{\mathbf{r}} \mathbf{bits}, \mathbf{b1} : \bigcirc^{\mathbf{r}} \mathbf{bits}, \$: \bigcirc^{\mathbf{r}} \mathbf{1} \}$
- $\mathbf{x} : \mathbf{bits} \vdash \mathbf{copy} :: (\mathbf{y} : \bigcirc \mathbf{bits})$

 ${\mathcal R} \operatorname{\mathbf{cost}} \operatorname{\mathbf{model}}$

- $\mathbf{bits} = \oplus \{\mathbf{b0}: \bigcirc^{\mathbf{r}} \mathbf{bits}, \mathbf{b1}: \bigcirc^{\mathbf{r}} \mathbf{bits}, \$: \bigcirc^{\mathbf{r}} \mathbf{1}\}$
- $\mathbf{x} : \mathbf{bits} \vdash \mathbf{copy} :: (\mathbf{y} : \bigcirc \mathbf{bits})$

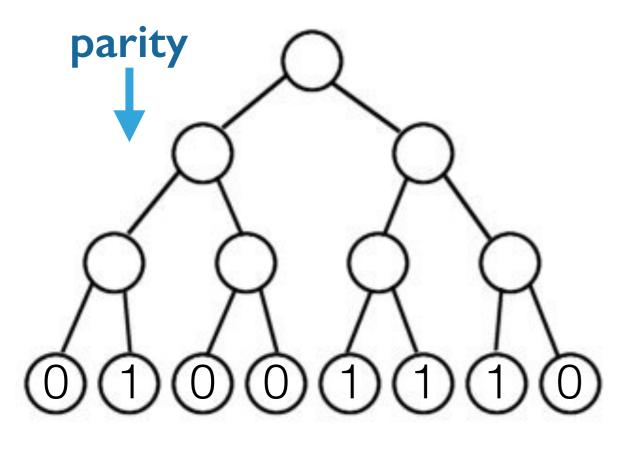
 $\mathbf{x} : \mathbf{bits} \vdash \mathbf{plus1} :: (\mathbf{y} : \bigcirc \mathbf{bits})$

$$\begin{array}{c|c} \mathbf{x} : \mathbf{bits} & \mathbf{y} : \odot \mathbf{bits} \\ \hline \mathbf{plusl} & \mathbf{plusl} \\ \mathbf{x} : \mathbf{bits} \vdash \mathbf{plus2} :: (\mathbf{z} : \odot \odot \mathbf{bits}) \end{array}$$



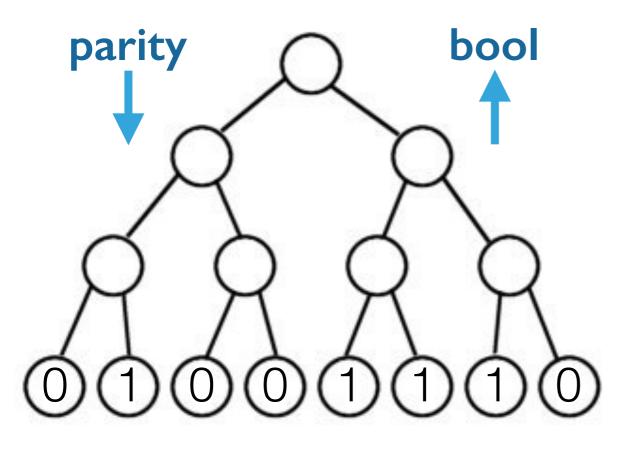
Os and 1s at the leaves

Compute the parity



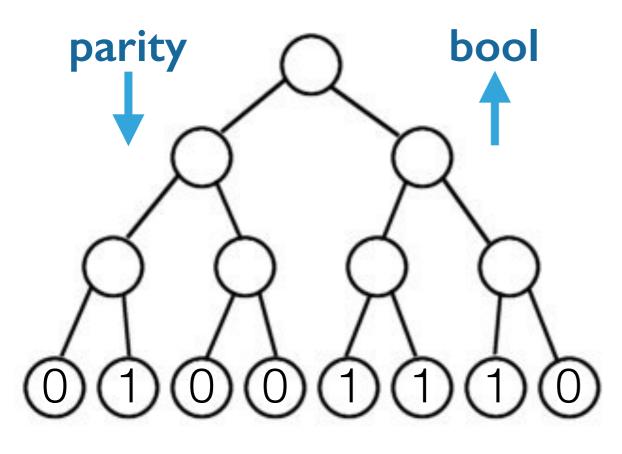
Os and 1s at the leaves

Compute the parity



Os and 1s at the leaves

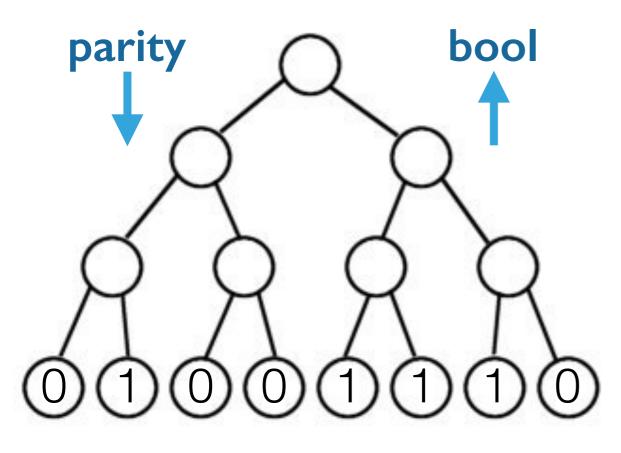
Compute the parity



Os and 1s at the leaves

Compute the parity

 $\mathcal{RS} \text{ cost model} \qquad \text{tree}[h] = \& \{ \text{parity} : \bigcirc^{5h+3} \text{bool} \}$



Counting xors

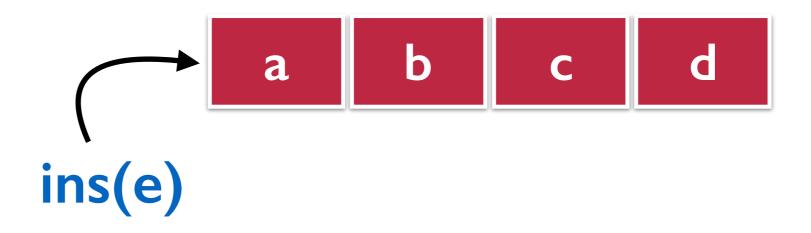
Os and 1s at the leaves

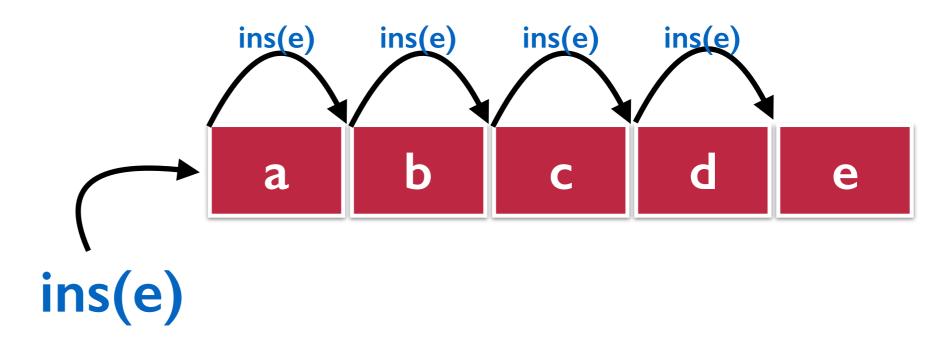
Compute the parity

 $\mathcal{RS} \text{ cost model} \qquad \text{tree}[h] = \&\{\text{parity}: \bigcirc^{5h+3}\text{bool}\}\$

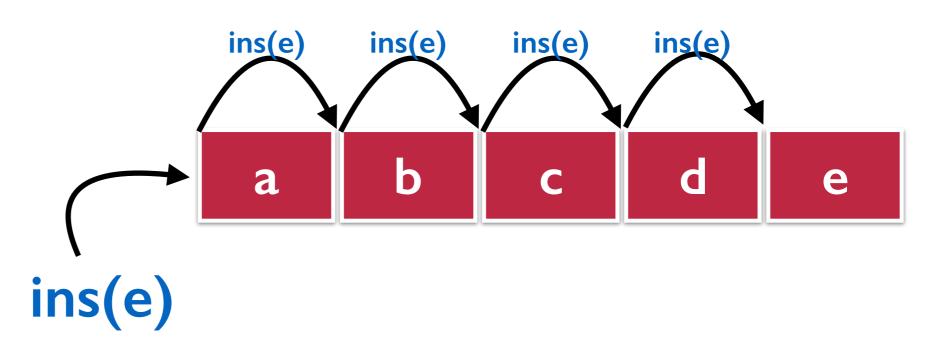
 $\mathbf{tree}[\mathbf{h}] = \&\{\mathbf{parity}: \bigcirc^{\mathbf{h}}\mathbf{bool}\}$

Can we type the queue?





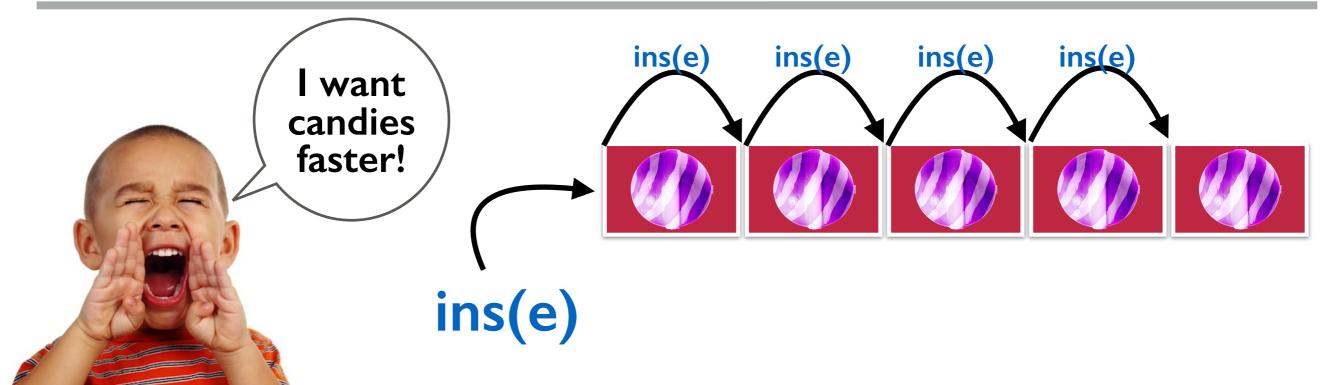
15



15

- Next operator only expresses constant insertion rate
- But rate of insertion at the tail depends on the size of the queue — longer the queue, slower the rate
- To maintain a constant rate at the tail, new elements must be inserted at a faster rate than the previous one

15



Next operator only expresses constant insertion rate

- But rate of insertion at the tail depends on the size of the queue — longer the queue, slower the rate
- To maintain a constant rate at the tail, new elements must be inserted at a faster rate than the previous one

The Next Operator is too precise!

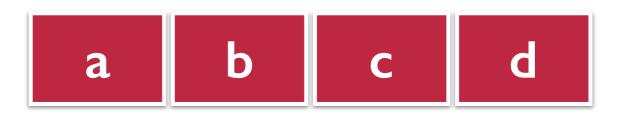
Adding Flexibility to the Type System

Providing Flexibility

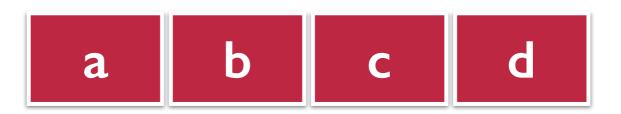
- ► The Box Operator (□)
 - Provider Action: always be ready to receive token
 - Client Action: eventually send the token
 - Provider doesn't know when the token will come, only the client does
 - Different from O operator where both provider and client knew the timing of message exchange

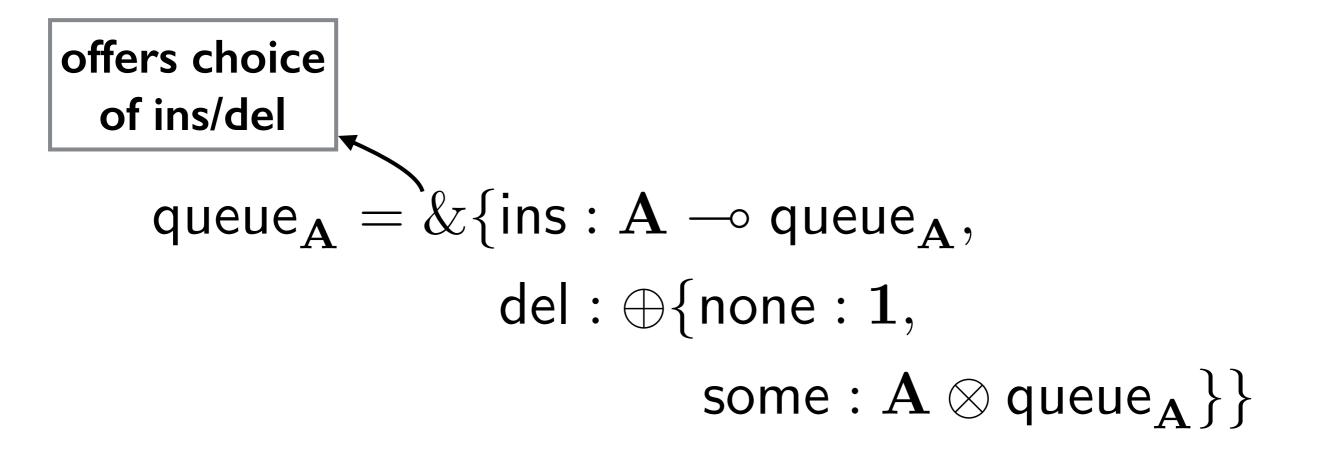
The Diamond Operator (🗘)

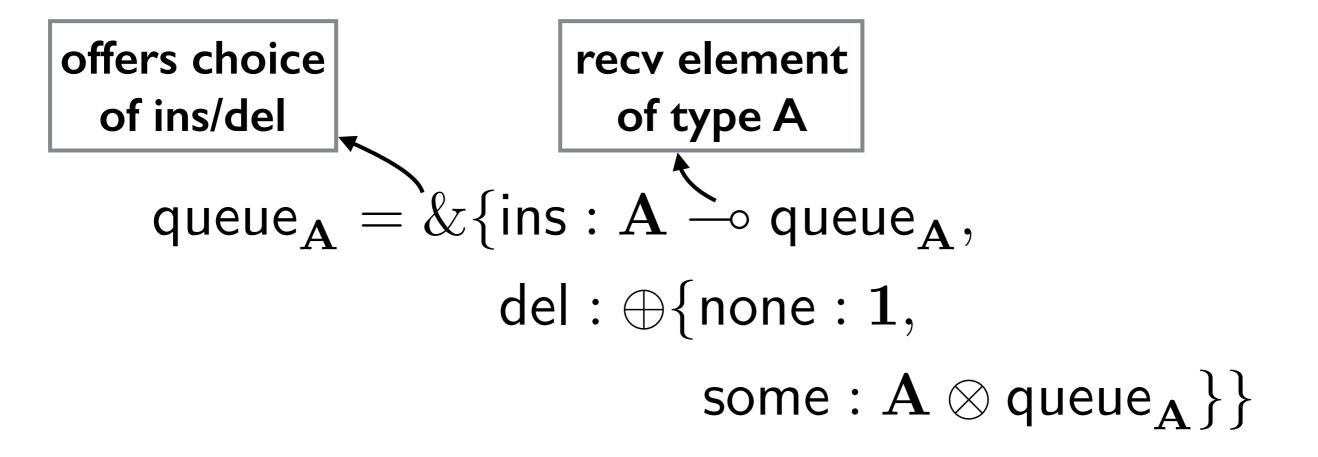
Dual of the Box operator (provider and client flip)

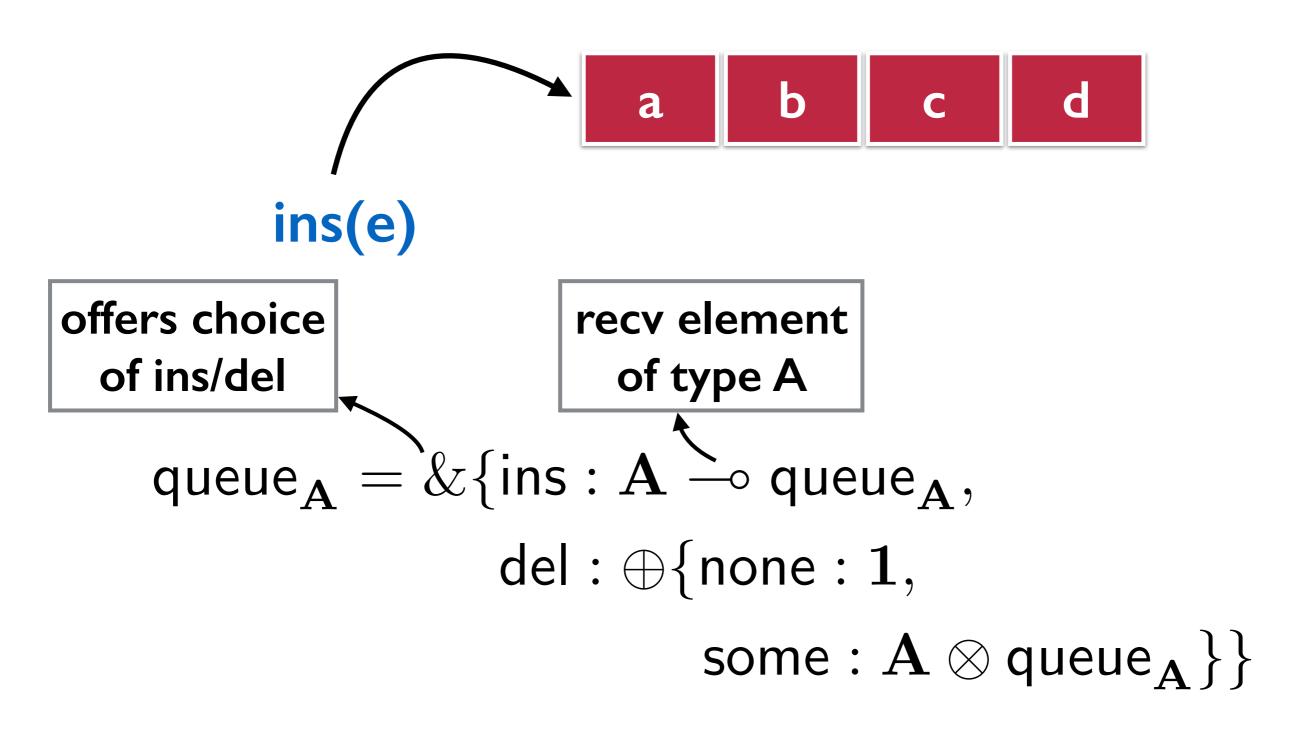


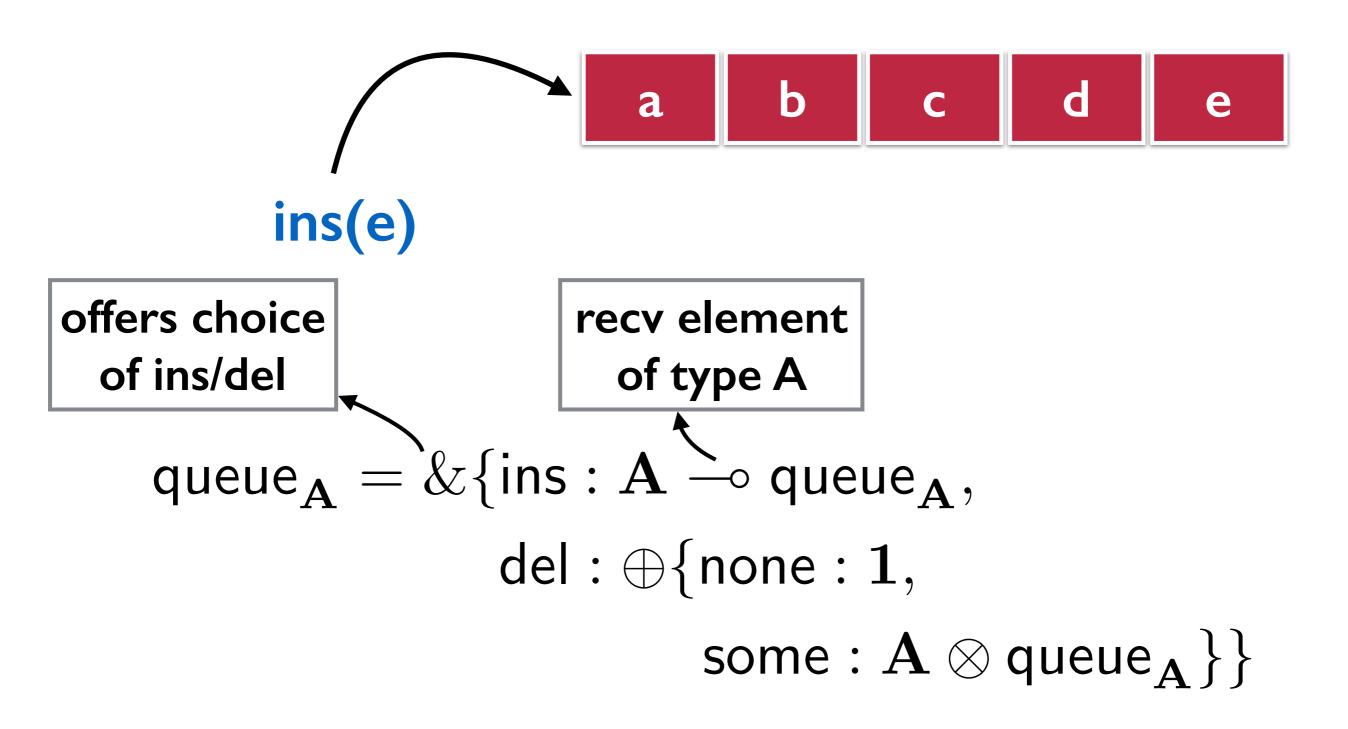
$$\begin{array}{l} \mathsf{queue}_\mathbf{A} = \&\{\mathsf{ins}: \mathbf{A} \multimap \mathsf{queue}_\mathbf{A}, \\ & \mathsf{del}: \oplus\{\mathsf{none}: \mathbf{1}, \\ & \mathsf{some}: \mathbf{A} \otimes \mathsf{queue}_\mathbf{A}\} \} \end{array}$$

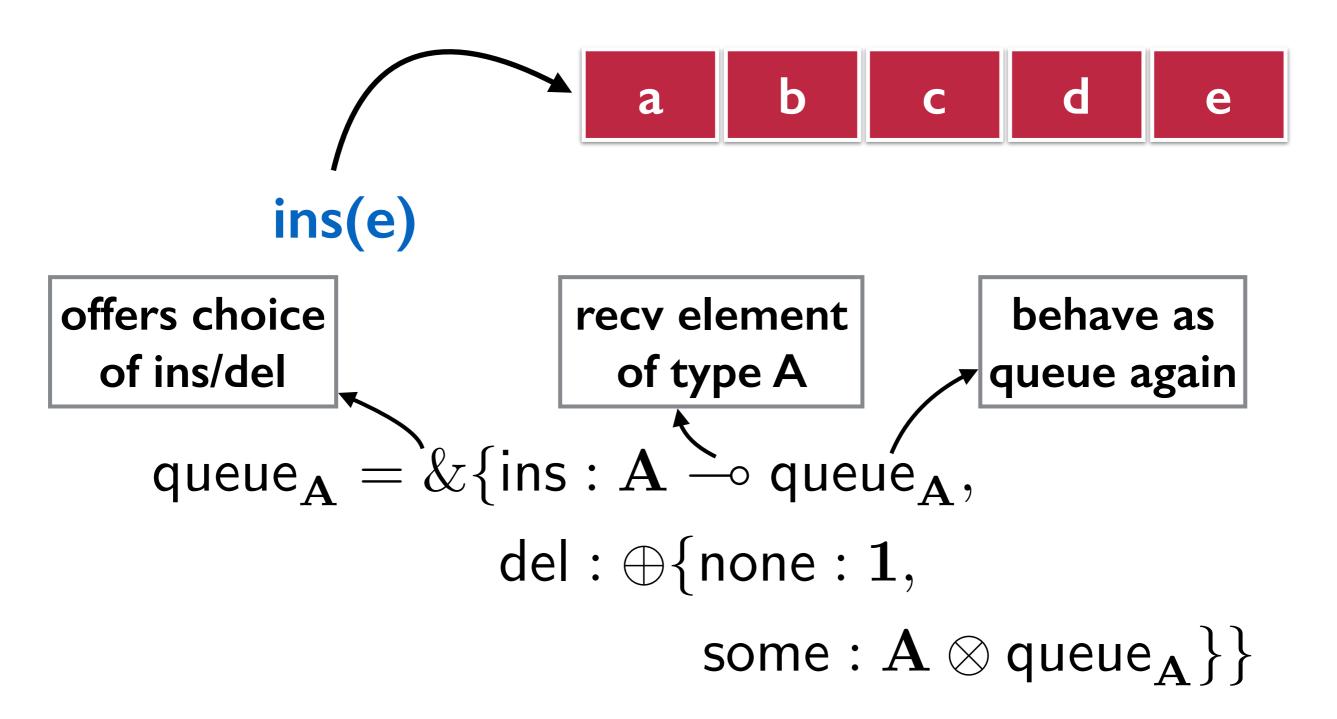












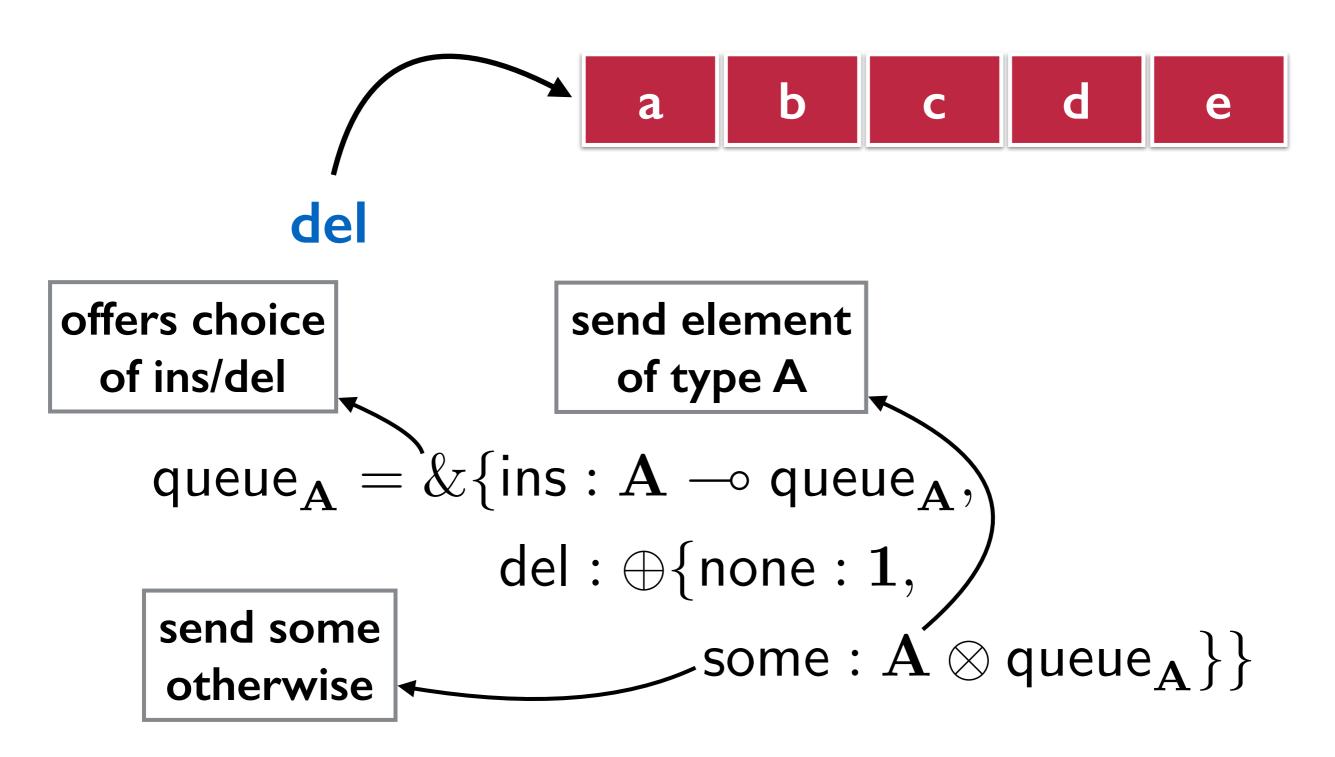
Typing the Queue 18 b d a С e del offers choice of ins/del queue_A = & {ins : A \multimap queue_A, $\mathsf{del}: \oplus \{\mathsf{none}: \mathbf{1},$ some : $\mathbf{A} \otimes \mathsf{queue}_{\mathbf{A}}$ }

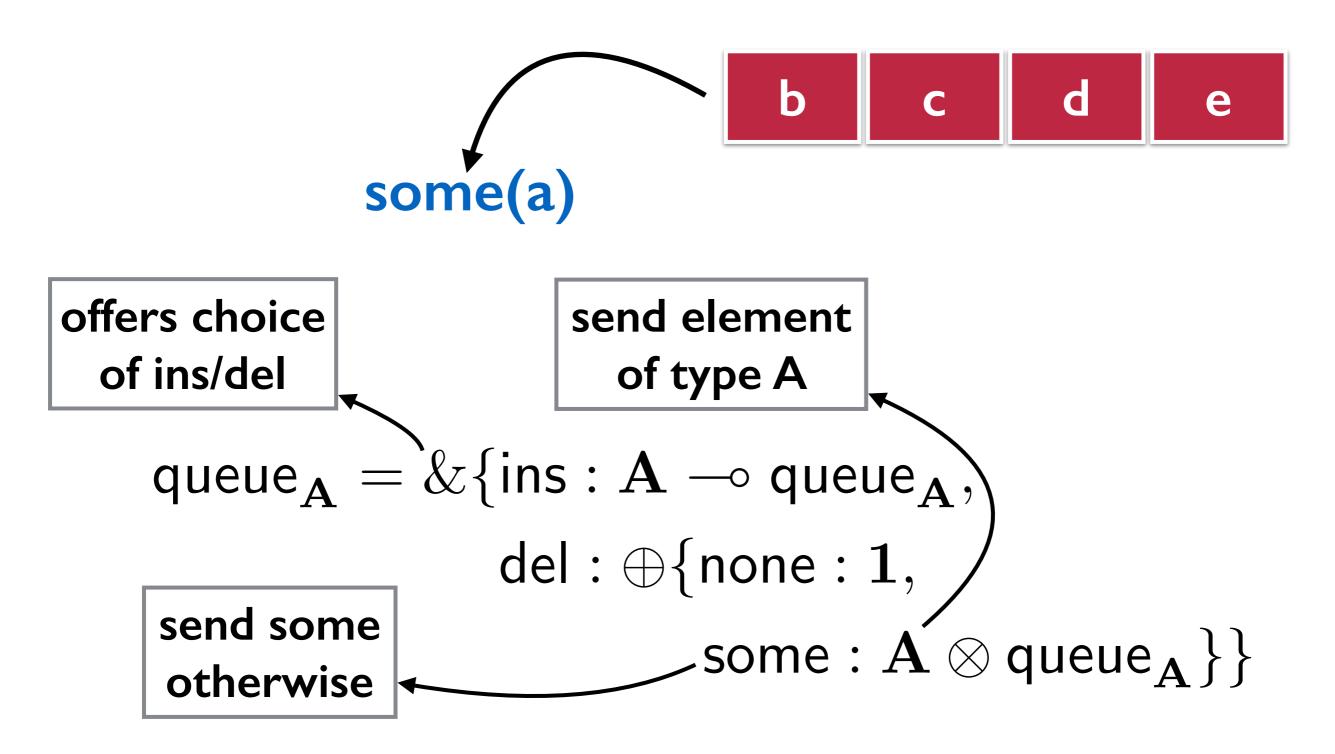
Typing the Queue 18 b C a С e del offers choice of ins/del queue_A = $\&\{ins : A \multimap queue_A, dueue_A, dueue$ del : \oplus {none : 1, send none if some : $\mathbf{A} \otimes \mathsf{queue}_{\mathbf{A}}$ } queue is empty

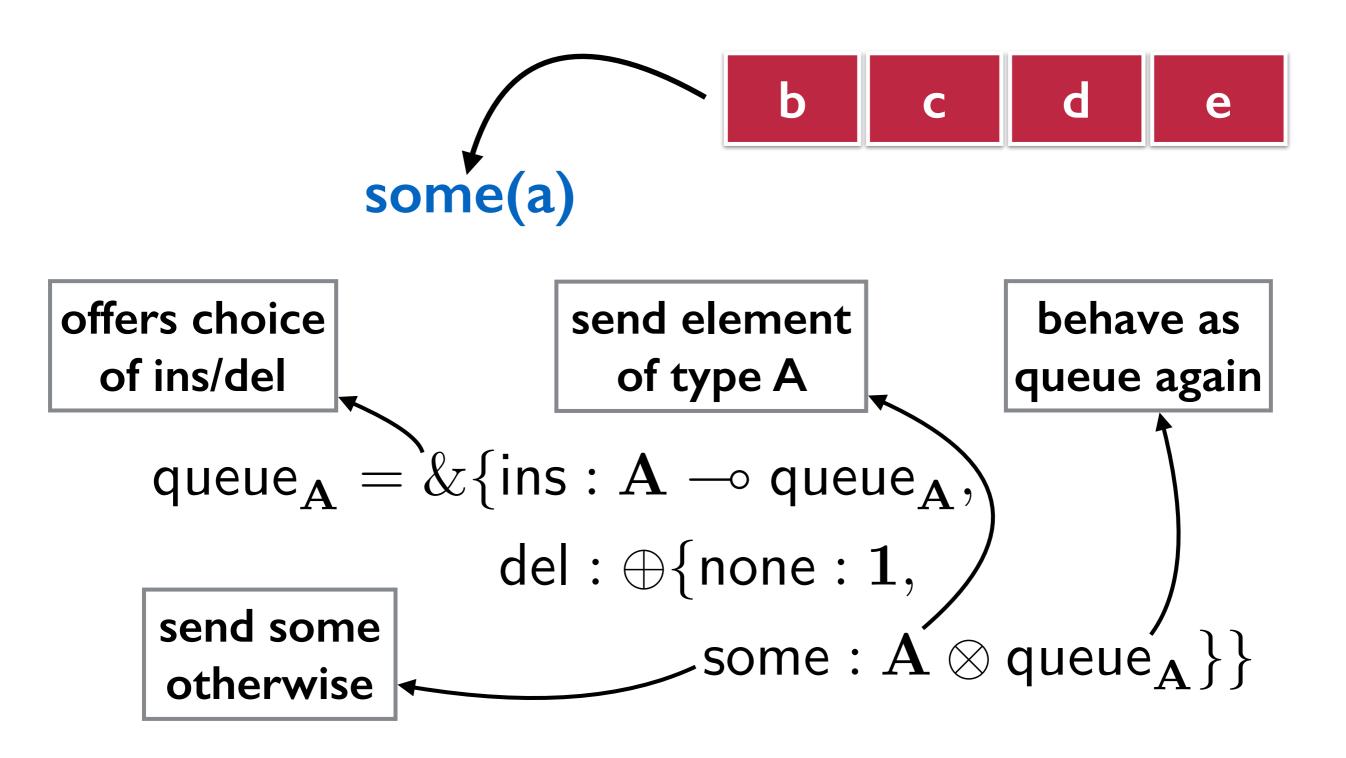
Typing the Queue 18 b C a C e del offers choice of ins/del queue_A = & {ins : A \multimap queue_A, terminate $\mathsf{del}:\oplus\{\mathsf{none}:\mathbf{1},$ send none if $\mathsf{some}: \mathbf{A} \otimes \mathsf{queue}_{\mathbf{A}} \} \}$

queue is empty

Typing the Queue 18 b C a С e del offers choice of ins/del queue_A = & {ins : A \multimap queue_A, $\mathsf{del}: \oplus \{\mathsf{none}: \mathbf{1},$ send some \checkmark some : $\mathbf{A} \otimes \mathsf{queue}_{\mathbf{A}}$ otherwise



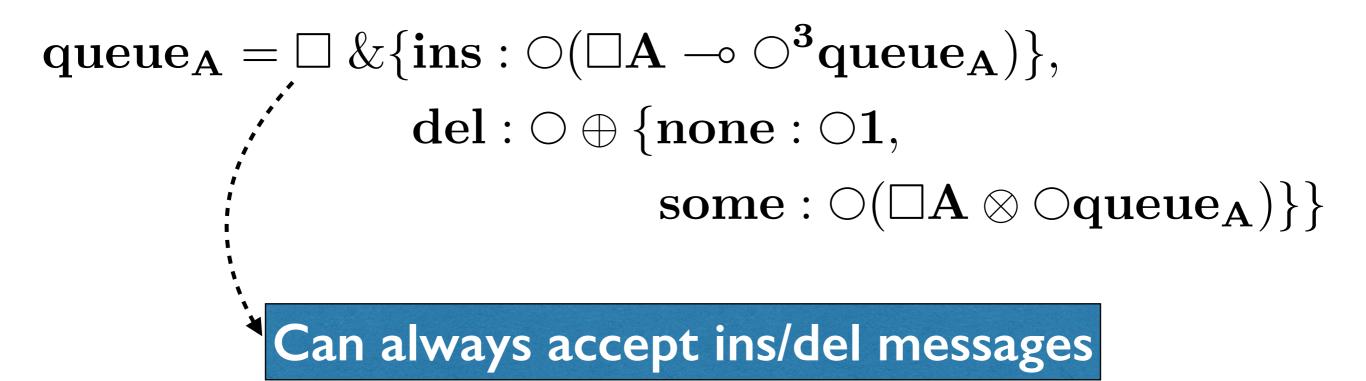


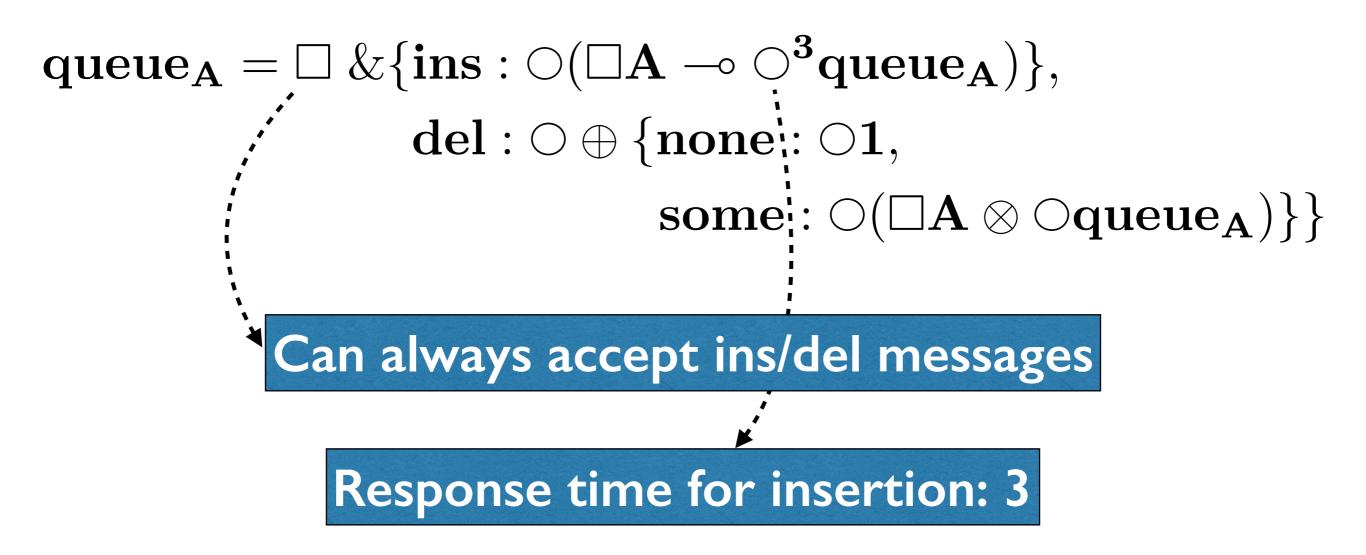


19

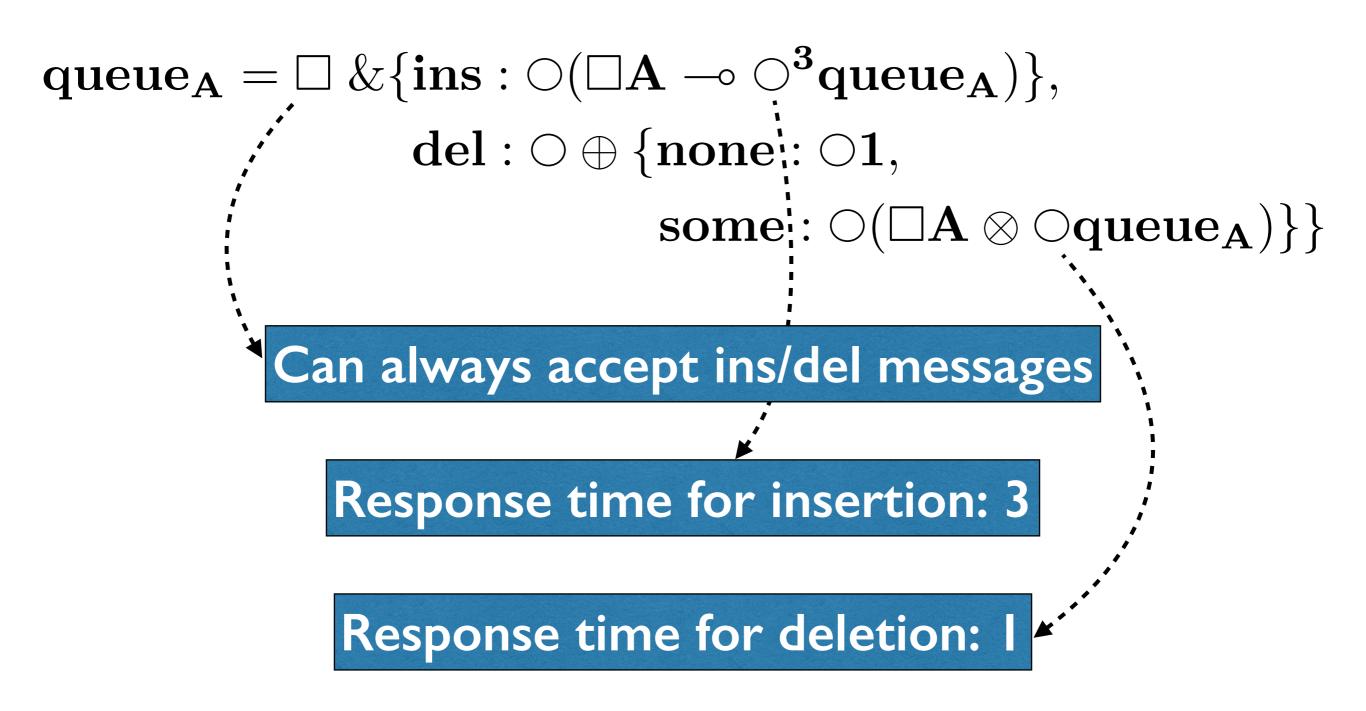
 $\begin{aligned} \mathbf{queue}_{\mathbf{A}} &= \Box \& \{ \mathbf{ins} : \bigcirc (\Box \mathbf{A} \multimap \bigcirc^{\mathbf{3}} \mathbf{queue}_{\mathbf{A}}) \}, \\ \mathbf{del} : \bigcirc \oplus \{ \mathbf{none} : \bigcirc \mathbf{1}, \\ \mathbf{some} : \bigcirc (\Box \mathbf{A} \otimes \bigcirc \mathbf{queue}_{\mathbf{A}}) \} \end{aligned}$

19

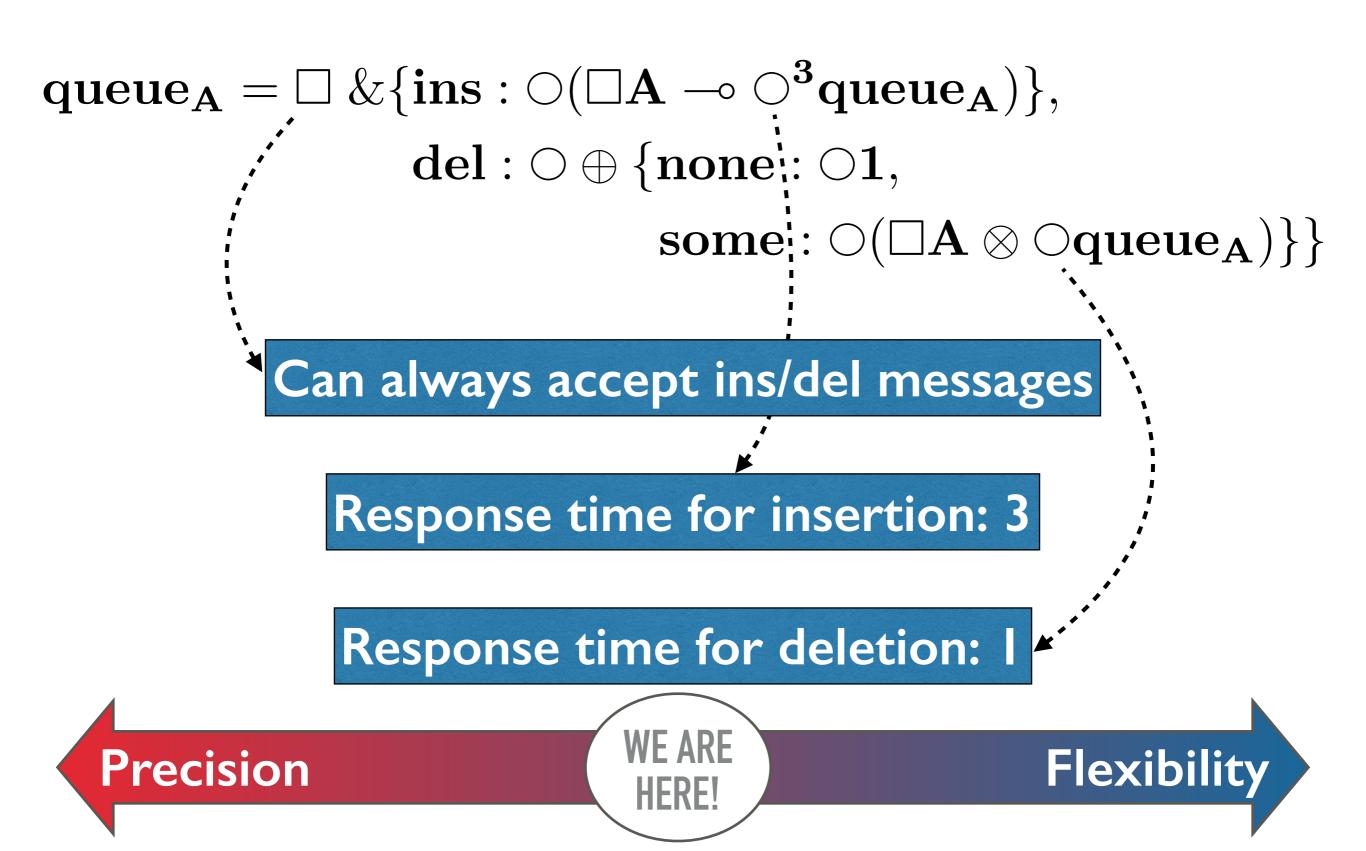




19



19



Typing Rules()

Typing Rules()

Exchanged token is a now! message

$$\frac{\boldsymbol{\Omega} \text{ delayed}^{\Box} \quad \boldsymbol{\Omega} \vdash \mathbf{P} :: (\mathbf{x} : \mathbf{S})}{\boldsymbol{\Omega} \vdash \mathbf{when}? \ \mathbf{x} \ ; \mathbf{P} :: (\mathbf{x} : \Box \mathbf{S})} \Box \mathbf{R}$$

delayed $\square = \bigcirc^* \square \mathbf{T} \rightarrow \mathbf{can} \mathbf{be} \mathbf{delayed} \mathbf{indefinitely}$

Typing Rules()

Exchanged token is a now! message

$$\frac{\boldsymbol{\Omega} \text{ delayed}^{\Box} \quad \boldsymbol{\Omega} \vdash \mathbf{P} :: (\mathbf{x} : \mathbf{S})}{\boldsymbol{\Omega} \vdash \mathbf{when}? \ \mathbf{x} \ ; \mathbf{P} :: (\mathbf{x} : \Box \mathbf{S})} \Box \mathbf{R}$$

delayed $\square = \bigcirc^* \square T \rightarrow can be delayed indefinitely$

$$\frac{\mathbf{\Omega}, \mathbf{x}: \mathbf{S} \vdash \mathbf{Q} :: (\mathbf{z}: \mathbf{T})}{\mathbf{\Omega}, \mathbf{x}: \Box \mathbf{S} \vdash \mathbf{now}! \ \mathbf{x} \ ; \mathbf{Q} :: (\mathbf{z}: \mathbf{T})} \Box \mathbf{L}$$

- $\begin{aligned} \mathbf{stack}_{\mathbf{A}} &= \Box \& \{ \mathbf{ins} : \bigcirc (\Box \mathbf{A} \multimap \bigcirc \mathbf{stack}_{\mathbf{A}}) \}, \\ \mathbf{del} : \bigcirc \oplus \{ \mathbf{none} : \bigcirc \mathbf{1}, \\ \mathbf{some} : \bigcirc (\Box \mathbf{A} \otimes \bigcirc \mathbf{stack}_{\mathbf{A}}) \} \end{aligned}$
- $\begin{aligned} \mathbf{queue}_{\mathbf{A}} &= \Box \& \{ \mathbf{ins} : \bigcirc (\Box \mathbf{A} \multimap \bigcirc^{\mathbf{3}} \mathbf{queue}_{\mathbf{A}}) \}, \\ \mathbf{del} : \bigcirc \oplus \{ \mathbf{none} : \bigcirc \mathbf{1}, \\ \mathbf{some} : \bigcirc (\Box \mathbf{A} \otimes \bigcirc \mathbf{queue}_{\mathbf{A}}) \} \} \end{aligned}$

- $\begin{aligned} \mathbf{stack}_{\mathbf{A}} &= \Box \& \{ \mathbf{ins} : \bigcirc (\Box \mathbf{A} \multimap \bigcirc \mathbf{stack}_{\mathbf{A}}) \}, \\ \mathbf{del} : \bigcirc \oplus \{ \mathbf{none} : \bigcirc \mathbf{1}, \\ \mathbf{some} : \bigcirc (\Box \mathbf{A} \otimes \bigcirc \mathbf{stack}_{\mathbf{A}}) \} \end{aligned}$
- $\begin{aligned} \mathbf{queue}_{\mathbf{A}} &= \Box \& \{ \mathbf{ins} : \bigcirc (\Box \mathbf{A} \multimap \bigcirc^{\mathbf{3}} \mathbf{queue}_{\mathbf{A}}) \}, \\ \mathbf{del} : \bigcirc \oplus \{ \mathbf{none} : \bigcirc \mathbf{1}, \\ \mathbf{some} : \bigcirc (\Box \mathbf{A} \otimes \bigcirc \mathbf{queue}_{\mathbf{A}}) \} \} \end{aligned}$

Which one's more efficient?

- $\begin{aligned} stack_{A} &= \Box \& \{ ins : \bigcirc (\Box A \multimap \bigcirc stack_{A}) \}, \\ del : \bigcirc \oplus \{ none : \bigcirc 1, \\ some : \bigcirc (\Box A \otimes \bigcirc stack_{A}) \} \end{aligned}$
- $\begin{aligned} \mathbf{queue}_{\mathbf{A}} &= \Box \& \{ \mathbf{ins} : \bigcirc (\Box \mathbf{A} \multimap \bigcirc^{\mathbf{3}} \mathbf{queue}_{\mathbf{A}}) \}, \\ \mathbf{del} : \bigcirc \oplus \{ \mathbf{none} : \bigcirc \mathbf{1}, \\ \mathbf{some} : \bigcirc (\Box \mathbf{A} \otimes \bigcirc \mathbf{queue}_{\mathbf{A}}) \} \} \end{aligned}$

Which one's more efficient?

 $stack_{\mathbf{A}} = \Box \& \{ ins : \bigcirc (\Box \mathbf{A} \multimap \bigcirc stack_{\mathbf{A}}) \},$ $\mathbf{del} : \bigcirc \oplus \{ none : \bigcirc 1, \end{cases}$

 $\mathbf{some}: \bigcirc (\Box \mathbf{A} \otimes \bigcirc \mathbf{stack}_{\mathbf{A}}) \} \}$

 $\begin{aligned} queue_{\mathbf{A}} &= \Box \& \{ ins : \bigcirc (\Box \mathbf{A} \multimap \bigcirc^{3} queue_{\mathbf{A}}) \}, \\ \mathbf{del} : \bigcirc \oplus \{ none : \bigcirc \mathbf{1}, \\ \mathbf{some} : \bigcirc (\Box \mathbf{A} \otimes \bigcirc queue_{\mathbf{A}}) \} \\ \end{aligned}$

Which one's more efficient?

Features of Type System

22

- Parametric: time can be defined using a cost model
- Compositional: types describe individual processes, not just whole programs
- Precise & Flexible: Operator provides precision.
 , Operators provide flexibility
- Conservative: only added 3 type operators
- General: works on all standard examples
- Automatic: supports automatic type checking, type inference future work

Cost Semantics

 $\mathbf{proc}(\mathbf{c}, \mathbf{t}, \mathbf{P})$

Process P offering along channel c at local time t

Cost Semantics

 $\mathbf{proc}(\mathbf{c}, \mathbf{t}, \mathbf{P})$

Process P offering along channel c at local time t

Soundness Theorem: message timings realized by the local clocks matches the timing predicted by the type system

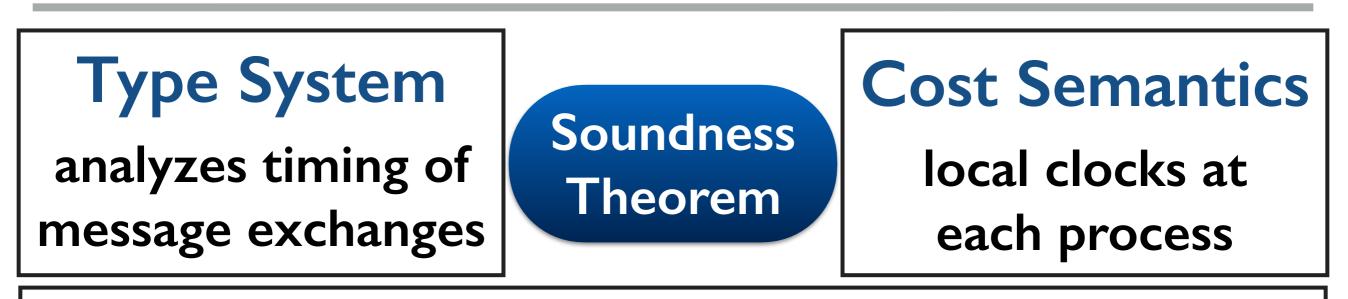
What else is in the paper?

24

- Interaction of \Box , \Diamond with \bigcirc operators
- Sound and complete subtyping relation
- Time Reconstruction inserting delay, now!, when? automatically from the program type
- Cost Semantics each process stores a local clock, expresses timing at runtime, connected to the type system by a proof of progress and preservation
- Connection to the standard cost semantics
- > Typing a set of processes at different local clocks

Conclusion

Conclusion



Properties

conservative extension, added 3 type operators

 \bigcirc provides precision, \Box , \diamondsuit provide flexibility

Examples

throughput and latency of bit stream processors response time of stacks vs queues list examples: append, map, fold (many more in paper!)