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This talk: number of messages

Insertion: potential needed = 2n 
How do you refer to n in the queue type?
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Index Refinement 
(Size of Queue)

▸ ‘none’ branch: send (proof of) constraint {n=0} 

▸ ‘some’ branch: send (proof of) constraint {n>0} 

▸ Only constraints are exchanged, not proofs

Proof Constraints 
(Sent by queue)
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Potential Annotations

▸ receive 2n units of potential after ‘ins’ 

▸ receive 2 units of potential after ‘del’ 

▸ potential is consumed to exchange messages
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▸ Resource-Aware Session Types: refinement session 
types with support for verifying sequential and 
parallel complexity bounds automatically 

▸ Lightweight verification using refinements 

▸ Reconstruction: constructs pertaining to refinement 
layer are inserted automatically 

▸ Evaluation: implemented standard benchmarks 

▸ Availability: implementation open-source on https://
bitbucket.org/fpfenning/rast/src/master/rast/
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