
Rast: Resource-Aware
Session Types with

Arithmetic Refinements

Ankush Das*

Frank Pfenning

Carnegie Mellon University

FSCD 2020

1

Key Features of Rast
Session
Types

Rast Language

Resource
Analysis

Arithmetic
Refinements

2

LICS 18, ICFP 18 CONCUR 20

Goal of Rast
Resource Analysis of

Concurrent Programs

Execution Time Memory Usage

3

Why Resource Analysis? 4

Why Resource Analysis?

Complexity of
Parallel Algorithms

Çiçek et. al. (ESOP ’15)

4

Why Resource Analysis?

Complexity of
Parallel Algorithms

Design of Optimal
Scheduling Policies

Çiçek et. al. (ESOP ’15) Acar et. al. (JFP ’16)

4

Why Resource Analysis?

Complexity of
Parallel Algorithms

Design of Optimal
Scheduling Policies

Prevention of
Side-Channel Attacks

Çiçek et. al. (ESOP ’15) Acar et. al. (JFP ’16)

Ngo et. al. (S&P ’17)

4

Why Resource Analysis?

Complexity of
Parallel Algorithms

Design of Optimal
Scheduling Policies

Prevention of
Side-Channel Attacks

Çiçek et. al. (ESOP ’15) Acar et. al. (JFP ’16)

Ngo et. al. (S&P ’17)

Response Time of
Concurrent Data Structures

Ellen and Brown (PODC ’16)

4

Concurrent Programs 5

Concurrent Programs 5

Need an appropriate
abstraction for representing

concurrent programs

Concurrent Programs 5

Need an appropriate
abstraction for representing

concurrent programs

Session Types

Why Session Types? 6

Concurrent programs are hard to analyze!

Why Session Types? 6

Communication Overhead

Concurrent programs are hard to analyze!

Why Session Types? 6

Shared Memory
Read/Write Overhead

Communication Overhead

Concurrent programs are hard to analyze!

Why Session Types? 6

Shared Memory
Read/Write Overhead

Communication Overhead

Deadlocks

Concurrent programs are hard to analyze!

Why Session Types? 6

Shared Memory
Read/Write Overhead

Communication Overhead

Deadlocks

Concurrent programs are hard to analyze!

With Session
Types

Why Session Types? 6

Shared Memory
Read/Write Overhead

Deadlocks

Types strictly enforce
communication protocols

Concurrent programs are hard to analyze!

With Session
Types

Why Session Types? 6

DeadlocksNo Shared Memory

Types strictly enforce
communication protocols

Concurrent programs are hard to analyze!

With Session
Types

Why Session Types? 6

No Shared Memory

Types strictly enforce
communication protocols

Deadlock Freedom

Concurrent programs are hard to analyze!

With Session
Types

Key Features of Rast
Session
Types

Rast Language

Resource
Analysis

Arithmetic
Refinements

7

LICS 18, ICFP 18 CONCUR 20

Key Features of Rast
Session
Types

Rast Language

Resource
Analysis

Arithmetic
Refinements

7

LICS 18, ICFP 18 CONCUR 20

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types? 8

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types?

P Q

Provider Process Client Process
Channel

8

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types?

P Q

Provider Process Client Process
Channel

8

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types?

P Q

Provider Process Client Process

c : bits

Channel

bits = �{b0 : bits,b1 : bits}

8

▸ Implement message-passing concurrent programs

▸ Communication via typed bi-directional channels

▸ Communication protocol enforced by session types

What are Session Types?

P Q

Provider Process Client Process

c : bits

b0/b1

Channel

bits = �{b0 : bits,b1 : bits}

8

Example: Queues

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

9

Example: Queues

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

9

Example: Queues

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

9

Example: Queues

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

behave as
queue again

9

Example: Queues

ins, e

ba c d

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

behave as
queue again

9

Example: Queues

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

recv element
of type A

behave as
queue again

9

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

9

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send none if
queue is empty

9

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

terminate

send none if
queue is empty

9

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

9

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

9

Example: Queues

del

ba c d e

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

behave as
queue again

9

Example: Queues

b c d e

some, a

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

offers choice
of ins/del

send some
otherwise

send element
of type A

behave as
queue again

9

Queues in Rast 10

empty q : queue

Queues in Rast 10

empty
ins, x

q : queue

Queues in Rast 10

empty empty
t

q : queue

Queues in Rast 10

empty emptyelem

x : A

t
q : queue

Queues in Rast 10

empty emptyelem

x : A

t

empty
del

q : queue

q : queue

Queues in Rast 10

empty emptyelem

x : A

t

empty q : queue

q : queue

Queues in Rast 10

empty emptyelem

x : A

t

empty
none, close

q : queue

q : queue

Queues in Rast 11

elem

x : A

t : queue q : queue

Queues in Rast 11

ins, y
elem

x : A

t : queue q : queue

Queues in Rast 11

elem

x : A

t : queue q : queue

Queues in Rast 11

elem

x : A

t : queue
ins, y q : queue

Queues in Rast 11

elem

x : A

t : queue

elem

x : A

t : queue

q : queue

q : queue

Queues in Rast 11

elem

x : A

t : queue

elem

x : A

t : queue
del

q : queue

q : queue

Queues in Rast 11

elem

x : A

t : queue

elem

x : A

t : queue

q : queue

q : queue

Queues in Rast 11

elem

x : A

t : queue

elem

x : A

t : queue

q : queue

q : queue

Queues in Rast 11

elem

x : A

t : queue

elemt : queue

q : queue

q : queue
some, x

Queues in Rast 11

elem

x : A

t : queue

elemt : queue

q : queue

q : queue
some, x

Key Features of Rast
Session
Types

Rast Language

Resource
Analysis

Arithmetic
Refinements

12

LICS 18, ICFP 18 CONCUR 20

Key Features of Rast
Session
Types

Rast Language

Resource
Analysis

Arithmetic
Refinements

12

LICS 18, ICFP 18 CONCUR 20

Complexity Measures 13

Complexity Measures 13

Work
Sequential Complexity

Execution time
on one processor

LICS 18

Complexity Measures 13

Work
Sequential Complexity

Execution time
on one processor

Span
Parallel Complexity

Execution time on
arbitrarily many processors

ICFP 18LICS 18

Work done by Queue 14

ba c d

Count the total number of messages!

Work done by Queue 14

ins, e

ba c d

Count the total number of messages!

Work done by Queue 14

ins, e

ba c d e

wi = Work done to process insertion
 = 2n (n is the size of queue)
 = ‘ins’ and ‘e’ travel to end of queue

Count the total number of messages!
ins, e ins, e ins, e ins, e

Work done by Queue 14

del

ba c d e

wi = Work done to process insertion
 = 2n (n is the size of queue)
 = ‘ins’ and ‘e’ travel to end of queue

Count the total number of messages!

Work done by Queue 14

b c d e

some, a

wd = Work done to process deletion
 = 2 (sends back ‘some’ and ‘a’)

wi = Work done to process insertion
 = 2n (n is the size of queue)
 = ‘ins’ and ‘e’ travel to end of queue

Count the total number of messages!

▸ Processes store potential

▸ Potential is exchanged via messages

▸ Potential is consumed to perform ‘work’

Potential Method 15

▸ Processes store potential

▸ Potential is exchanged via messages

▸ Potential is consumed to perform ‘work’

Potential Method 15

User defined cost model
This talk: number of messages

▸ Processes store potential

▸ Potential is exchanged via messages

▸ Potential is consumed to perform ‘work’

Potential Method 15

User defined cost model
This talk: number of messages

Insertion: potential needed = 2n
How do you refer to n in the queue type?

Key Features of Rast
Session
Types

Rast Language

Resource
Analysis

Arithmetic
Refinements

16

LICS 18, ICFP 18 CONCUR 20

Key Features of Rast
Session
Types

Rast Language

Resource
Analysis

Arithmetic
Refinements

16

LICS 18, ICFP 18 CONCUR 20

Refined Queue Type 17

Refined Queue Type 17

Index Refinement
(Size of Queue)

Refined Queue Type 17

Index Refinement
(Size of Queue)

▸ ‘none’ branch: send (proof of) constraint {n=0}

▸ ‘some’ branch: send (proof of) constraint {n>0}

▸ Only constraints are exchanged, not proofs

Proof Constraints
(Sent by queue)

Refined Queues in Rast 18

Refined Queues in Rast 18

send constraint

Refined Queues in Rast 18

send constraint

Ergometric Queue Type 19

Ergometric Queue Type 19

Potential Annotations

Ergometric Queue Type 19

Potential Annotations

▸ receive 2n units of potential after ‘ins’

▸ receive 2 units of potential after ‘del’

▸ potential is consumed to exchange messages

Ergometric Queue in Rast 20

Ergometric Queue in Rast 20

unit cost of sending a message

Ergometric Queue in Rast 20

unit cost of sending a message

get 2n units of potential

Ergometric Queue in Rast 20

unit cost of sending a message

get 2n units of potential

pay 2(n-1) units of potential

Ergometric Queue in Rast 20

unit cost of sending a message

get 2n units of potential

pay 2(n-1) units of potential

cost of 2 for sending 2 msgs

Ergometric Queue in Rast 20

unit cost of sending a message

get 2n units of potential

pay 2(n-1) units of potential

cost of 2 for sending 2 msgs

get 2 units of potential

Ergometric Queue in Rast 20

unit cost of sending a message

get 2n units of potential

pay 2(n-1) units of potential

cost of 2 for sending 2 msgs

get 2 units of potential

cost of 2 for sending 2 msgs

Natural Numbers 21

Natural Numbers 21

receive constraint

Natural Numbers 21

impossible branch

receive constraint

▸ skip assume, assert, impossible, pay, get

▸ automatically reconstructed using ‘forcing calculus’

▸ makes the code compact, enables reuse, reduces
programming errors

Implicit Syntax 22

▸ skip assume, assert, impossible, pay, get

▸ automatically reconstructed using ‘forcing calculus’

▸ makes the code compact, enables reuse, reduces
programming errors

Implicit Syntax 22

▸ skip assume, assert, impossible, pay, get

▸ automatically reconstructed using ‘forcing calculus’

▸ makes the code compact, enables reuse, reduces
programming errors

Implicit Syntax 22

Evaluation 23

▸ Resource-Aware Session Types: refinement session
types with support for verifying sequential and
parallel complexity bounds automatically

▸ Lightweight verification using refinements

▸ Reconstruction: constructs pertaining to refinement
layer are inserted automatically

▸ Evaluation: implemented standard benchmarks

▸ Availability: implementation open-source on https://
bitbucket.org/fpfenning/rast/src/master/rast/

The Rast Language 24

https://bitbucket.org/fpfenning/rast/src/master/rast/
https://bitbucket.org/fpfenning/rast/src/master/rast/
https://bitbucket.org/fpfenning/rast/src/master/rast/
https://bitbucket.org/fpfenning/rast/src/master/rast/

