Session Types with Arithmetic Refinements

Ankush Das* Frank Pfenning Carnegie Mellon University

> Session 4A, Sept I CONCUR 2020

Session Types with Arithmetic Refinements

Ankush Das and Frank Pfenning

- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Communication protocol enforced by session types

- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Communication protocol enforced by session types

- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Communication protocol enforced by session types

$$\mathbf{bits} = \oplus \{\mathbf{b0} : \mathbf{bits}, \mathbf{b1} : \mathbf{bits}\}$$

- Implement message-passing concurrent programs
- Communication via typed bi-directional channels
- Communication protocol enforced by session types

$$\mathbf{bits} = \oplus \{\mathbf{b0} : \mathbf{bits}, \mathbf{b1} : \mathbf{bits}\}$$

$\begin{array}{l} \mathsf{queue}_A = \&\{ \mathbf{ins} : A \multimap \mathsf{queue}_A, \\ \mathbf{del} : \oplus\{ \mathbf{none} : \mathbf{1}, \\ \mathbf{some} : A \otimes \mathsf{queue}_A \} \} \end{array}$

$$\begin{array}{l} \mathsf{queue}_A = \&\{\mathbf{ins}: A \multimap \mathsf{queue}_A, \\ \mathbf{del}: \oplus\{\mathbf{none}: \mathbf{1}, \\ \mathbf{some}: A \otimes \mathsf{queue}_A\}\} \end{array}$$

When are the none and some branches taken? Can the size of queue be encoded in the type?

Session Types with Arithmetic Refinements

Ankush Das and Frank Pfenning

Count the total number of messages!

Count the total number of messages!

Work done by Queue

Count the total number of messages!

w_i = Work done to process insertion
= 2n (n is the size of queue)
= 'ins' and 'e' travel to end of queue

Work done by Queue

Count the total number of messages!

w_i = Work done to process insertion
= 2n (n is the size of queue)
= 'ins' and 'e' travel to end of queue

Insertion: How do you refer to n in the queue type?

Refined Queue Type

 $queue_{A}[n] = \&\{ins : A \multimap queue_{A}[n+1], \\ del : \oplus\{none : ?\{n = 0\}. 1, \\ some : ?\{n > 0\}. A \otimes queue_{A}[n-1]\}\}$

Refined Queue Type

queue_A[n] = &{ins : A
$$\multimap$$
 queue_A[n + 1],
del : \oplus {none : ?{n = 0}. 1,
some : ?{n > 0}. A \otimes queue_A[n - 1]}}

Index Refinement (Size of Queue)

Refined Queue Type

'none' branch: send (proof of) constraint {n=0}

- 'some' branch: send (proof of) constraint {n>0}
- Domain of constraints: Presburger Arithmetic

Three Key Results

Three Key Results

Typing System with Arithmetic Refinements

Negative Result:

Type equality with refinements is undecidable (even though type equality for simple session types and Presburger arithmetic are both decidable!)

Positive Result: A sound algorithm for type equality (works exceptionally well in practice!)

Three Key Results

Typing System with Arithmetic Refinements

Negative Result:

Type equality with refinements is undecidable (even though type equality for simple session types and Presburger arithmetic are both decidable!)

> **Positive Result:** A sound algorithm for type equality (works exceptionally well in practice!)

Two New Type Operators

Two New Type Operators

?{φ}. A

- Provider sends (proof of) φ, then continues to provide A
- Client receives (proof of) constraint φ

Two New Type Operators 7 ?{φ}. A !{φ}. A

- Provider sends (proof
 of) φ, then continues to
 provide A
- Client receives (proof of) constraint φ

- Provider receives (proof of) φ, then continues to provide A
- Client sends (proof of)
 constraint φ

Two New Type Operators 7 ?{ф}. A !{ф}. A

- Provider sends (proof
 of) φ, then continues to
 provide A
- Client receives (proof of) constraint φ

- Provider receives (proof of) φ, then continues to provide A
- Client sends (proof of)
 constraint φ

Since Presburger arithmetic is decidable and only closed programs are executed, no need to exchange proofs/constraints at runtime

Type Grammar

$A ::= \bigoplus \{\ell : A\}_{\ell \in L} \mid \& \{\ell : A\}_{\ell \in L} \mid A \otimes A \mid A \multimap A \mid \mathbf{1}$ $\mid V[\overline{e}] \mid ?\{\phi\} . A \mid !\{\phi\} . A \mid \exists n. A \mid \forall n. A$

Type Grammar

Standard session types

 $A ::= \bigoplus \{\ell : A\}_{\ell \in L} \mid \& \{\ell : A\}_{\ell \in L} \mid A \otimes A \mid A \multimap A \mid \mathbf{1}$ $\mid V[\overline{e}] \mid ?\{\phi\}.A \mid !\{\phi\}.A \mid \exists n.A \mid \forall n.A$

Type Grammar

Standard session types

$A ::= \bigoplus \{\ell : A\}_{\ell \in L} | \& \{\ell : A\}_{\ell \in L} | A \otimes A | A \multimap A | 1$ $| V[\overline{e}] | ?\{\phi\}.A | !\{\phi\}.A | \exists n.A | \forall n.A$ Type variable indexed with arith. exps.
Type Grammar

Standard session types

 $A ::= \bigoplus \{\ell : A\}_{\ell \in L} | \& \{\ell : A\}_{\ell \in L} | A \otimes A | A \multimap A | 1$ $| V[\overline{e}] | ?\{\phi\}.A | !\{\phi\}.A | \exists n.A | \forall n.A$ Type variable indexed with arith. exps. Send / Recv proof constraints

Type Grammar

Standard session types

 $A ::= \bigoplus \{\ell : A\}_{\ell \in L} | \& \{\ell : A\}_{\ell \in L} | A \otimes A | A \multimap A | 1$ $| V[\overline{e}] | ?\{\phi\}.A | !\{\phi\}.A | \exists n.A | \forall n.A$ Type variable indexed with arith. exps. Send / Recv proof constraints Send / Recv natural numbers

Three Key Results

Typing System with Arithmetic Refinements

Negative Result:

Type equality with refinements is undecidable (even though type equality for simple session types and Presburger arithmetic are both decidable!)

Positive Result: A sound algorithm for type equality (works exceptionally well in practice!)

Three Key Results

Typing System with Arithmetic Refinements

Negative Result:

Type equality with refinements is undecidable (even though type equality for simple session types and Presburger arithmetic are both decidable!)

> **Positive Result:** A sound algorithm for type equality (works exceptionally well in practice!)

Co-inductive Type Equality¹⁰

- Two types are considered equal if they have the same communication behavior (structural type system)
- Formally defined by establishing a type bisimulation
- Refinement session types can encode 2-counter machines (2CM)!
- Equality reduces to determining if the 2CM halts, and is thus, undecidable!
- Given a 2CM and input, we construct two types that only differ at the halting instruction

Increment Instruction: m : inc(c₁) ; goto k

$A_m[c_1, c_2] = \bigoplus \{ \mathbf{inc}_1 : A_k[c_1 + 1, c_2] \}$

$$A'_m[c_1, c_2] = \bigoplus \{ \operatorname{inc}_1 : A'_k[c_1 + 1, c_2] \}$$

Decrement Instruction: m : zero(c₁)? goto k : goto n

$$A_m[c_1, c_2] = \bigoplus \{ zero_1 : ?\{c_1 = 0\}. A_k[c_1, c_2], \\ dec_1 : ?\{c_1 > 0\}. A_n[c_1 - 1, c_2] \}$$

$$A'_{m}[c_{1}, c_{2}] = \bigoplus \{ \text{zero}_{1} : ?\{c_{1} = 0\}. A'_{k}[c_{1}, c_{2}], \\ \text{dec}_{1} : ?\{c_{1} > 0\}. A'_{n}[c_{1} - 1, c_{2}] \}$$

Halting Instruction: m : halt

$$A_m[c_1,c_2]=A$$

$$A_m^\prime[c_1,c_2]=A^\prime$$

Session Types with Arithmetic Refinements

Halting Instruction: m : halt

$$A_m[c_1,c_2]=A$$

$$A_m^\prime[c_1,c_2]=A^\prime$$

Halting Instruction: m : halt

$$A_m[c_1,c_2] = A$$

$$A_m^\prime[c_1,c_2]=A^\prime$$

The types are equal iff the 2CM does not halt

Three Key Results

Typing System with Arithmetic Refinements

Negative Result:

Type equality with refinements is undecidable (even though type equality for simple session types and Presburger arithmetic are both decidable!)

> **Positive Result:** A sound algorithm for type equality (works exceptionally well in practice!)

Three Key Results

Typing System with Arithmetic Refinements

Negative Result:

Type equality with refinements is undecidable (even though type equality for simple session types and Presburger arithmetic are both decidable!)

Positive Result: A sound algorithm for type equality (works exceptionally well in practice!)

$$ctr[x, y] = \bigoplus \{ lt : ?\{x < y\}. ctr[x + 1, y], \\ ge : ?\{x \ge y\}. 1 \}$$

$$ctr[x, y] = \bigoplus \{ lt : ?\{x < y\}. ctr[x + 1, y], \\ ge : ?\{x \ge y\}. 1 \}$$

$\operatorname{ctr}[x, y] \equiv \operatorname{ctr}[x + 1, y + 1]$

$$ctr[x, y] = \bigoplus \{ lt : ?\{x < y\}. ctr[x + 1, y], \\ ge : ?\{x \ge y\}. 1 \}$$

$\operatorname{ctr}[x, y] \equiv \operatorname{ctr}[x + 1, y + 1]$

Goal: Find a counterexample

Session Types with Arithmetic Refinements

Ankush Das and Frank Pfenning

$$ctr[x, y] = \bigoplus \{ lt : ?\{x < y\}. ctr[x + 1, y], \\ ge : ?\{x \ge y\}. 1 \}$$

 $\forall X, Y.\operatorname{ctr}[X, Y] \equiv \operatorname{ctr}[X + 1, Y + 1]$

store the equality constraint and expand both types

$ctr[x, y] \equiv ctr[x + 1, y + 1]$ Goal: Find a counterexample

$$ctr[x, y] = \bigoplus \{ lt : ?\{x < y\}. ctr[x + 1, y], \\ ge : ?\{x \ge y\}. 1 \}$$

$$ctr[x, y] = \bigoplus \{ lt : ?\{x < y\}. ctr[x + 1, y], \\ ge : ?\{x \ge y\}. 1 \}$$

$$ctr[x, y] = \bigoplus \{ lt : ?\{x < y\}. ctr[x + 1, y], \\ ge : ?\{x \ge y\}. 1 \}$$

$$ctr[x, y] = \bigoplus \{ lt : ?\{x < y\}. ctr[x + 1, y], \\ ge : ?\{x \ge y\}. 1 \}$$

$$ctr[x, y] = \bigoplus \{ lt : ?\{x < y\}. ctr[x + 1, y], \\ ge : ?\{x \ge y\}. 1 \}$$

\mathcal{V} ; C; $\Gamma \vdash A \equiv B$

Ankush Das and Frank Pfenning

Session Types with Arithmetic Refinements

Ankush Das and Frank Pfenning

Types A and B are equal under constraint C

Session Types with Arithmetic Refinements

Ankush Das and Frank Pfenning

Types A and B are equal under constraint C

$$x, y$$
; $\top \vdash \operatorname{ctr}[x, y] \equiv \operatorname{ctr}[x + 1, y + 1]$

Closing the Loop

$$\begin{array}{l} \langle \mathcal{V}' \; ; \; \mathcal{C}' \; ; \; V_1[\overline{E_1}] \equiv V_2[\overline{E_2}] \rangle \in \Gamma \\ \forall \mathcal{V} . \; \mathcal{C} \Rightarrow \exists \mathcal{V}' . \; \mathcal{C}' \land \overline{E_1} = \overline{e_1} \land \overline{E_2} = \overline{e_2} \\ \hline \mathcal{V} \; ; \; \mathcal{C} \; ; \; \Gamma \vdash V_1[\overline{e_1}] \equiv V_2[\overline{e_2}] \end{array} def$$

Closing the Loop

Already encountered constraint $\langle \mathcal{V}' ; C' ; V_1[\overline{E_1}] \equiv V_2[\overline{E_2}] \rangle \in \Gamma$ $\forall \mathcal{V}. C \Rightarrow \exists \mathcal{V}'. C' \land \overline{E_1} = \overline{e_1} \land \overline{E_2} = \overline{e_2}$

 \mathcal{V} ; C; $\Gamma \vdash V_1[\overline{e_1}] \equiv V_2[\overline{e_2}]$

def

Closing the Loop

Already encountered constraint

$$\begin{array}{l} \langle \mathcal{V}' \; ; \; \mathcal{C}' \; ; \; V_1[\overline{E_1}] \equiv V_2[\overline{E_2}] \rangle \in \Gamma \\ \forall \mathcal{V} . \; \mathcal{C} \Rightarrow \exists \mathcal{V}' . \; \mathcal{C}' \land \overline{E_1} = \overline{e_1} \land \overline{E_2} = \overline{e_2} \\ \hline \mathcal{V} \; ; \; \mathcal{C} \; ; \; \Gamma \vdash V_1[\overline{e_1}] \equiv V_2[\overline{e_2}] \end{array} def$$

If we know $V_1[E_1] \equiv V_1[E_2]$, can we prove $V_1[e_1] \equiv V_2[e_2]$? That is what the second premise achieves!

Rast Programming Language

Goal of Rast

Lightweight Verification and Resource Analysis of Concurrent Programs

Execution Time

Memory Usage

Key Features of Rast

Session Types with Arithmetic Refinements

Ankush Das and Frank Pfenning

Evaluation

Module	\mathbf{LOC}	#Defs	T (ms)
arithmetic	143	8	1.325
integers	114	8	1.074
linlam	67	6	4.003
list	441	29	3.419
primes	118	8	1.646
segments	65	9	0.195
ternary	235	16	1.967
theorems	141	16	0.894
tries	308	9	5.283
Total	1632	109	19.806

Conclusion

Conclusion

Typing System with Arithmetic Refinements

Negative Result: Type equality with refinements is undecidable

Positive Result: A sound algorithm for type equality

Meta Result:

Results generalize to any structural type system e.g. functional programming languages