
Lecture 2: Formal Definition of λ-Calculus

Ankush Das

January 26, 2024

1 Introduction

In the last lecture, we saw a toy language: LL1 and studies its syntax and semantics. In this lecture,
we will return to λ-calculus and study its syntax and semantics.

2 The λ-Calculus

2.1 Syntax

Since the essence of λ-calculus is functions, the syntax of λ-calculus is defined only using 3 expressions:

Expressions e ::= λx.e | e1 e2 | x

The first expression λx.e defines a function with parameter x and body e. The second expression
simply applies function e1 to the argument e2. The last expression is a variable which is essential to
refer to the parameter in the body of the expression.

Some Examples Now that we’ve seen the grammar, let’s look at some examples of expressions in
λ-calculus.

• λx.x: the simplest example is that of an identity function. The body of the expression is just x
meaning that the function just returns its parameter.

• λx.λy.x: this function takes two parameters x and y but only returns the first one (and throws
away the second one). We can similarly define λx.λy.y. Soon, we will see how these expressions
represent booleans.

2.2 Semantics

Now that we have seen some examples, let’s try to define how these expressions can be evaluated. There
are two standard ways of defining a semantics: (i) small-step semantics and (ii) big-step semantics.

Small-Step Semantics This defines a single step of evaluation. This is usually represented as
e 7→ e′, meaning expression e reduces to expression e′ in a single step. Now, we define the rules for
λ-calculus. To do that, we need to define another judgment e value to define that e is a value and can
no longer be evaluated further. Formally, for every expression e, either e 7→ e′ for some e′ or e value,
meaning either expression e steps to another expression or is a value.

λx.e value
λ-V

e1 7→ e′1
e1 e2 7→ e′1 e2

App-L
e1 value e2 7→ e′2

e1 e2 7→ e1 e′2
App-R

First, λ-expressions are values. There is no way to evaluate a function unless it has been applied
to some arguments. Side note: A slogan at CMU ”Functions are Values!” comes from here!! Next,
for function applications, we first evaluate the left hand side (chosen arbitrarily) and then the right

1

hand side. The App-L rule is responsible for evaluating the lhs and once e1 becomes a value, we can
evaluate the rhs using rule App-R. The most important step here comes next.

e′ value

(λx.e) e′ 7→ [e′/x]e
App-S

Once the argument becomes a value too, the next step is to substitute the argument e′ for parameter
x in the function body e. Substitution means syntactically replacing every occurence of x with e′.

Note: A technical term for small-step is also β-conversion or β-reduction. I will explain this more
a little later.

Big-Step Semantics In contrast to small-step semantics which only describes a single step, big-
step semantics describes what an expression evaluates to, no matter how many steps it takes. This is
defined using the judgment e ⇓ v, meaning expression e evaluates to value v. So, how are the rules
defined?

λx.e ⇓ λx.e
λ-V

e1 ⇓ λx.e e2 ⇓ v2 [v2/x]e ⇓ v

e1 e2 ⇓ v
App

λ-expressions are values, so they just evaluate to themselves. For function applications, we first evaluate
e1 to λx.e, then we evaluate e2 to v2. We then substitute v2 for x in e which is then evaluated to v.
Note that this semantics rule is really a combination of the rules presented in the small-step semantics.

3 Type Safety

We conclude this lecture by discussing type safety theorems for λ-calculus. Type safety is usually
proved using two theorems: progress and preservation. These theorems are at the foundation of any
programming language and are generally used to determine if a programming language is well-defined
and sound. Since we have not introduced types into the language, we will only look at a limited version
of the progress theorem.

Theorem 1 (Progress). For all expressions e in λ-calculus such that e closed, either e 7→ e′ for some
expression e′ or e value.

To understand this theorem, we first need to define what is a closed expression. Informally, a closed
expression does not have any free variables. The set of free variables of an expression is defined as:

FV (e) = S

FV (λx.e) = S \ {x}
λ-FV

FV (x) = {x}
Var-FV

FV (e1) = S1 FV (e2) = S2

FV (e1 e2) = S1 ∪ S2

App-FV

Finally, an expression is closed if it has no free variables.

FV (e) = ∅
e closed

Closed

Proof. We only have three expressions in λ-calculus

e ::= λx.e | e1 e2 | x

This proof proceeds by structural induction on the structure of the expression. There are
three cases:

• e = λx.e. In this case, we simply use λ-V rule to show this is a value.

λx.e value
λ-V

• e = x. In this case, we cannot derive e is closed. Hence, the theorem holds vacuously.

2

• e = e1 e2. Now, we appeal to the inductive hypothesis. We can assume the progress theorems
hold for e1 and e2.

Now, we can subcase on the outcome of the inductive hypothesis. Assume e1 7→ e′1. In this
subcase, we can apply App-L rule

e1 7→ e′1
e1 e2 7→ e′1 e2

App-L

Hence, the progress theorem holds for e as e 7→ e′1 e2.

Assume that e1 value. Now, we appeal to the inductive hypothesis for e2. Assume that e2 7→ e′2.
Now, we can apply App-R rule

e1 value e2 7→ e′2
e1 e2 7→ e1 e′2

App-R

Again, the progress theorem holds for e as e 7→ e1 e′2.

Now, assume that e1 value and e2 value. In this case, we can apply the App-S rule.

e1 value e1 = λx.e e2 value

(λx.e) e2 7→ [e2/x]e
App-S

Again, the progress theorem holds for e as e 7→ [e2/x]e.

Hence, the progress theorem holds in all possible cases.

3

	Introduction
	The -Calculus
	Syntax
	Semantics

	Type Safety

