CS 599 D1: Mock Mid-Term

Total: 80 pts

Ankush Das

1 Linear Inference [20 pts]

In this section, we will solve the ‘Vending Machine’ problem using rules of linear inference. In front
of you is a vending machine that accepts $1, $5, and $10 bills. The vending machine contains chips
packets, candy bars, and cookie boxes each costing $2, $2, and $3 respectively. Here’s how the vending
machine works:

1. You insert ezactly one bill into the machine.

2. You choose ezactly one item you want to purchase.

3. The vending machine dispenses the item you wished to purchase.
4

. The vending machine returns your change (in case you overpaid) in as few bills as possible. For
instance, if you insert a $10 bill and purchase a packet of chips, the vending machine will return
one $5 bill, one $2 bill, and one $1 bill (instead of returning eight $1 bills).

Your task is to define the mechanism of purchasing items from the vending machine as rules of
linear inference.

Problem 1 (2 pts) Define the propositions you will need in the inference rules. Briefly describe the
intuitive meaning of each proposition.

Problem 2 (10 pts) Define the rules of linear inference for the vending machine problem.

Problem 3 (8 pts) Suppose you start with a $§10 bill and you intend to purchase one packet of chips,
one candy bar, and one cookie box. Is this possible using the rules above? If yes, provide a derivation
from the initial state to the final state. If this is not possible, explain why.

2 Ordered Inference [20 pts]

In class, we looked at incrementing binary numbers using rules of ordered inference. In this problem,
you need to define the rules for decrementing a binary number. A binary number is written from left
to right as $ 10 ... 1 where the $ at the left end indicates the start of the number. Consider all the
digits (including $) as ordered propositions. To decrement a number, we introduce a new proposition
called dec, which starts at the right end of the binary number.

In other words, to decrement a binary number, we will write the initial set of propositions as

$10 ... 1dec.
Problem 4 (10 pts) Define the rules of ordered inference for dec.

Problem 5 (5 pts) Consider the binary number $ 1 0 0. Now, we need to decrement this number
twice. Apply the rules defined in the previous problem twice, i.e., start with $ 1 0 0 dec dec and derive
the final state. You should apply the rules sequentially (i.e., process the first dec, then process the
second dec).

Problem 6 (10 pts) Now try to apply the two rules concurrently, i.e., process the two dec proposi-
tions simultaneously. Do you arrive at the same result? Why or why not?

3 Linear Proofs [20 pts]

Problem 7 (20 pts) For the following problems, determine if the propositions are provable or not.
If they are provable, show the derivation and construct the corresponding session-typed proof term by
giving appropriate channel names to each proposition.

1. AFA® A
2. AR AF A
3. AR (B&C)F(A®B)® (A® ()
4. A (BO)F(AeB)® (A4 C)
5. A9(BoC)F (A® B)@C
To provide a session-typed term for types of the form A @& B, consider adding the following labels:
Instead of using A @® B, use ®{left : A, right : B}.
4 Session-Typed Programming [20 pts]

In the following set of problems, you are expected to write programs in the session-typed programming
language introduced in lecture. Recall the syntax of the language

Expressions P :=ux.k; P|casex ({ = Pp)er |y recva; Plsend xy; P|waitz; P | close x
| 2o yleefy; P
Types A, B:u=&{l: Acrer | &{l: Asfper | A®B|A—BJ1

To get some programming experience, we will implement standard processes for lists. The type of
list is defined as
type listy = ®{cons : A ® listy,nil : 1}

Problem 8 (10 pts) Define a process called append with the following type
decl append : (I3 : 1ist), (I3 : listy) F (1 : listya)
The process appends list lo to the end of list I and produces the output list on [.
Problem 9 (10 pts) Define a process called alternate with the following signature:
decl alternate : (I3 : lista), (l2 : lista) b (I : listy)
This process outputs the elements of list Iy and ly on the output list | in an alternate fashion, i.e., one
element from 1y, next one from ly and so on. In other words, if Iy = [1;2;3] and lo = [4;5;6;7;8], then

1 =11;4;2;5;3;6;7;8]. If the two lists are of unequal size, then 1 contains the leftover elements from
the larger list in order as shown in the example above.

	Linear Inference [20 pts]
	Ordered Inference [20 pts]
	Linear Proofs [20 pts]
	Session-Typed Programming [20 pts]

