
CS 599 D1: Mock Mid-Term

Total: 80 pts

Ankush Das

1 Linear Inference [20 pts]

In this section, we will solve the ‘Vending Machine’ problem using rules of linear inference. In front
of you is a vending machine that accepts $1, $5, and $10 bills. The vending machine contains chips
packets, candy bars, and cookie boxes each costing $2, $2, and $3 respectively. Here’s how the vending
machine works:

1. You insert exactly one bill into the machine.

2. You choose exactly one item you want to purchase.

3. The vending machine dispenses the item you wished to purchase.

4. The vending machine returns your change (in case you overpaid) in as few bills as possible. For
instance, if you insert a $10 bill and purchase a packet of chips, the vending machine will return
one $5 bill, and three $1 bills (instead of returning eight $1 bills).

Your task is to define the mechanism of purchasing items from the vending machine as rules of
linear inference.

Problem 1 (2 pts) Define the propositions you will need in the inference rules. Briefly describe the
intuitive meaning of each proposition.

Solution. The 6 propositions needed are:

1. ten: represents $10 bill

2. five: represents $5 bill

3. one: represents $1 bill

4. cookie: represents one cookie box

5. candy: represents one candy bar

6. chips: represents one packet of chips

Problem 2 (10 pts) Define the rules of linear inference for the vending machine problem.

Solution. The rules are defined as

ten

cookie five one one
10-Cookie

ten

candy five one one one
10-Candy

ten

chips five one one one
10-Chips

five

cookie one one
5-Cookie

five

candy one one one
5-Candy

five

chips one one one
5-Chips

1

Problem 3 (8 pts) Suppose you start with a $10 bill and you intend to purchase one packet of chips,
one candy bar, and one cookie box. Is this possible using the rules above? If yes, provide a derivation
from the initial state to the final state. If this is not possible, explain why.

Solution. This is impossible. Consider the following derivation:

ten

cookie five one one

cookie candy one one one one one
5-Candy

10-Cookie

At this point, there is no way to generate chips. The same would have happened if we had applied
the 5-Candy rule. Hence, it is impossible to produce this derivation.

2 Ordered Inference [20 pts]

In class, we looked at incrementing binary numbers using rules of ordered inference. In this problem,
you need to define the rules for decrementing a binary number. A binary number is written from left
to right as $ 1 0 . . . 1 where the $ at the left end indicates the start of the number. Consider all the
digits (including $) as ordered propositions. To decrement a number, we introduce a new proposition
called dec, which starts at the right end of the binary number.

In other words, to decrement a binary number, we will write the initial set of propositions as
$ 1 0 . . . 1 dec.

Problem 4 (10 pts) Define the rules of ordered inference for dec.

Solution. The rules for dec are as follows:

1 dec

0
1-Dec

0 dec

dec 1
0-Dec

$ 0

$
0-Trim

The last rule trims the leading 0.

Problem 5 (5 pts) Consider the binary number $ 1 0 0. Now, we need to decrement this number
twice. Apply the rules defined in the previous problem twice, i.e., start with $ 1 0 0 dec dec and derive
the final state. You should apply the rules sequentially (i.e., process the first dec, then process the
second dec).

Solution.

$ 1 0 0 dec dec

$ 1 0 dec 1 dec

$ 1 dec 1 1 dec

$ 0 1 1 dec

$ 1 1 dec

$ 1 0
1-Dec

0-Trim

1-Dec

0-Dec

0-Dec

Problem 6 (10 pts) Now try to apply the two rules concurrently, i.e., process the two dec proposi-
tions simultaneously. Do you arrive at the same result? Why or why not?

Solution. Applying the two rules concurrently will also lead to the same result. There are no
rules that mix the interaction of the two dec propositions. So, the order does not matter.

3 Linear Proofs [20 pts]

Problem 7 (20 pts) For the following problems, determine if the propositions are provable or not.
If they are provable, show the derivation and construct the corresponding session-typed proof term by
giving appropriate channel names to each proposition.

2

1. A ⊢ A⊗A

2. A⊗A ⊢ A

3. A⊗ (B ⊕ C) ⊢ (A⊗B)⊕ (A⊗ C)

4. A⊕ (B ⊗ C) ⊢ (A⊕B)⊗ (A⊕ C)

5. (A⊗B)⊗ C ⊢ A⊗ (B ⊗ C)

To provide a session-typed term for types of the form A⊕ B, consider adding the following labels:
Instead of using A⊕B, use ⊕{left : A, right : B}.

Solution. Below are the solutions:

1. Not provable.

2. Not provable.

3.

x : B ⊢ (y ↔ x) :: y : B

z : A, x : B ⊢
(send y z ; y ↔ x)
:: y : (A⊗B)

⊗R

z : A, x : B ⊢
(y.left ; send y z ; y ↔ x)
:: y : (A⊗B)⊕ (A⊗ C)

⊕R1

x : C ⊢ (y ↔ x) :: y : C

z : A, x : C ⊢
(send y z ; y ↔ x)
:: y : (A⊗ C)

⊗R

z : A, x : C ⊢
(y.right ; send y z ; y ↔ x)
:: y : (A⊗B)⊕ (A⊗ C)

⊕R2

z : A, x : B ⊕ C ⊢
case x (left⇒ y.left ; send y z ; y ↔ x | right⇒ y.right ; send y z ; y ↔ x)

:: y : (A⊗B)⊕ (A⊗ C)

⊕L

x : A⊗ (B ⊕ C) ⊢
z ← recv x ; case x (left⇒ y.left ; send y z ; y ↔ x | right⇒ y.right ; send y z ; y ↔ x)

:: y : (A⊗B)⊕ (A⊗ C)

⊗L

4. Not provable.

5.

x : C ⊢ (y ↔ x) :: y : C

w : B, x : C ⊢ (send y w ; y ↔ x) :: y : (B ⊗ C)
⊗R

z : A,w : B, x : C ⊢ (send y z ; send y w ; y ↔ x) :: y : A⊗ (B ⊗ C)
⊗R

z : A, x : B ⊗ C ⊢ (w ← recv x ; send y z ; send y w ; y ↔ x) :: y : A⊗ (B ⊗ C)
⊗L

x : A⊗ (B ⊗ C) ⊢ (z ← recv x ; w ← recv x ; send y z ; send y w ; y ↔ x) :: y : A⊗ (B ⊗ C)
⊗L

4 Session-Typed Programming [20 pts]

In the following set of problems, you are expected to write programs in the session-typed programming
language introduced in lecture. Recall the syntax of the language

Expressions P ::= x.k ; P | case x (ℓ⇒ Pℓ)ℓ∈L | y ← recv x ; P | send x y ; P | wait x ; P | close x
| x↔ y | x← f y ; P

Types A,B ::= ⊕{ℓ : Aℓ}ℓ∈L | &{ℓ : Aℓ}ℓ∈L | A⊗B | A ⊸ B | 1

To get some programming experience, we will implement standard processes for lists. The type of
list is defined as

type listA = ⊕{cons : A⊗ listA,nil : 1}

3

Problem 8 (10 pts) Define a process called append with the following type

decl append : (l1 : listA), (l2 : listA) ⊢ (l : listA)

The process appends list l2 to the end of list l1 and produces the output list on l.

Solution.

proc l← append l1 l2 =
case l1
(nil⇒ wait l1 ; l↔ l2
| cons⇒ x← recv l1 ; l.cons ; send l x ; l← append l1 l2
)

Problem 9 (10 pts) Define a process called alternate with the following signature:

decl alternate : (l1 : listA), (l2 : listA) ⊢ (l : listA)

This process outputs the elements of list l1 and l2 on the output list l in an alternate fashion, i.e., one
element from l1, next one from l2 and so on. In other words, if l1 = [1; 2; 3] and l2 = [4; 5; 6; 7; 8], then
l = [1; 4; 2; 5; 3; 6; 7; 8]. If the two lists are of unequal size, then l contains the leftover elements from
the larger list in order as shown in the example above.

Solution.

proc l← alternate l1 l2 =
case l1
(nil⇒ wait l1 ; l↔ l2
| cons⇒ x← recv l1 ; l.cons ; send l x ; l← alternate l2 l1
)

4

	Linear Inference [20 pts]
	Ordered Inference [20 pts]
	Linear Proofs [20 pts]
	Session-Typed Programming [20 pts]

