CS 599 D1: Mid-Term
Total: 80 pts

1 Type Safety of LL1 [20 pts]
Recall the LL1 language.

Expressions e ::=true | false |if etheneelsee | |e+e|letz:T=cine|x

Types 7 ::= bool | int

Type System
I'e: bool I'kel:r I'Fey:T

) ., : Ir
I' - true : bool T" + false : bool I'kif ethenejelsees : T
I'Fe;:int I'Fes:int I'ke:m Tx:mbey:T
— Num - ADD - LET
I'Fn:int I'kei+es:int I'kletz:m=ejiney: 7
———— VAR
Tx:thkax:7
Semantics
/
e e
- TT-V —— FF-V _ - IF-S
true value false value if e then e; else ey — if €' then e; else es
- Ir-T - Ir-F — Num-V
if true then e else e5 — €7 if false then e else e5 — €9 7 value
e+ €} v1 value e > €h

7 ApD-L — ADD-R [— ADD-V

e1+ex e+ e V1 + ez — v+ ey V1 + V2 — v D vy
e] — 6/1 v value
- T LET-S - LET-V
letz:7=ejiney—>letz:7=¢]ines letz: T =wviney— [v/x]es

As you have seen in the lectures and assignments, this language is type safe, i.e., it satisfies progress

and preservation.
Theorem 1 (Preservation) IfT'ke:7 ande— e, thenT ke : 7.

Theorem 2 (Progress) If - - e: 7 then either e — €' or e value.

For the next set of problems, we will change some rules of the type system or semantics and you
need to determine if the language is still type safe. If the language is type safe, give an intuitive
explanation of why (you don’t need to prove the theorems). If the language is not type
safe, clearly state whether the language violates progress, preservation, or both. Also,
give an example expression for each of the violated theorems and explain how the theorem

is violated.

Problem 1 (5 pts) What happens if the I¥ typing rule is defined as follows instead?

' e: bool I'ke :m I’}—eQ:TQI
F

T'if ethenej else ey : g



Solution. Preservation theorem is violated. Consider the expression e = if false then 5 else true.
Due to the IF rule, e : int. But, e — true and true : bool. Progress theorem holds.

Problem 2 (5 pts) What happens if the FF typing rule is defined as follows instead?

- FF
' F false : int

Solution. Progress theorem is violated. Consider e = false + 2. Due to the modified FF rule,
e : int. But there are no rules to step e. Hence, progress is violated. Preservation is not violated.

Problem 3 (5 pts) What happens if the NUM typing rule is defined as follows instead

—  NumMm
I'7: bool

and we add one more rule to the semantics?

IF-IN

if m then e else e5 — €3

Solution. Neither progress or preservation is violated. The only expression that depends on
booleans is the if expression. Consider if e then e else e;. Either e evaluates to true, false, or 7. Since
if  then ey else e5 — €7, progress holds. Since if  then e; else e; : 7 implies that e; : 7, preservation
holds.

Problem 4 (5 pts) What happens if the VAR typing rule is defined as follows instead?

— VAR
x:mbz:m

Solution. Preservation theorem is violated. Consider e = let x = 5 in 2. Using the VAR rule,

. ———— VAR
-F5:int T :intF x : bool
LET

-Fletx=5inx : bool

But e — [5/z]x =5 and 5 : int.
Progress theorem is also violated. Consider e = let « : int = 5 in if = then true else false.
e — [5/z]if x then true else false = if 5 then true else false which can no longer step.

2 Two Counter Machine via Linear Inference [20 pts]

In this section, we will solve the ‘T'wo Counter Machine’ problem using rules of linear inference. We
have borrowed the definition of the Counter Machine from Wikipedia and simplified it for convenience.
The machine consists of the following instructions:

1. INC(r): INCrement the contents of register  and continue in sequence.

2. DEC(r): DECrement the contents of register r and continue in sequence.

w

. JZ(r, j): IF register r contains zero THEN Jump to instruction j ELSE continue in sequence.

4. HALT: HALT computation.

A two counter machine program is represented as a sequence of instructions identified by an index.
Execution starts with instruction 0 and two registers r; and ro containing value 0. For e.g.,

0: INC(rl)
1: INC(r2)
2: DEC(rl)
3: JZ(rl, 0)
4: HALT



We will encode the two counter machine using 3 propositions: regl(m), reg2(n), and pc(i). The
proposition regl(m) means that register r1 contains number m; the proposition reg2(n) means that
register o contains number n, and pc(i) means that the program is currently executing instruction at
index 1.

In the following problems, you will describe the rules of linear inference for a generic two counter
machine. Each rule will define how the 3 propositions are updated for each instruction.

Problem 5 (3 pts) What is the initial state for this problem?

Solution.
regl(0) reg2(0) pc(0)

Problem 6 (4 pts) Consider an arbitrary instruction at index i. What are the possible instructions
for this index?

Solution. The possibilities for i-th instruction are
1. 4 :INC(rq)

2. 4 :INC(rq)

3. i: DEC(r)
4. i : DEC(r9)
5. 4:JZ(r1,7)
6. i:JZ(re,J)
7. 4 : HALT

Problem 7 (7 pts) For each of the instructions you defined above, write the corresponding inference
rule and provide a unique name to each rule. For the HALT instruction, your final state should produce
the final values of the registers. Your inference rules should not include the instruction in the premise
or the conclusion. They will simply be an external side condition. In other words, you can write
inference rules as:

If the i-th instruction is ..., then the corresponding inference rule is .. ..

Solution.

1. Tf i : INC(ry),
regl(m)  pc(i)

INC1
regl(m + 1) pc(i+1)
2. If i : INC(rs),
) .
reg2(n) pC(l.) INC2
reg2(n + 1) pc(i+1)
3. If i : DEC(ry),
) .
regl(m) PC(Z‘) DEC1
regl(m — 1) pc(i+1)
4. If i : DEC(rg),
5 .
reg2(n) PC(@‘) DEC2
reg2(n — 1) pc(i+1)
5. If i : JZ(ry, 5),
1 : 1 '
m #£ 0 regl(m) . pc(i) I71-POS reg1(0) pc(z') JZ1-ZERO
regl(m)  peli+1) egl(0)  peld)



6. If i : JZ(ra, ),

n#0 reg2(n) | pc(i) 179-P0S reg2(0) PC@ J71.ZERO
reg2(n) pc(i+ 1) reg2(0) pc(d)

7. Tf i : HALT,
regl(m) reg2(n) pc(?)

HALT
regl(m) reg2(n)

Problem 8 (6 pts) Now, consider the example program shown earlier in Section 2. Apply the rules
of inference (with their names) you defined above to this program. Does the program ever reach the
HALT instruction? Why or why not?

Solution.

regl(0) reg2(0) pc(0)
regl(1) reg2(0) pc(1)
regl(1) reg2(1) pc(2)
reg1(0) reg2(1) pc(3)
regl(0) reg2(1) pc(0)

INC1
INC2

DEC1

JZ1-ZERO

Since we end up with regl(0), we will again loop through this sequence and so, will never reach the
HALT instruction.

3 Linear Proofs [20 pts]

Problem 9 (20 pts) For the following problems, determine if the proposition is provable or not. If
it is provable, show the derivation and construct the corresponding session-typed proof term by giving
appropriate channel names to each proposition. If it is not provable, briefly explain why.

To provide a session-typed term for types of the form A @ B and A& B, consider adding the
following labels: Instead of using A & B, use ${left : A, right : B}. Similarly, instead of using A& B,
use &{left : A, right : B}.

Solution.

(i) A — (B&C) F (A — B) & (A — C) [7 pts]

x:BFry+xz:(y:B) oL x:BFry+xz:(y:B) oL
r:B&CFH z:B&CFH
z.left; y < x z.right; y < x
= (y: B) ol = (y: B) ol
z:Ajx: A— (B&C) z:Ajx: A— (B&C)
send z z; x.left; y <> x send = z; z.right; y < x
= (y:B) R = (y:B) R
z:A— (B&C)F z:A— (B&C)F
z4+recvy;sendx z; x.left; y < x z4+recvy;sendx z; x.left; y < x
2 (y: A— B) 2y A— Q)

&R
2:A— (B&C)F

case y (left = z « recv y; send = z; x.left; y <> x | right = z < recv y; send = z; x.left; y + x)
2y:(A— B)&(A—C)



(i) (A — C) & (B — C) - (A® B) — C' [7 pts]

z:Bry+oxz:(y:B) z:CH(y+z):(y:0)

—L,
z:Ax:(A—-C)F z:B,x:B—CF
sendz z;y < x sendz z;y < x
2 (y:B) = (y: B)

&L

—oLL

z:Ajx:(A—C)&(B—C)F
z.left;sendx z; y <> o
2 (y:0) 2 (y: )

z:Byx:(A—C)&(B—C)F
x.right;sendz z; y <> x

&L

2:A®B,x: (A—C)&(B—-C)F

case z (left = x.left; send = 2 ; y <> x | right = x.right; send z 2 ; y <> @)

2 (y:O) R
x:(A—oC)&(B—C)F
z < recv y; case z (left = x.left; send © 2 ; y <> x | right = x.right; send z 2 ; y <> )
2 (y:(A®B) — O)
(iii) A— (B—C)F (A® B) — C [6 pts]
z:Crhy<a:(y:0) L
z:Byx:B—-oCtsendzz;y<z:(y:C) 5

a:A,z:B,Jc:A—o(B—oC)l—sendaz:a;sendx,z;y<—>gc::(y:C)_o ol

2:A@B,x: A—o(B—oC)Fa<+recvz;sendza;sendxz;y < x:(y:C)

2:A—o(B—-oC)Fz+recvy;a<+recvz;sendza;sendxz;ycrx:(y: (A® B) — ()

4 Session-Typed Programming [20 pts]
The session type of list is defined as follows:

type listy = ®{cons : A® listy,nil : 1}

Problem 10 (15 pts) Define a process called reverse with the following type

decl reverse : (I : list4) b (m: lista)

The process takes as input a list | and produces the elements at output list m in the reverse order, i.e.,
elements in m are in the reverse order of elements in [. You are welcome to define and use helper

processes and types.

Solution.
decl nil : . |- (1 : listA)
decl cons : (x : A), (t : listA) |- (1 : 1listA)
proc 1 <= nil = 1.nil ; close 1
proc 1 <- cons x t = l.cons ; send 1 x ; 1 <-> ¢t
decl reverseH : (1 : listA), (k : 1listA) |- (m : listA)

proc m <- reverseH 1 k =
case 1 (
cons => X <- recv 1 ;
kn <- cons x k ;
m <- reverseH 1 kn
| nil => wait 1 ;
m <-> k

)

proc m <- reverse 1 = k <- nil ; m <- reverseH 1 k

—R



Problem 11 (5 pts) Give a process definition for arbitrary with the following type
decl arbitrary: (x: A)F (y : B)

without knowing the definitions of types A and B. In other words, the process should be well-typed for
arbitrary types A and B.

Solution.

proc y <- arbitrary x =
y <- arbitrary x

Session Type Syntax and Type System
Syntax

Expressions P :=uax.k; P|casex ({ = Py)yer |y + recva; P|send x y; P|waitz; P | close x
| eoyle—fy; P
Types A,B:= @{f:Ag}geL | &{E:Ag}geL ‘ A®B ‘ A—oB | 1

Type System

(kel) AFP:(z: Ag) oR (Wel) Az: A Qe (2:0) ol
Al (zk; P)u(x:a{0: Aptoer) Az ®{0: Aptper - (case x (= Qpleer) == (2: C)
(Ve L) AFPp(x: Ag) OR (kel) Az A FQ = (2:0) oL
At (casex (€ = Ppleery = (x: &{0: Ag}ocr) Az &{l: Aptper b (k5 Q) (2:C)
AFP:(z:B) R Ay:Azx:BFEQ:(2:0) L
Ay: Al (sendzy; P):: (z: A® B) @ Az:ARBF (y+recve; Q) (2:C) @
Ay:AFP:(z:B) R Ajz:BFQ:(2:0) L
AF (y+recva; P):(x: A— B) - Az:A—oByy: Ak (sendzy; Q) :: (2:C) -
IR AFQ:(z:0) 1L ”
-+ (close z) :: (z: 1) Ayx:1F (waitz; Q) = (2:C) a::1¢1}—(y<—>36)::(y:A)I

decl f:y : A F(x:A)ex Az AFQ:=(2:C)
Ay: A+ f7;0Q):(2:0)

def



	Type Safety of LL1 [20 pts]
	Two Counter Machine via Linear Inference [20 pts]
	Linear Proofs [20 pts]
	Session-Typed Programming [20 pts]

