
CS 599: Assignment 1

Due Wednesday, February 7, 2024

Total: 50 pts

Ankush Das

• This assignment is due on the above date and it must be submitted electronically on Gradescope.
Please create an account on Gradescope, if you haven’t already done so.

• Please use the template provided on the course webpage to typeset your assignment and please
include your name and BU ID in the Author section (above).

• Although it is not recommended, you can submit handwritten answers that are scanned as a
PDF and clearly legible.

• You should hand in one file, named as ⟨first-name⟩ ⟨last-name⟩ ⟨BU-ID⟩ asgn1.pdf containing
the solutions to the problems below.

• You will be provided a tex file, named asgn1.tex. It contains environments called solution. Please
enter your solutions inside these environments.

Problem 1 (5 pts) In class, we looked at a simple arithmetic expression language. Similarly, for this
assignment, we will study a simple boolean expression language. This language contains 3 expressions
written using the following syntax:

Expressions e ::= true | false | if e then e else e

The first two expressions are just the values true and false respectively. The expression if b then e1 else e2
describes the standard if behavior, i.e., if b evaluates to true, then the expression reduces to e1, else if
b evaluates to false, then the expression reduces to e2.

(3 pts) Write and explain each rule of semantics for this language. Note that the semantics will be
written using the two standard judgments: e value and e 7→ e′.

(2 pts) Consider the following expression:

if (if true then false else true) then (if false then false else true) else (if true then true else false)

Evaluate this expression using the rules of the semantics you just defined above.

Problem 2 (16 pts) Now, we will try to express booleans using λ-calculus. The general technique
is to represent the two values, i.e., true and false using normal forms (or values) in λ-calculus. Fur-
thermore, they should be closed, that is, not contain any free variables. Since we need to distinguish
between the two values, we need to introduce two variables. We then define rather arbitrarily one to be
true and the other to be false

true = λx.λy.x false = λx.λy.y

(8 pts) Our first task is to express the if expression defined in the previous problem in λ-calculus. To do
this, let’s consider two constants, T and E. T represents the expression for the ‘then’ branch,
while E represents the expression for the ‘else’ branch. In other words, construct the expression
if b then T else E in λ-calculus, i.e., using λ expressions, function applications, and variables.

1

(2 pts) Verify that the expression you constructed is indeed equivalent to if b then T else E. To do
this, suppose the expression you constructed above is I. Then, (λb.I) true should evaluate to T .
And similarly, (λb.I) false should evaluate to E, where true and false are the expressions above.
Evaluate these two expressions using the semantics rules of λ-calculus to verify that they indeed
evaluate to T and F respectively.

(6 pts) Use the expression above to construct the and, or, and not functions.

– and should have the form λb1.λb2.. . .. It takes two booleans as parameters and returns a
boolean.

– Similarly, or should have the same form.

– not should have the form λb.. . ., i.e., takes a boolean as a parameter and returns a boolean.

Problem 3 (4 pts) Consider the following expression, popularly known as the Y-combinator, defined
as (λx.x x) (λx.x x). What does this expression evaluate to? Show each step of the evaluation. Is this
expression a value or not? Does this violate the progress theorem we discussed in the lecture?

Problem 4 (25 pts) Let’s return to the LL1 language discussed in the lecture. We now add an
expression for multiplication in the language, so the formal syntax is

Expressions e ::= n | e+ e | e× e

(5 pts) First, define the rules of (small-step) semantics for this language.

(5 pts) You will notice there is some non-determinism in the semantics rules, i.e., for a given expression
e, it will evaluate to two different values based on the order in which the rules are applied. Give
an example of such an expression e and show that it evaluates to two different values in two
different derivations. Again, show each step of the derivation.

(10 pts) Our goal is to eliminate this non-determinism. For this, we have to come up with evaluation
precedence, i.e., the order in which operators are applied. We arbitrarily decide that multiplication
has higher precedence than addition, i.e., all multiplication must occur before any addition.
Define the semantics rules for such an evaluation. Hint: It might help to define an auxiliary
judgment: e mult−value, which holds iff expression e contains no addition operators.

(5 pts) Take the same expression e defined in sub-task 2 and evaluate it using the semantics rules defined
in sub-task 3. Is there still any non-determinism in these rules? Can e still evaluate to different
values?

2

