

CS 599 A1: Assignment 2

Due: Thursday, February 19, 2026

Total: 100 pts

Instructor: Ankush Das

- This assignment is due midnight on the above date and must be submitted electronically on Gradescope.
- You are provided a `tex` file, named `asgn2.tex`. It contains environments called `solution` to enter your solutions. And please include your name and BU ID in the author section (above).
- Although not recommended, you can submit handwritten answers scanned as a PDF and clearly legible.
- Each problem specifies whether LLMs are allowed for it or not. Please adhere to it.
- Each problem is marked whether it is mandatory or optional. You must solve some of the optional problems to get to 100 points.

Definition. $\neg A$ is defined as $A \supset \perp$.

Problem 1 (Mandatory; No LLM; 10 pts) Recall the natural deduction problems from Assignment 1. For the following propositions, provide the corresponding proof term [2.5 pts each].

- (i) $(A \supset (B \supset C)) \supset (A \wedge B) \supset C$
- (ii) $A \supset \neg \neg A$
- (iii) $(\neg A \vee \neg B) \supset \neg(A \wedge B)$
- (iv) $(A \wedge (B \vee C)) \supset (A \wedge B) \vee (A \wedge C)$

Problem 2 (Mandatory; No LLM; 15 pts) Recall the $A \wedge B$ operator from constructive logic. Suppose we keep the introduction rule unchanged, but update the elimination rule as follows:

$$\frac{\begin{array}{c} \overline{A \text{ true}} \quad \overline{B \text{ true}} \\ \vdots \\ A \text{ true} \quad B \text{ true} \end{array}}{A \wedge B \text{ true}} \wedge I \quad \frac{\begin{array}{c} \overline{A \wedge B \text{ true}} \quad \overline{C \text{ true}} \\ \vdots \\ A \wedge B \text{ true} \quad C \text{ true} \end{array}}{C \text{ true}} \wedge E^{x,y}$$

- Are the rules locally sound? If yes, show a reduction. Otherwise, give an explanation of unsoundness.
- Are the rules locally complete? If yes, show an expansion. Otherwise, give an explanation of incompleteness.
- Provide an appropriate proof term for the elimination rule.

Problem 3 (Mandatory; No LLM; 15 pts) Recall the $A \supset B$ operator from constructive logic. Suppose we keep the introduction rule unchanged, but update the elimination rule as follows:

$$\frac{\begin{array}{c} \overline{A \text{ true}} \quad x \\ \vdots \\ B \text{ true} \end{array}}{A \supset B \text{ true}} \supset I^x \quad \frac{\begin{array}{c} \overline{A \supset B \text{ true}} \quad \overline{A \text{ true}} \quad \overline{C \text{ true}} \\ \vdots \\ A \supset B \text{ true} \quad A \text{ true} \quad C \text{ true} \end{array}}{C \text{ true}} \supset E^x$$

- Are the rules locally sound? If yes, show a reduction. Otherwise, give an explanation of unsoundness.
- Are the rules locally complete? If yes, show an expansion. Otherwise, give an explanation of incompleteness.
- Provide an appropriate proof term for the elimination rule.

Problem 4 (Mandatory; No LLMs; 15 pts) Suppose we define a new operator $A \star B$ with the following introduction and elimination rules:

$$\begin{array}{c}
 \frac{}{A \text{ true}}^x \\
 \vdots \\
 \frac{B \text{ true}}{A \star B \text{ true}} \star I_1^x
 \end{array}
 \quad
 \begin{array}{c}
 \frac{}{B \text{ true}}^x \\
 \vdots \\
 \frac{A \text{ true}}{A \star B \text{ true}} \star I_2^x
 \end{array}
 \\
 \frac{}{A \star B \text{ true}} \quad \frac{}{A \text{ true}} \quad \frac{}{C \text{ true}} \quad \frac{}{B \text{ true}} \quad \frac{}{C \text{ true}} \quad \frac{}{C \text{ true}} \star E^{x,y}$$

- Are the rules locally sound? If yes, show a reduction. Otherwise, give an explanation of unsoundness.
- Are the rules locally complete? If yes, show an expansion. Otherwise, give an explanation of incompleteness.
- Can $A \star B$ be expressed using the standard operators in constructive logic?

Problem 5 (Mandatory; No LLMs; 15 pts) Suppose we define a new operator $A \heartsuit B \diamondsuit C$ with the following introduction and elimination rules:

$$\begin{array}{c}
 \frac{}{A \text{ true}} \heartsuit \diamondsuit I_1 \\
 \frac{B \text{ true} \quad C \text{ true}}{A \heartsuit B \diamondsuit C \text{ true}} \heartsuit \diamondsuit I_2
 \end{array}
 \\
 \frac{}{A \heartsuit B \diamondsuit C \text{ true}} \quad \frac{}{D \text{ true}} \quad \frac{}{D \text{ true}} \quad \frac{}{D \text{ true}} \heartsuit \diamondsuit E^{x,y,z}$$

- Are the rules locally sound? If yes, show a reduction. Otherwise, give an explanation of unsoundness.
- Are the rules locally complete? If yes, show an expansion. Otherwise, give an explanation of incompleteness.
- Provide a derivation of $A \heartsuit B \diamondsuit C \supset A \heartsuit C \diamondsuit B \text{ true}$.

Problem 6 (Optional; No LLMs; 15 pts) Determine if the following propositions are derivable using rules of verifications ($A \uparrow$) and uses ($A \downarrow$). If yes, provide a derivation. Otherwise, briefly explain why.

- (i) $((A \vee B) \wedge (A \supset C) \wedge (B \supset C)) \supset C \uparrow$
- (ii) $(A \supset B) \supset ((A \vee C) \supset (B \vee C)) \uparrow$
- (iii) $(A \vee B) \supset ((A \supset C) \supset ((B \supset D) \supset (C \vee D))) \uparrow$

Problem 7 (Optional; LLMs ok; 30 pts) *Given a derivation \mathcal{D} of $A \text{ true}$, can you construct a derivation \mathcal{E} of $A \uparrow$.*

Hint: Try this problem with only the $A \wedge B$ and $A \supset B$ operators first.

Problem 8 (Optional; LLMs ok; 15 pts) *Design introduction and elimination rules of a new connective $A \bullet B$ such that it is locally sound but not locally complete.*

Problem 9 (Optional; LLMs ok; 15 pts) *Design introduction and elimination rules of a new connective $A \circ B$ such that it is locally complete but not locally sound.*