
CS 599 D1: Mock Mid-Term

Total: 80 pts

Ankush Das

1 Linear Inference [20 pts]

In this section, we will solve the ‘Vending Machine’ problem using rules of linear inference. In front
of you is a vending machine that accepts $1, $5, and $10 bills. The vending machine contains chips
packets, candy bars, and cookie boxes each costing $2, $2, and $3 respectively. Here’s how the vending
machine works:

1. You insert exactly one bill into the machine.

2. You choose exactly one item you want to purchase.

3. The vending machine dispenses the item you wished to purchase.

4. The vending machine returns your change (in case you overpaid) in as few bills as possible. For
instance, if you insert a $10 bill and purchase a packet of chips, the vending machine will return
one $5 bill, one $2 bill, and one $1 bill (instead of returning eight $1 bills).

Your task is to define the mechanism of purchasing items from the vending machine as rules of
linear inference.

Problem 1 (2 pts) Define the propositions you will need in the inference rules. Briefly describe the
intuitive meaning of each proposition.

Problem 2 (10 pts) Define the rules of linear inference for the vending machine problem.

Problem 3 (8 pts) Suppose you start with a $10 bill and you intend to purchase one packet of chips,
one candy bar, and one cookie box. Is this possible using the rules above? If yes, provide a derivation
from the initial state to the final state. If this is not possible, explain why.

2 Ordered Inference [20 pts]

In class, we looked at incrementing binary numbers using rules of ordered inference. In this problem,
you need to define the rules for decrementing a binary number. A binary number is written from left
to right as $ 1 0 . . . 1 where the $ at the left end indicates the start of the number. Consider all the
digits (including $) as ordered propositions. To decrement a number, we introduce a new proposition
called dec, which starts at the right end of the binary number.

In other words, to decrement a binary number, we will write the initial set of propositions as
$ 1 0 . . . 1 dec.

Problem 4 (10 pts) Define the rules of ordered inference for dec.

Problem 5 (5 pts) Consider the binary number $ 1 0 0. Now, we need to decrement this number
twice. Apply the rules defined in the previous problem twice, i.e., start with $ 1 0 0 dec dec and derive
the final state. You should apply the rules sequentially (i.e., process the first dec, then process the
second dec).

Problem 6 (10 pts) Now try to apply the two rules concurrently, i.e., process the two dec proposi-
tions simultaneously. Do you arrive at the same result? Why or why not?

1

3 Linear Proofs [20 pts]

Problem 7 (20 pts) For the following problems, determine if the propositions are provable or not.
If they are provable, show the derivation and construct the corresponding session-typed proof term by
giving appropriate channel names to each proposition.

1. A ⊢ A⊗A

2. A⊗A ⊢ A

3. A⊗ (B ⊕ C) ⊢ (A⊗B)⊕ (A⊗ C)

4. A⊕ (B ⊗ C) ⊢ (A⊕B)⊗ (A⊕ C)

5. A⊗ (B ⊗ C) ⊢ (A⊗B)⊗ C

To provide a session-typed term for types of the form A⊕ B, consider adding the following labels:
Instead of using A⊕B, use ⊕{left : A, right : B}.

4 Session-Typed Programming [20 pts]

In the following set of problems, you are expected to write programs in the session-typed programming
language introduced in lecture. Recall the syntax of the language

Expressions P ::= x.k ; P | case x (ℓ⇒ Pℓ)ℓ∈L | y ← recv x ; P | send x y ; P | wait x ; P | close x
| x↔ y | x← f y ; P

Types A,B ::= ⊕{ℓ : Aℓ}ℓ∈L | &{ℓ : Aℓ}ℓ∈L | A⊗B | A ⊸ B | 1

To get some programming experience, we will implement standard processes for lists. The type of
list is defined as

type listA = ⊕{cons : A⊗ listA,nil : 1}

Problem 8 (10 pts) Define a process called append with the following type

decl append : (l1 : listA), (l2 : listA) ⊢ (l : listA)

The process appends list l2 to the end of list l1 and produces the output list on l.

Problem 9 (10 pts) Define a process called alternate with the following signature:

decl alternate : (l1 : listA), (l2 : listA) ⊢ (l : listA)

This process outputs the elements of list l1 and l2 on the output list l in an alternate fashion, i.e., one
element from l1, next one from l2 and so on. In other words, if l1 = [1; 2; 3] and l2 = [4; 5; 6; 7; 8], then
l = [1; 4; 2; 5; 3; 6; 7; 8]. If the two lists are of unequal size, then l contains the leftover elements from
the larger list in order as shown in the example above.

2

	Linear Inference [20 pts]
	Ordered Inference [20 pts]
	Linear Proofs [20 pts]
	Session-Typed Programming [20 pts]

