
CS 599 D1: Assignment 5

Due Friday, April 19, 2024

Total: 100 pts

Ankush Das

This assignment is just programming! You will be implementing a session type checker and in-
terpreter that will follow the typing and semantics rules respectively. Again, you can code in your
favorite programming language, but please follow the guidelines below to make your submission can
be accepted by the instructor.

• In this set of problems, you will be required to define several types and functions.

• Please make sure your submission is a zip file that contains the code file(s) that defines the
required functions and types. You should submit the zip file containing the file(s) electronically
on Gradescope by the due date.

• Your zip file must include a separate readme file that contains instructions for installing and
executing the file(s) in your submission.

• You’re welcome to modularize your code into multiple files. If you do so, please indicate in your
instructions which file contains the functions and types for each problem.

• For all the following problems, you are welcome to define as many helper functions as needed.
Please indicate in a comment what the function’s purpose is.

• Begin coding!

1 Type Equality [20 pts]

Before we implement the type checker and interpreter, we will implement the type equality algorithm
discussed in class. This algorithm will be implemented as a function that would take two types and
return a boolean depending upon whether they are equal or not.

Recall the type syntax of the language.

Types A,B ::= ⊕{ℓ : Aℓ}ℓ∈L | &{ℓ : Aℓ}ℓ∈L | A⊗B | A ⊸ B | 1 | V

Note that there is an additional type in the type grammar denoted by V . This denotes type names
like nat and bin.

Problem 1 (3 pts) Define a type called tp for types in the language. Also, define a type called
tp_def to represent a type definition in the program. In general, type definitions have the form:

type x = A

For instance, for the following program:

type nat = +{succ : nat, zero : 1}
type bin = +{b0 : bin, b1 : bin, e : 1}

there are two type definitions: type nat maps to +{succ : nat, zero : 1} and type bin maps
to +{b0 : bin, b1 : bin, e : 1}. The set of all type definitions are collected in a type called
environment. This would be helpful in implementing the type equality algorithm.
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Problem 2 (15 pts) Define a function called eq_tp with the following signature:

eq_tp: environment -> constraints -> tp -> tp -> bool

Here, environment should contain the set of all type definitions in the program. And constraints
stores the equality constraints encountered so far (equivalent to Θ in the class). Choose appropriate
data structures for the types environment and constraints.

The function takes the environment, the constraints encountered, and two types as input and returns
true if the types are equal and false otherwise.

Problem 3 (2 pts) Test out the eq_tp function defined above on the following types.

type nat = +{succ : nat, zero : 1}
type nat1 = +{succ : nat1, zero : 1}
type nat2 = +{succ : nat3, zero : 1}
type nat3 = +{succ : nat2, zero : 1}
type even = +{succ : odd, zero : 1}
type odd = +{succ : even}
type even1 = +{succ : +{succ : even1}, zero : 1}
type odd1 = +{succ : +{succ : odd1, zero : 1}}

Which two of these types are equal? Use an empty set of constraints to call the eq_tp function since
we start without knowing which two of these types are equal.

2 Type Checker [40 pts]

Equipped with a type equality algorithm, we will now implement the type checker. First, we define a
type for process expressions. Recall the process expression syntax of the language:

Expressions P ::= x.k ; P | case x (ℓ⇒ Pℓ)ℓ∈L | y ← recv x ; P | send x y ; P | wait x ; P | close x
| x↔ y | x← f y ; P

Problem 4 (3 pts) Define a type called exp for expressions in the language.

Problem 5 (2 pts) Extend the type environment to contain process declarations and definitions.
Remember that process declarations have the form

decl f : (x1 : A1), (x2 : A2), ... (xn : An) |- (x : A)

and process definitions have the form

proc x <- f x1 x2 ... xn = P

Now, we have completed the setup for implementing the type checker. Recall the typing judgment is
expressed as follows: Σ ; ∆ ⊢ P :: (z : C) where

• Σ is the environment containing all the type definitions, and process definitions and declarations.

• ∆ is the typing context mapping channel names to session types.

• P is the process expression.

• z is the offered channel name.

• C is the offered channel type.

Problem 6 (35 pts) Implement a function called typecheck with the following signature:

typecheck: environment -> context -> exp -> channel -> tp -> bool

Choose appropriate types for context and channel that represent ∆ and z respectively in the judg-
ment. As is standard, the function returns true if the process is well-typed and false otherwise.
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3 Interpreter [30 pts]

Finally, we will implement an interpreter that will follow the rules of the semantics. To express the
semantics, we first need to define semantic objects: proc(c, P ) and msg(c,M). Recall the grammar for
processes and messages.

Expressions P ::= x.k ; P | case x (ℓ⇒ Pℓ)ℓ∈L | y ← recv x ; P | send x y ; P | wait x ; P | close x
| x↔ y | x← f y ; P

Messages M ::= x.k ; x↔ x′ | x.k ; x′ ↔ x | send x y ; x↔ x′ | send x y ; x′ ↔ x | close x

Problem 7 (5 pts) Define a type sem that represents a semantic object: either a process or a mes-
sage. Also, define a type configuration that represents a set of semantic objects.

Problem 8 (15 pts) Implement a function called step with the following signature:

step: environment -> configuration -> configuration

Problem 9 (10 pts) Demonstrate the progress theorem by defining the following functions:

poised_sem: sem -> bool
poised: configuration -> bool

The first function takes a semantic object (i.e., a process or a message) as input and returns whether it
is poised or not. The second function applies the former pointwise to every object in the configuration
because a configuration is poised when all its semantic objects are poised.

Recall the definition of poised: a process is poised if it is receiving on the channel it is offering. A
message is poised if it is sending on the channel it is offering.

4 Testing [10 pts]

With all components implemented, we will now test out our language functions. For this, we need a
way of executing a closed process. We will introduce a new declaration and add it to the environment.
This is written as

exec f

which stands for executing process f.

Problem 10 (1 pts) Extend the type environment to account for process execution declarations.
This declaration just contains a process name.

Problem 11 (9 pts) Consider the following program:

type nat = +{succ : nat, zero : 1}

decl two : . |- (x : nat)
proc x <- two = x.succ; x.succ; close x

decl plus : (x : nat) (y : nat) |- (z : nat)
proc z <- plus x y =

case x (
succ => z.succ ; z’ <- plus x y ; z <-> z’

| zero => wait x ; z <-> y
)

decl ten : . |- (x : nat)
proc x <- ten =

x2 <- two; y2 <- two;
x4 <- plus x2 y2;
x2 <- two; y2 <- two; z2 <- two;
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y4 <- plus x2 y2;
x6 <- plus y4 z2;
x’ <- plus x4 x6;
x <-> x’

exec ten

Write this program (by creating a value of type environment) in your language and print the output
of executing the process ten. For this problem, you should define the following process

string_of_configuration: configuration -> string

and print out each intermediate configuration. Confirm that the final configuration is poised.

A Type System, Type Equality, and Semantics

Type System

(k ∈ L) ∆ ⊢ P :: (x : Ak)

∆ ⊢ (x.k ; P ) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕R

(∀ℓ ∈ L) ∆, x : Aℓ ⊢ Qℓ :: (z : C)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ (case x (ℓ⇒ Qℓ)ℓ∈L) :: (z : C)
⊕L

(∀ℓ ∈ L) ∆ ⊢ Pℓ :: (x : Aℓ)

∆ ⊢ (case x (ℓ⇒ Pℓ)ℓ∈L) :: (x : &{ℓ : Aℓ}ℓ∈L)
&R

(k ∈ L) ∆, x : Ak ⊢ Q :: (z : C)

∆, x : &{ℓ : Aℓ}ℓ∈L ⊢ (x.k ; Q) :: (z : C)
&L

∆ ⊢ P :: (x : B)

∆, y : A ⊢ (send x y ; P ) :: (x : A⊗B)
⊗R

∆, y : A, x : B ⊢ Q :: (z : C)

∆, x : A⊗B ⊢ (y ← recv x ; Q) :: (z : C)
⊗L

∆, y : A ⊢ P :: (x : B)

∆ ⊢ (y ← recv x ; P ) :: (x : A ⊸ B)
⊸R

∆, x : B ⊢ Q :: (z : C)

∆, x : A ⊸ B, y : A ⊢ (send x y ; Q) :: (z : C)
⊸L

· ⊢ (close x) :: (x : 1)
1R

∆ ⊢ Q :: (z : C)

∆, x : 1 ⊢ (wait x ; Q) :: (z : C)
1L

x : A ⊢ (y ↔ x) :: (y : A)
id

decl f : y′ : A′ ⊢ (x : A) ∈ Σ ∆, x : A ⊢ Q :: (z : C)

∆, y : A′ ⊢ (x← f y ; Q) :: (z : C)
def

Type Equality

L = M (∀ℓ ∈ L) Θ ⊢ Aℓ ≡ Bℓ

Θ ⊢ ⊕{ℓ : Aℓ}ℓ∈L ≡ ⊕{m : Bm}m∈M

⊕
L = M (∀ℓ ∈ L) Θ ⊢ Aℓ ≡ Bℓ

Θ ⊢ &{ℓ : Aℓ}ℓ∈L ≡ &{m : Bm}m∈M

&

Θ ⊢ A1 ≡ B1 Θ ⊢ A2 ≡ B2

Θ ⊢ A1 ⊗A2 ≡ B1 ⊗B2

⊗
Θ ⊢ A1 ≡ B1 Θ ⊢ A2 ≡ B2

Θ ⊢ A1 ⊸ A2 ≡ B1 ⊸ B2

⊸
Θ ⊢ 1 ≡ 1

1

(V ≡ B) /∈ Θ type V = A ∈ Σ Θ, (V ≡ B) ⊢ A ≡ B

Θ ⊢ V ≡ B
expdR

(V ≡ B) /∈ Θ type V = A ∈ Σ Θ, (V ≡ B) ⊢ B ≡ A

Θ ⊢ B ≡ V
expdL

(V ≡ B) ∈ Θ

Θ ⊢ V ≡ B
defR

(V ≡ B) ∈ Θ

Θ ⊢ B ≡ V
defL

Two types A and B are said to be equal iff we can derive · ⊢ A ≡ B.
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Semantics

(⊕S) proc(c, c.k ; P ) 7→ proc(c′, [c′/c]P ),msg(c, c.k ; c↔ c′) (c′ fresh)

(⊕C) msg(c, c.k ; c↔ c′), proc(d, case c (ℓ⇒ Qℓ)ℓ∈L) 7→ proc(d, [c′/c]Qk)

(&S) proc(d, c.k ; Q) 7→ msg(c′, c.k ; c′ ↔ c), proc(d, [c′/c]Q) (c′ fresh)

(&C) proc(c, case c (ℓ⇒ Qℓ)ℓ∈L),msg(c′, c.k ; c′ ↔ c) 7→ proc(c′, [c′/c]Qk)

(⊗S) proc(c, send c e ; P ) 7→ proc(c′, [c′/c]P ),msg(c, send c e ; c↔ c′) (c′ fresh)

(⊗C) msg(c, send c e ; c↔ c′), proc(d, x← recv c ; Q) 7→ proc(d, [c′, e/c, x]Q)

(⊸S) proc(d, send c e ; Q) 7→ msg(c′, send c e ; c′ ↔ c), proc(d, [c′/c]Q) (c′ fresh)

(⊸C) proc(c, x← recv c),msg(c′, send c e ; c′ ↔ c) 7→ proc(c′, [c′, d/c, x]P )

(1S) proc(c, close c) 7→ msg(c, close c)

(1C) msg(c, close c), proc(d,wait c ; Q) 7→ proc(d,Q)

(defC) proc(d, x← Px y ; Qx) 7→ proc(c, [c/x]Px), proc(d, [c/x]Qx) (c fresh)

(id+C) msg(d,M), proc(c, c↔ d) 7→ msg(c, [c/d]M)

(id−C) proc(c, c↔ d),msg(e,Mc) 7→ msg(e, [d/c]Mc)
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