
CS 599 D1: Assignment 4

Due: Wednesday, April 3, 2024

Total: 100 pts

Ankush Das

• This assignment is due on the above date and it must be submitted electronically on Gradescope.
Please create an account on Gradescope, if you haven’t already done so.

• Please use the template provided on the course webpage to typeset your assignment and please
include your name and BU ID in the Author section (above).

• You should hand in one file, named as ⟨first-name⟩ ⟨last-name⟩ ⟨BU-ID⟩ asgn4.pdf containing
the solutions to the problems below.

• You should also hand in one zip file containing the solutions to the coding assignment in a file
named asgn4.rast.

• You will be provided a tex file, named asgn4.tex. It contains an environment called solution.
Please enter your solutions inside these environments.

• You will be provided a rast file, named asgn4.rast. It will contain some code to get you started.

Programming with Session Types

In this assignment, you will be using the Rast (short for Resource-Aware Session Types) programming
language to implement session-typed processes. Appendix A provides a description of the language.

Repository Set Up

First, go to the following Bitbucket Repository: https://bitbucket.org/fpfenning/rast/
src/master/rast/ that contains the Rast source code. Next, follow the steps below:

• Install MLton: Rast is implemented in SML and MLton is a compiler for SML. Follow the steps
here: http://mlton.org/. For Mac users, simply running brew install mlton in your
terminal would work too.

• Next, clone the Rast repository. The easiest way to do this is via HTTPS. Issue the following
command: git clone https://bitbucket.org/fpfenning/rast.git

• Finally, we need to build the source and generate the Rast executable. Navigate to the src
directory: cd rast/rast/src and run make.

• To check if the rast executable is working correctly, run the following command on your termi-
nal: ./rast ../examples/arith.rast. If you see % success at the end, then you have
set up Rast correctly.

1 Odd and Even Numbers [45 pts]

In the previous homework, we looked at binary numbers. In this homework, we will look at unary
natural numbers represented as

type nat = +{succ : nat, zero : 1}

We also introduce the type of even and odd natural numbers defined mutually recursively as follows:

1

https://bitbucket.org/fpfenning/rast/src/master/rast/
https://bitbucket.org/fpfenning/rast/src/master/rast/
http://mlton.org/

type even = +{succ : odd, zero : 1}
type odd = +{succ : even}

An even number can either be 0 or the successor of an odd number. Similarly, an odd number can
only be a successor of an even number.

As a simple property, an even number can only be typed as even. For example, consider the
process two that represents the number 2. The process is written as

decl two : . |- (x : nat)
proc x <- two = x.succ; x.succ; x.zero; close x

We can also write the same process with an even type:

decl two’ : . |- (x : even)
proc x <- two’ = x.succ; x.succ; x.zero; close x

But if we try to write the same process with an odd type, we will encounter a type error.

decl two’’ : . |- (x : odd)
proc x <- two’’ = x.succ; x.succ; x.zero; close x

You are welcome to write the above programs in a .rast file and confirm the observations above.
This serves as a proof that 2 is an even number and 2 is not an odd number.

In the following set of problems, you will be writing programs that effectively serve as proofs about
even and odd numbers. You are welcome to define and use helper processes. Use the file asgn4.rast
provided in the assignment and write the following programs in that file. Make sure to run them
through the Rast type checker using the command ./rast asgn4.rast to make sure that the
program is type correct.

Problem 1 (10 pts) Define a process called double that has the following signature:

decl double: (x : odd) |- (y : even)

The process doubles the input odd number channel x to produce y. This program serves as a proof that
the double of an odd number is an even number.

Problem 2 (10 pts) Define a process called plus that has the following signature:

decl plus: (x : odd) (y : even) |- (z : odd)

The process uses an odd channel x and an even channel y and adds them to produce z. This program
serves as a proof that the sum of an odd and even number is odd.

Problem 3 (15 pts) Define a process called even_or_odd that has the following signature:

decl even_or_odd: (x : nat) |- (y : +{E : even, O : odd})

The process uses a natural number channel x as input. It determines whether x is even or odd. If x is
even, the process sends the label E on y and then produces the input number x on channel y. On the
other hand, if x is odd, the process sends the label O on y and then produces the input number x on
channel y. In both cases, the input number is produced on the output. This program serves as a proof
that every natural number is either odd or even.

Problem 4 (10 pts) Test the correctness of the even_or_odd process. Define two processes that
represent numbers two and three respectively with the following signature:

decl two : . |- (c : nat)
decl three : . |- (c : nat)

Now, define the process below by first spawning a process two and then calling even_or_odd on it.

decl two_is_even : . |- (c : +{E : even, O : odd})

Similarly, define the process below by doing the same for process three.

decl three_is_odd : . |- (c : +{E : even, O : odd})

2

Now, execute these 2 processes as follows:

exec two_is_even
exec three_is_odd

If you have implemented this correctly, the output should be:

exec two_is_even
c = E ; succ ; succ ; zero ; close
exec three_is_odd
c = O ; succ ; succ ; succ ; zero ; close

2 Text Editor [25 pts]

We will implement a prototype text editor using session types. This editor supports the following
operations:

• moveL: moving the cursor one step left

• moveR: moving the cursor one step right

• ins: inserting a character at the cursor and moving the cursor one step right

• del: deleting a character at the cursor and moving the cursor one step left

The type to represent these operations is called cmd (akin to issuing commands to the editor):

type cmd = &{ moveL : cmd,
moveR : cmd,
ins : char -o cmd,
del : +{none : cmd,

some : char * cmd}}

Here, the type char represents characters. However, your program is parametric in this type: you
would never need to know the type definition of char. Your program would work for any definition of
the char type. (This is also referred to as polymorphism)

We will implement this editor using two stacks: one that represents the characters on the left of
the cursor and the other represents the characters on the right of the cursor. The type of stack is
defined as (slight modification: it does not terminate in the none branch):

type stack = &{ ins : char -o stack,
del : +{none : stack,

some : char * stack}}

Problem 5 (25 pts) Write a process called editor with the following signature:

decl editor : (l : stack) (r : stack) |- (c : cmd)

3 Proving With Session Types [30 pts]

Problem 6 (30 pts) Complete the remaining cases (spawning, forwarding, and 1) of progress and
preservation for session types.

[Preservation Theorem] Consider a well-typed configuration C such that ∆1 ⊨ C :: ∆2. If C 7→ C′,
then ∆1 ⊨ C′ :: ∆2.

[Progress Theorem] Consider a well-typed configuration C such that ∆1 ⊨ C :: ∆2. Either C 7→ C′
or C poised.

3

A Syntax, Type System, and Semantics for Session Types

Syntax

Expressions P ::= x.k ; P | case x (ℓ⇒ Pℓ)ℓ∈L | y ← recv x ; P | send x y ; P | wait x ; P | close x
| x↔ y | x← f y ; P

Types A,B ::= ⊕{ℓ : Aℓ}ℓ∈L | &{ℓ : Aℓ}ℓ∈L | A⊗B | A ⊸ B | 1

Type System

(k ∈ L) ∆ ⊢ P :: (x : Ak)

∆ ⊢ (x.k ; P) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕R

(∀ℓ ∈ L) ∆, x : Aℓ ⊢ Qℓ :: (z : C)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ (case x (ℓ⇒ Qℓ)ℓ∈L) :: (z : C)
⊕L

(∀ℓ ∈ L) ∆ ⊢ Pℓ :: (x : Aℓ)

∆ ⊢ (case x (ℓ⇒ Pℓ)ℓ∈L) :: (x : &{ℓ : Aℓ}ℓ∈L)
&R

(k ∈ L) ∆, x : Ak ⊢ Q :: (z : C)

∆, x : &{ℓ : Aℓ}ℓ∈L ⊢ (x.k ; Q) :: (z : C)
&L

∆ ⊢ P :: (x : B)

∆, y : A ⊢ (send x y ; P) :: (x : A⊗B)
⊗R

∆, y : A, x : B ⊢ Q :: (z : C)

∆, x : A⊗B ⊢ (y ← recv x ; Q) :: (z : C)
⊗L

∆, y : A ⊢ P :: (x : B)

∆ ⊢ (y ← recv x ; P) :: (x : A ⊸ B)
⊸R

∆, x : B ⊢ Q :: (z : C)

∆, x : A ⊸ B, y : A ⊢ (send x y ; Q) :: (z : C)
⊸L

· ⊢ (close x) :: (x : 1)
1R

∆ ⊢ Q :: (z : C)

∆, x : 1 ⊢ (wait x ; Q) :: (z : C)
1L

x : A ⊢ (y ↔ x) :: (y : A)
id

decl f : y′ : A′ ⊢ (x : A) ∈ Σ ∆, x : A ⊢ Q :: (z : C)

∆, y : A′ ⊢ (x← f y ; Q) :: (z : C)
def

Semantics

(⊕S) proc(c, c.k ; P) 7→ proc(c′, [c′/c]P),msg(c, c.k ; c↔ c′) (c′ fresh)

(⊕C) msg(c, c.k ; c↔ c′), proc(d, case c (ℓ⇒ Qℓ)ℓ∈L) 7→ proc(d, [c′/c]Qk)

(&S) proc(d, c.k ; Q) 7→ msg(c′, c.k ; c′ ↔ c), proc(d, [c′/c]Q) (c′ fresh)

(&C) proc(c, case c (ℓ⇒ Qℓ)ℓ∈L),msg(c′, c.k ; c′ ↔ c) 7→ proc(c′, [c′/c]Qk)

(⊗S) proc(c, send c e ; P) 7→ proc(c′, [c′/c]P),msg(c, send c e ; c↔ c′) (c′ fresh)

(⊗C) msg(c, send c e ; c↔ c′), proc(d, x← recv c ; Q) 7→ proc(d, [c′, e/c, x]Q)

(⊸S) proc(d, send c e ; Q) 7→ msg(c′, send c e ; c′ ↔ c), proc(d, [c′/c]Q) (c′ fresh)

(⊸C) proc(c, x← recv c),msg(c′, send c e ; c′ ↔ c) 7→ proc(c′, [c′, d/c, x]P)

(1S) proc(c, close c) 7→ msg(c, close c)

(1C) msg(c, close c), proc(d,wait c ; Q) 7→ proc(d,Q)

(defC) proc(d, x← Px y ; Qx) 7→ proc(c, [c/x]Px), proc(d, [c/x]Qx) (c fresh)

(id+C) msg(d,M), proc(c, c↔ d) 7→ msg(c, [c/d]M)

(id−C) proc(c, c↔ d),msg(e,Mc) 7→ msg(e, [d/c]Mc)

4

	Odd and Even Numbers [45 pts]
	Text Editor [25 pts]
	Proving With Session Types [30 pts]
	Syntax, Type System, and Semantics for Session Types

