
CS 599 D1: Assignment 2

Due Wednesday, February 21, 2024

Total: 150 pts

Ankush Das

• This assignment is due on the above date and it must be submitted electronically on Gradescope.
Please create an account on Gradescope, if you haven’t already done so.

• Please use the template provided on the course webpage to typeset your assignment and please
include your name and BU ID in the Author section (above).

• Although it is not recommended, you can submit handwritten answers that are scanned as a
PDF and clearly legible.

• You should hand in one file, named as ⟨first-name⟩ ⟨last-name⟩ ⟨BU-ID⟩ asgn2.pdf containing
the solutions to the theory problems below.

• You should also hand in one zip file containing the solutions to the coding assignment.

• You will be provided a tex file, named asgn2.tex. It contains an environment called solution.
Please enter your solutions inside these environments.

1 LL1 and λ-Calculus [50 pts]

Let’s recall the LL1 language that we have seen in many lectures with a few important changes

Expressions e ::= true | false | if e then e else e | n | n | e+ e | let x = e in e | x | e ≤ e

Types τ ::= bool | int | float

As you can notice, there is a new expression e1 ≤ e2 and a new type for floating-point expressions. We
define the ≤ operator such that it applies to booleans, integers, and floats. For booleans, we define
that false is less than true and then ≤ is defined in the standard manner. For integers and floats,
the operator ≤ is the standard ‘less than or equal to’ operator. Note the important caveat that
the ≤ operator can be used to compare integers with floats and the + operator can be
used to add integers and floats (integers and floats can be on either side of the operator). We also
introduce n to represent floating-point values.

To prove the theorems in this problem, you can use (without proving) the following lemma.

Lemma 1 (Canonical Forms) For a well-typed expression e such that Γ ⊢ e : τ

• If τ is bool, then e = true or e = false.

• If τ is int, then e = n for some n.

• If τ is float, then e = n for some n.

Problem 1 (34 pts) Solve the following problems for LL1:

(4 pts) Define the rules of the type system for LL1. Although not necessary, but try to use as few rules
as possible.

1

(5 pts) Define the rules of the small-step semantics for LL1. To define the semantics, you can use the
⪯ and ¬ operators to compare integer/float values (similar to ⊕ for adding integer/float values).

(5 pts) Define the rules of the big-step semantics for LL1. Again, you can use the ⪯ and ¬ operators to
compare integer/float values.

(20 pts) Is the LL1 language type safe? Either prove the progress and preservation theorems for LL1 or
show a counterexample expression e that violates either the progress or the preservation theorem.

[Preservation Theorem]:
If Γ ⊢ e : τ and e 7→ e′, then Γ ⊢ e′ : τ .

[Progress Theorem]:
If · ⊢ e : τ then either e 7→ e′ or e value.

Problem 2 (16 pts) In this problem, fill in the blanks to make the following typing judgments in
λ-calculus valid, or briefly explain that it is impossible to do so. This might require defining either (i)
an expression with a given type, or (ii) the typing context for an expression, or (iii) the type of a given
expression in a typing context, or (iv) a combination of the above. (2 pts each)

1. · ⊢ QWERTY : α → α

2. y : β ⊢ QWERTY : α → β

3. · ⊢ QWERTY : α → β

4. QWERTY ⊢ x x : QWERTY

5. · ⊢ QWERTY : α → (α → α)

6. · ⊢ QWERTY : (α → α) → α

7. QWERTY ⊢ λx. x (x x) : QWERTY

8. · ⊢ λf. λg. λx. (f x) (g x) : (α → QWERTY) → (α → QWERTY) → (α → QWERTY)

2 System T [60 pts]

In this homework, we will study another popular language called Gödel’s System T that supports
primitive recursion (but importantly, not general recursion). The language is defined as follows:

Syntax

Expressions e ::= λx : τ . e | e e | x | zero | succ(e) | natrec(e ; e ; x. y. e)
Types τ ::= τ → τ | nat

The language has the standard expressions from λ-calculus except that the λ-expression has the
type of argument stated explicitly. In addition, the language natively supports natural numbers (not
integers). Natural numbers are defined inductively using (i) zero which defines the natural number 0,
and (ii) succ(e) which defines the successor, i.e., if e denotes the number n, then succ(e) denotes n+ 1.

2

Type System

Γ, x : α ⊢ e : τ

Γ ⊢ λx : α. e : α → τ
Lam

Γ ⊢ e1 : α → τ Γ ⊢ e2 : α

Γ ⊢ e1 e2 : τ
App

Γ, x : τ ⊢ x : τ
Var

Γ ⊢ zero : nat
Zero

Γ ⊢ e : nat

Γ ⊢ succ(e) : nat
Succ

Γ ⊢ e : nat Γ ⊢ e0 : τ Γ, x : nat, y : τ ⊢ e1 : τ

Γ ⊢ natrec(e ; e0 ; x. y. e1) : τ
Rec

The rules for λ-calculus are standard. The type of zero is nat and if e has type nat, then succ(e)
also has type nat. Finally, natrec is used to perform primitive recursion on natural numbers (only).
The expression natrec(e ; e0 ; x. y. e1) performs recursion on the first argument e which must have type
nat. If e is zero, then this expression returns e0 which has an arbitrary type τ . If e is succ(e′), then
we essentially evaluate e1 where x represents the predecessor e′, and y represents the value from the
previous recursive call. Therefore, in the presence of x : nat and y : τ , we need to derive that e1 : τ .

Semantics

λx : τ . e value
λ-V

e1 7→ e′1
e1 e2 7→ e′1 e2

App-L
e1 value e2 7→ e′2

e1 e2 7→ e1 e′2
App-R

e′ value

(λx : τ . e) e′ 7→ [e′/x]e
App-S

zero value
Zero

succ(e) value
Succ

e 7→ e′

natrec(e ; e0 ; x. y. e1) 7→ natrec(e ; e0 ; x. y. e1)
Rec-E

natrec(zero ; e0 ; x. y. e1) 7→ e0
Rec-Z

natrec(succ(e) ; e0 ; x. y. e1) 7→ [e/x, natrec(e ; e0 ; x. y. e1)/y]e1
Rec-S

The rules of λ-calculus are standard. zero and succ(e) are defined to be values. There is a standard
rule Rec-E for evaluating the argument to natrec. If the argument is 0, the natrec expression simply
steps to e0 as demonstrated by the Rec-Z rule. Finally, if the argument is succ(e), then e is substituted
for x and the recursive call natrec(e ; e0 ; x. y. e1) is substituted for y in e1. Try to write some
examples of e0 and e1 to see how they evaluate.

For your convenience, we will state (but not prove) a canonical forms lemma.

Lemma 2 (Canonical Forms) If Γ ⊢ e : τ , then

• If τ is nat, then e = zero or e = succ(e′) for some e′ such that Γ ⊢ e′ : nat.

• If τ is τ1 → τ2, then e = λx : τ1. e
′ for some e′ such that Γ, x : τ1 ⊢ e′ : τ2.

2.1 Termination

Unlike general recursive programming languages like OCaml and Rust, System T has the valuable
property that all programs written in this language terminate, i.e., evaluate to a value in a finite
number of steps. Your task is to prove this fact using Tait’s reducibility method. The theorem we
want to prove is the following:

Theorem 1 (Normalization) If · ⊢ e : τ , then there exists v such that v value and e 7→∗ v, where
7→∗ is the reflexive transitive closure of 7→.

We might hope to prove this theorem directly by induction on the typing judgment. However, this
approach is insufficient. The case for the application rule (App) is demonstrative.

Γ ⊢ e1 : α → τ Γ ⊢ e2 : α

Γ ⊢ e1 e2 : τ
App

3

In this case, our induction hypotheses tells us that e1 7→∗ v1 and e2 7→∗ v2 for some values v1 and v2.
By preservation and the appropriate canonical forms lemma, we know that v1 = λx : α. e′ for some
e′. It also follows that e1 e2 7→∗ v1 e2 7→ [e2/x]e

′. Unfortunately, we are now stuck, as we have no
information about the behavior of [e2/x]e

′.
We will solve this by generalizing, proving a stronger statement which gives us more information

as an induction hypothesis. Specifically, we will define a reducibility predicate Redτ (e) and prove the
following theorem.

Theorem 2 If · ⊢ e : τ , then Redτ (e).

Since we’ll define Redτ such that Redτ (e) implies the existence of v value with e 7→∗ v, this theorem
will imply normalization as a corollary. The definition will go by structural induction on the type τ ,
which makes Redτ what is called a logical relation. (In particular, it is a unary logical relation; we will
encounter binary logical relations, such as logical equivalence e ∼τ e′, later in the course.) Actually,
we will prove an even more general theorem in order to account for open terms; to state it concisely,
we first want to define some notation for substitutions.

Definition 1 A substitution γ = {x1 ↪→ e1, . . . , xn ↪→ en} is a finite mapping from variables to
terms. Given an expression e, we write γ(e) for the expression [e1, . . . , en/x1, . . . , xn]e, that is, the
simultaneous substitution in e of each expression ei for its corresponding variable xi. For γ as above,
we define γ ⊩ Γ to mean that Γ = x1 : τ1, . . . , xn : τn for some τ1, . . . , τn such that Redτi(ei) holds for
1 ≤ i ≤ n.

Now we state the theorem we will actually prove:

Theorem 3 If Γ ⊢ e : τ and γ ⊩ Γ then Redτ (γ(e)).

Theorem 2 follows as the special case where Γ = · and γ = ⟨⟩. Finally, we define the predicate Redτ
by structural induction on τ :

• Redτ1→τ2(e) holds if

1. · ⊢ e : τ1 → τ2,

2. there exists v value such that e 7→∗ v, and

3. for any e′ such that Redτ1(e
′), we have Redτ2(ee

′).

• Rednat(e) holds if

1. · ⊢ e : nat,

2. there exists v value such that e 7→∗ v, and

3. v ↓, where v ↓ is a judgment defined by

zero ↓
↓-Z

e 7→∗ v v value v ↓
succ(e) ↓

↓-S

Note that Redτ1→τ2(e) is defined in terms of Red at the structurally smaller types τ1 and τ2, so the
definition is well-founded. To get you started on the proof, and to see how this definition succeeds
where the previous attempt failed, here is the App case:

• Case App: We have Γ ⊢ e1 e2 : τ with Γ ⊢ e1 : α → τ and Γ ⊢ e2 : α for some α. Per the theorem
statement, we assume we are given γ ⊩ Γ and want to prove that Redτ (γ(e1 e2)). By definition
of substitution, we have that γ(e1 e2) = γ(e1) γ(e2). Moreover, our induction hypotheses tell us
that Redα→τ (γ(e1)) and Redα(γ(e2)). From condition 3 in the definition of Redα→τ , we know
that for any e′ with Redα(e

′) we have Redτ (γ(e1)e
′). Taking e′ = γ(e2) thus gives our goal.

With the right definition Red in hand, the App case follows almost trivially. On the other hand, the
Lam case becomes more difficult. In general, though, proving the theorem is the easy part of a logical
relations argument – the hard part is choosing the right theorem to prove.

To complete the proof, you’ll need the following lemma.

4

Lemma 3 (Closure under Head Expansion) If Redτ (e
′), · ⊢ e : τ and e 7→ e′, then Redτ (e).

Problem 3 (10 pts) Prove closure under head expansion.

With the help of Preservation, closure under head expansion extends to apply when e 7→∗ e′ in
multiple steps (you can use this without proof).

Problem 4 (30 pts) Prove the remaining cases of Theorem 3. You may state (without proof) lemmas
about substitution, but be sure to check that they are actually true.

2.2 Programming in System T

Next, we will get some programming experience in System T.

Problem 5 (20 pts) Define the following functions in System T. For each definition below, briefly
explain the intuition behind your answer (4 pts each). You can define and use helper functions to solve
these problems.

1. Define mult, where mult m n 7→∗ m⊗ n.

2. Define minus, where minus m n 7→∗ m− n if m > n. It should produce 0 otherwise.

3. Define leq, where leq m n 7→∗ succ(zero) if m ≤ n and leq m n 7→∗ zero otherwise.

4. Define mod where mod m n = m mod n. You may pick appropriate defaults when n = 0.

5. Define cube where cube n = n⊗ n⊗ n.

3 Coding Assignment [40 pts]

The last set of problems in this assignment involve coding in your favorite programming language.
Since you are free to choose your own language, please follow the guidelines below to make your
submission can be accepted by the instructor.

• In this set of problems, you will be required to define several types and functions.

• Please make your submission is a zip file that contains the code file that defines the required
functions and types.

• Your zip file must include a separate readme file that contains instructions for installing and
executing the file(s) in your submission.

• You’re welcome to modularize your code into multiple files (but you don’t need to). If you do
create several files, please indicate in your instructions which file contains the functions and types
for each problem.

• Begin coding!

We will implement a slightly simplified version of the LL1 language in this section.

Expressions e ::= true | false | if e then e else e | n | e+ e | let x : τ = e in e | x
Types τ ::= bool | int

You will notice that the let expression now has an explicit type annotation for the variable x. This
will make it easier to implement the type checker of the language. We will remove this simplification
in the future.

Problem 6 (5 pts) Define a type called

(1 pts) tp for types in LL1,

(2 pts) exp for expressions in LL1, and

5

(2 pts) value for values in LL1

Problem 7 (10 pts) Define a function called typecheck with the following signature:

typecheck: context -> exp -> tp -> bool

This function essentially implements the typing rules we’ve defined in the lectures using the judgment
Γ ⊢ e : τ . It takes a context, an expression, and a type as input and returns true if the expression
has that type, and returns false otherwise. You’re welcome to choose your own type for context
that stores the type of all the variables in the context.

Problem 8 (10 pts) Define a function called step with the following signature:

step: exp -> result

This function implements one step of evaluation as defined in the small-step semantics judgment e 7→ e′

For this function, define the appropriate return type (called result here) which can either be an
expression or a value. To define this function, you will also need to define an appropriate substitution
function that substitutes a value for a variable in an expression. This function will (likely) have the
following signature:

substitute: value -> variable -> exp -> exp

You will observe that some of the cases in this function are impossible (you can raise an exception in
these cases if you like). Which of the cases are impossible and why? Write this in comments next to
the impossible cases.

Problem 9 (5 pts) Define a function called eval with the following signature:

eval: exp -> value

This function essentially recursively calls step until it returns a value. Also, define 3 printing func-
tions with the following signatures

string_of_exp: exp -> string
string_of_value: value -> string
string_of_tp: tp -> string

The first function essentially converts an expression into a string. This string should look exactly as
the grammar written in the start of this section. The second function does the same for values and the
third function does the same for types. Use these three functions in the body of eval to print out all
the intermediate expressions and the final value of evaluation.

Problem 10 (5 pts) Define a function called big_step with the following signature:

big_step: exp -> value

This function implements the big-step semantics judgment e ⇓ v.

Problem 11 (5 pts) Write as many tests as you can for all the functions defined above. In particular,

1. Write at least 5 examples of closed ill-typed LL1 programs. Test that typecheck returns false
for each of these examples.

2. Write at least 10 examples of closed well-typed LL1 programs. Test that typecheck returns
true for each of these examples. Also, test that eval and big_step return the same value for
all these examples.

Here are some examples to help you get started.

• let x : int = y in x+ y

• if 3 then true else false

• if true then true else 5 + 8

• if true then 3 else 5 + 8

6

• let x : int = 5 in let y = x+ y in y

• let x : int = true in if x then let y = 1 in y + y else false

• let x : int = 5 in let y = x+ x in y + (y + x)

7

	LL1 and -Calculus [50 pts]
	System T [60 pts]
	Termination
	Programming in System T

	Coding Assignment [40 pts]

